多个基因组的同时分析的制作方法

文档序号:6656857阅读:237来源:国知局
专利名称:多个基因组的同时分析的制作方法
技术领域
总的来说,本发明涉及使用高密度结果输出平台例如微阵列进行遗传分析的方法,更具体来说,涉及多重基于杂交分析的方法,以便从不同的分析获得的结果可以在单一结果输出平台上进行分析。
背景技术
基因组材料是复杂的,因此在混合物中每种序列以相对低的浓度存在。其结果是,在给定的探针浓度下,探针序列将与基因组模板以有限的速度进行杂交。探针的浓度可以在一定程度上进行调整以改变该速度,但是当探针的复杂程度增加时,例如当使用高度多重分析时,这种灵活性被极大地降低了。相反,识别杂交结构的酶通常具有强的结合亲和性,因此可以被用来在短得多的时间内(数秒到数分钟)将探针-基因组复合物加工成扩增的模板。
有几种基于杂交的分析方法可用于分析DNA,所述分析包含了将探针与基因组模板进行杂交的杂交步骤和模板驱动反应产生模板扩增的酶处理步骤,所述模板可以使用标准的方法例如Syvanen,NatureGenetics Supplement,37S5-S10(2005)中的方法来进行扩增。从这样的扩增模板产生的扩增子然后可以通过将标记的探针上的序列与固相支持物例如微阵列上它们相应的互补序列进行杂交来平行地读出。
由于含有数百万功能部件的微阵列可以被有效地生产,并且因为对复杂的遗传过程的研究通常需要分析来自许多不同基因组的样品,因此在上面的方法中,如果在分开的反应中部分处理的不同基因组可以被合并,并在单一的微阵列上读出,这将是有利的。因为在许多研究中对于任何一个样品来说不需要完全使用整个微阵列,这种方法将降低花费,并增加该方法的通量。
发明简述本发明提供了对多个基于杂交的分析进行多路结果输出的方法,这些分析每个都包含了一个或多个杂交或退火步骤以及一个或多个酶法处理步骤。具体来说,本发明通过执行下面的步骤提供了同时分析多个基因组以获得每个基因组上一个或多个位点的序列信息的方法(a)为每个基因组提供一组探针,该组中的每个探针对于基因组中的一个位点来说是特异的;(b)将每组探针分别与其相应的基因组进行杂交,以在分开的反应混合物中形成探针-基因组复合物;(c)将分开的反应混合物合并并且对探针-基因组复合物进行酶法处理以形成可扩增的探针;(d)扩增并标记可扩增的探针以形成标记的探针,以便对于每个不同基因组的每个不同位点来说都存在独一无二的标记探针;以及(e)将标记的探针与微阵列上它们相应的互补序列进行特异性杂交,以便与微阵列特异性杂交的标记的探针的存在与否可以指示多个基因组中每个基因组的一个或多个位点中的每个位点的序列信息。在一种情况下,每个探针含有寡核苷酸标签。
本发明可用于多重基于杂交的分析的应用,以检测从许多不同个体获得的基因组样品的特征。通过对不同个体的样品分别进行杂交步骤,然后将它们合并进行酶法处理,人们可以利用杂交反应和酶反应天然的反应速度差异以确保在单一结果输出平台例如微阵列、微珠组等上多个分析的产物分析。
附图简述

图1A-1B图解说明了本发明的一个实施方案的操作。
图1C-1E说明了不同基因组的不同位点的信息可以被寡核苷酸标签和荧光标记物编码的不同方式。
图2A-2B概略描述了使用多组分子倒置探针对不同的基因组进行基因分型,其中使用了依照本发明的单一的结果输出装置。
定义本文中使用的核酸化学、生物化学、遗传学和分子生物学术语和符号遵从本领域的标准专题论文和教科书中的定义,例如Kornberg和Baker,DNA Replication,Second Edition(W.H.Freeman,New York,1992);Lehninger,Biochemistry,Second Edition(Worth Publishers,NewYork,1975);Strachan和Read的,Human Molecular Genetics,SecondEdition(Wiley-Liss,New York,1999);Eckstein主编的寡核苷酸Oligonucleotides and AnalogsA Practical Approach(Oxford UniversityPress,New York,1991);Gait主编的寡核苷酸Oligonucleotide SynthesisA Practical Approach(IRL Press,Oxford,1984)等。
“可寻址的”或“寻址”对于标签互补序列来说,是指标签互补序列可以根据它的地址确定的核苷酸序列或可能其它的物理或化学特性,即在标签互补序列的序列或其它性质与它结合在固相支持物上的空间位置或固相支持物的性质之间存在一一对映的关系。优选情况下,标签互补序列的地址是空间位置,例如含有标签互补序列的拷贝的特定区域的平面坐标。在其它的实施方案中,探针可以以其它的方式被寻址,例如通过微粒的大小、形状、颜色、颜色或荧光比率、微型发射应答器的无线电频率等,例如Kettman等,Cytometry,33234-243(1998);Xu等,Nucleic Acids Research,31e43(2003);Bruchez,Jr.等,美国专利6,500,622;Mandecki,美国专利6,376,187;Stuelpnagel等,美国专利6,396,995;Chee等,美国专利6,544,732;Chandler等,PCT公开WO 97/14028等。
“扩增子”是指多聚核苷酸扩增反应的产物。也就是说,它是多聚核苷酸的群体,通常为双链,从一个或多个起始序列复制而来。该一个或多个起始序列可以是同样序列的一个或多个拷贝,也可以是不同序列的混合物。扩增子可以通过多种扩增方法产生,这些扩增方法的产物是一个或多个靶核酸多次复制的结果。一般来说,产生扩增子的扩增反应是“模板驱动的”,其中反应试剂(或为核苷酸或为寡核苷酸)的碱基配对,在创建反应产物所需的模板多核苷酸中具有互补序列。一方面,模板驱动的反应是使用核酸聚合酶的引物延伸或使用核酸连接酶的寡核苷酸连接。这样的反应包括但不限于聚合酶链反应(PCRs)、线性聚合酶反应、基于核酸序列的扩增(NASBAs)、滚环扩增等,它们在下面的参考文献中被公开,在此引为参考Mullis等,美国专利4,683,195、4,965,188、4,683,202、4,800,159(PCRs);Gelfand等,美国专利5,210,015(使用“Taqman”探针的实时PCR);Wittwer等,美国专利6,174,670;Kacian等,美国专利5,399,491(″NASBA″);Lizardi,美国专利5,854,033;Aono等,日本专利公开JP4-262799(滚环扩增)等。在一种情况下,本发明的扩增子通过PCRs产生。如果允许在扩增反应进程中测量反应产物的检测化学方法可用,扩增反应可以是“实时”的扩增,例如下面描述的“实时PCR”,或在Leone等在NucleicAcids Research,262150-2155(1998)中描述的“实时NASBA”,以及类似文献。本文中使用的术语“扩增”是指执行扩增反应。“反应混合物”是指含有执行反应的所有必需反应试剂的溶液,其中可以包括但不限于缓冲试剂(在反应过程中将pH维持在选定水平)、盐、辅助因子、净化剂等。
“互补或基本上互补”是指核苷酸或核酸之间、例如在双链DNA分子的两条链之间或寡核苷酸引物和单链核酸的引物结合位点之间的杂交或碱基配对或双链体的形成。互补的核苷酸一般是A和T(或A和U),或C和G。两个单链的RNA或DNA分子,当其中一条链的核苷酸经过最适排列和比较,并进行适当的核苷酸插入和删除后,与另一条链的至少大约80%的核苷酸配对、通常至少大约90%到95%、更优选大约98%到100%的核苷酸配对时,这两条链被说成是基本上互补的。此外,当RNA或DNA链在选择性的杂交条件下与其互补序列杂交时,它们存在基本上的互补性。一般来说,当在跨度至少14到25个核苷酸的范围内存在至少大约65%、优选至少大约75%、更优选大约90%的互补性时,选择性的杂交将会发生。参见M.Kanehisa,NucleicAcids Res.12203(1984),在此引为参考。
“复合物”是指分子彼此之间通过直接或间接的接触形成的集合体或积聚体。在一种情况下,对于分子复合物来说、或对于特异性或特异结合来说,“接触”或更具体的“直接接触”是指两个或多个分子足够接近,以至于吸引性的非共价相互作用、例如范德华力、氢键、离子和疏水相互作用等成为分子间的主要相互作用。在这样的情况下,分子复合物是稳定的,因为在分析条件下复合物与其组成分子的非积聚或非复合状态相比在热力学上更加有利。本文中使用的“复合物”是指多聚核苷酸的双链体或三链体,或两个或多个蛋白的稳定的集合体。对于后者,复合物是通过抗体与其相应抗原的特异性结合来形成的。
“双链体”是指至少两个完全或部分互补的寡核苷酸和/或多聚核苷酸在所有或大多数它们的核苷酸中进行了Watson-Crick类型的碱基配对,从而形成稳定的复合物。术语“退火”和“杂交”可以互换使用,是指稳定的双链体的形成。在一种情况下,稳定的双链体是指双链体的结构不被严格的清洗条件所破坏,该条件包括例如比双链体的一条链的Tm低大约5℃的温度和低的单价盐浓度,例如低于0.2M,或低于0.1M。“完美匹配”对于双链体来说是指组成双链体的多聚或寡核苷酸链彼此之间形成双链结构,以至于一条链上的每个核苷酸都与另一条链中的核苷酸进行了Watson-Crick碱基配对。术语“双链体”包含了可以使用的核苷类似物的配对,例如脱氧肌苷、带有2-氨基嘌呤碱基的核苷、PNAs等。双链体中在两个寡核苷酸或多聚核苷酸之间的“误配”是指双链体中的一对核苷酸不能进行Watson-Crick结合。
对于基因组或靶多聚核苷酸来说,“遗传位点”或“位点”是指基因组或靶多聚核苷酸的毗连的亚区或区段。使用在本文中时,遗传位点或位点可以是指核苷酸、基因或基因的一部分在基因组中、包括线粒体DNA中的位置,它也可以是指基因组序列中的任何毗连的部分,不论它是否位于基因内部或与基因相关。在一种情况下,遗传位点是指基因组序列、包括线粒体DNA中的任何部分,长度从单个核苷酸到几百个核苷酸、例如100-300个核苷酸长度的片段。通常,特定的遗传位点可以通过其核苷酸序列或一个或两个临近或两侧区域的核苷酸序列来鉴别。
“杂交”是指两个单链多聚核苷酸非共价地结合形成稳定的双链多聚核苷酸的过程。术语“杂交”也可以是指三链的杂交。产生的双链多聚核苷酸(通常情况下)是“杂交体”或“双链体”。“杂交条件”一般包括低于大约1M的盐浓度,更通常低于大约500mM和低于大约200mM。杂交温度可以低至5℃,但是一般来说高于22℃,更典型高于大约30℃,优选超过约37℃。杂交通常在严格的条件下进行,即在该条件下探针将与其靶子序列杂交。严格的条件是序列依赖性的,在不同情况下有所不同。较长的片段可能需要较高的杂交温度以便特异性杂交。因为其它的因素可能影响杂交的严格性,包括互补链的碱基组成和长度、有机溶剂的存在和碱基误配的程度,因此这些参数的组合比任何一个单独的参数的绝对数值更加重要。一般来说,严格的条件被选择为在确定的离子强度和pH下比具体的序列的Tm低5℃。示例的严格条件包括在pH7.0到8.3和温度至少为25℃的条件下,盐浓度为至少0.01M到不超过1M Na离子浓度(或其它盐),。例如,5xSSPE(750mM NaCl,50mM磷酸钠,5mM EDTA,pH7.4)和25-30℃温度的条件适合于等位基因特异性的探针杂交。对于严格条件来说,可以参见例如Sambrook,Fritsche和Maniatis的“MolecularCloning ALaboratory Manual”2ndEd.Cold Spring Harbor Press(1989)和Anderson的“Nucleic Acid Hybridization”1stEd.,BIOS Scientific Publishers Press(1999),出于上面的所有目的以其全文引为参考。“特异地杂交”或“特异性杂交”或类似的表述是指分子在严格条件下基本上或只与特定核苷酸序列(当所述序列存在于复杂的混合物(例如全细胞)DNA或RNA中时)结合、成双链、或杂交。
“基于杂交的分析”是指任何依赖稳定复合物的形成作为特异性结合事件结果的分析。在一种情况下,基于杂交的测试分析是指任何依赖探针和靶核苷酸序列之间的稳定的双链体或三链体的形成以检测或测定该序列的分析。在一种情况下,该分析的探针与靶序列的8到100个核苷酸范围内的区域退火(或与其形成双链体);在其它情况下,它们与靶序列的8到40个核苷酸范围内的区域退火,或者更通常情况下,与靶序列的8到20个核苷酸。对于基于杂交的分析来说,“探针”是指其序列能够与靶核酸上的互补序列形成稳定的杂交体(或三链体)、并且能够被直接或间接检测的多聚核苷酸。基于杂交的分析包括但不限于使用一个或多个寡核苷酸的特异性碱基配对作为靶识别元件的分析,例如聚合酶链反应、NASBA反应、寡核苷酸连接反应、单碱基延伸反应、可环化的探针反应、等位基因特异性的寡核苷酸杂交,它们既可以存在于溶液相中,也可以结合到固相支持物上、例如微阵列或微珠等。一个重要的基于杂交的分析亚组包括那些在杂交步骤之后具有至少一个酶法处理步骤的分析。这种亚组的基于杂交的分析包括但不限于聚合酶链反应、NASBA反应、寡核苷酸连接反应、例如在Invader分析中的切割酶反应、单碱基延伸反应、探针环化反应等。关于基于杂交的分析文献中有广泛的指导,例如Hames等主编的NucleicAcid Hybridization a Practical Approach(IRL Press,Oxford,1985),Tijssen的Hybridization with Nucleic Acid Probes的Part I & II(ElsevierPublishing Company,1993),Hardiman的Microarray Methods andApplications(DNA Press,2003),Schena主编的DNA Microarrays aPractical Approach(IRL Press,Oxford,1999)等。在一种情况下,基于杂交的分析是溶液相分析;也就是说,探针和靶序列二者均在对反应速度基本上没有表面效应或影响的条件下进行杂交。溶液相分析包括探针或靶序列被结合到微珠上,以至于被结合的序列与游离的序列具有基本上相同的环境(例如允许试剂接近等)的情况。在另一种情况下,基于杂交的分析包括免疫分析,其中抗体利用了基于扩增的核酸报告物。在这种分析中,抗体探针在分开的反应中与靶分子例如蛋白特异性结合,之后所述反应的产物(即抗体-蛋白复合物)被合并,核酸报告物被扩增。在优选情况下,所述核酸报告物包括下面描述的被酶法转化为标记的寡核苷酸标签以用于微阵列上的分析的寡核苷酸标签。下面的示例性的参考文献公开了用于免疫分析的抗体-核酸偶联物,在此引为参考Baez等的美国专利No.6,511,809,Sano等的美国专利No.5,665,539,Eberwine等的美国专利No.5,922,553,Landegren等的美国专利No.6,558,928,Landegren等的美国专利申请2002/0064779等。具体来说,最后两个Landegren等的专利申请公开了在特异性结合事件后形成可扩增的探针的步骤。
“试剂盒”是指任何用于递送执行本发明的方法的材料或试剂的递送系统。对于分析来说,这样的递送系统包括允许将反应试剂(例如在适当的容器中的探针、酶等)和/或支持材料(例如执行分析等的缓冲液、文字说明等)从一个地方到另一个地方的储存、运输或递送的系统。例如,试剂盒含有一个或多个内容物(例如盒子),含有用于本发明的分析的相关反应试剂和/或支持材料。在一种情况下,本发明的试剂盒含有特异性干扰多态性位点的探针。在另一种情况下,试剂盒含有核酸标准品,用于校准特异性干扰多态性位点的探针的执行情况。这样的内含物可以一起或分别递送给目标接受者。例如,第一个容器可以含有在分析中使用的酶,而第二个容器含有探针。
“连接”是指在两个或多个核酸、例如寡核苷酸和/或多聚核苷酸的末端之间在模板驱动的反应中形成共价键或连接。键或连接的本质可以广泛地变化,连接可以通过酶法或化学法来进行。在本文中使用时,连接通常通过酶法进行,以在一个寡核苷酸的末端核苷酸的5’碳和另一个寡核苷酸的3’碳之间形成磷酸二酯连接。下列参考文献中描述了多种模板驱动的连接反应,在此引为参考Whitely等的美国专利No.4,883,750,Letsinger等的美国专利No.5,476,930;Fung等的美国专利No.5,593,826;Kool的美国专利No.5,426,180;Landegren等的美国专利No.5,871,921;Xu和Kool,Nucleic Acids Research,27875-881(1999);Higgins等,Methods in Enzymology,6850-71(1979);Engler等,The Enzymes,153-29(1982)以及Namsaraev的美国专利公开2004/0110213。
“微阵列”是指一类复合的分析产品,其含有具有基本上是平面表面的固相支持物,其上排列有空间位置确定的不重叠的区域或位点,每个区域或位点含有被固定的杂交探针。“基本上是平面的”是指表面上感兴趣的区块或目标例如探针位点,可以占据一个延伸至表面的上部或下部的体积,其尺度相对于表面的尺度来说较小。例如,排列在光导纤维束表面的珠子产生了基本上是平面的探针位点表面,或排列或合成在多孔性平面底物上的寡核苷酸产生了基本上是平面的表面。空间位置确定的位点也可以是“可寻址的”,因为其位置和在该位置固定的探针的身份是已知的或可确定的。固定在微阵列上的探针包括产生于测试分析反应的核酸,例如寡核苷酸条型码。一般来说,微阵列上的寡核苷酸或多聚核苷酸是单链的,通常通过5’末端或3’末端被共价连接到固相支持物上。微阵列中含有核酸的不重叠区域的密度一般大于100个/厘米2,更优选情况下大于1000个/厘米2。与核酸探针相关的微阵列技术在下面例举的参考文献中有综述Schena主编MicroassaysA Practical Approach(IRL Press,Oxford,2000);Southern,Current Opin.Chem.Biol.,2404-410(1998);Nature GeneticsSupplement,211-60(1999)以及Fodor等的美国专利Nos.5,424,186、5,445,934和5,744,305。微阵列可以含有微珠或其它微粒的阵列,排列在平的表面上。这样的微阵列可以通过多种方式形成,如同在下面例举的参考文献中公开的那样Brenner等,Nature Biotechnology,18630-634(2000);Tulley等的美国专利No.6,133,043;Stuelpnagel等的美国专利No.6,396,995;Chee等的美国专利No.6,544,732;等等。在一种形式中,微阵列是通过将连接有寡核苷酸的微珠随机排列在表面上、然后通过一个解码步骤确定哪个微珠带有哪个寡核苷酸来形成的,例如在Gunderson等的美国专利公开序列号No.2003/0096239中公开的那样。
本文中使用的“核苷”包括天然的核苷,包括2’-脱氧和2’-羟基形式的核苷,例如在Komberg和Baker的DNA Replication,2ndEd.(Freeman,San Francisco,1992)中描述的那些。“类似物”是指核苷,包括具有修饰的碱基和/或修饰的糖基的合成核苷,例如Scheit的Nucleotide Analogs(John Wiley,New York,1980)、Uhlman和Peyman,Chemical Reviews,90543-584(1990)等中的描述,但条件是它们能够特异性杂交。这样的类似物包括被设计用来增强结合性质、减小复杂性、增加特异性等的合成核苷。包含了具有增强的杂交或核酸酶抗性性质的类似物的多聚核苷酸被描述在Uhlman和Peyman(同前面的引证)、Crooke等,Exp.Opin.Ther.Patents,6855-870(1996)、Mesmaeker等,Current Opinion in Structual Biology,5343-355(1995)等中。能够增强双链体稳定性的多聚核苷酸类型的例子包括N3’→P5’氨基磷酸酯寡核苷酸(本文中称为“酰胺化物”)、肽核酸(本文中称为“PNAs”)、寡聚-2’-O-烷基核糖核苷酸、含有C-5丙炔基嘧啶的多聚核苷酸、锁核酸(LNAs)等类似化合物。这样的寡核苷酸可以商业获得,也可以使用文献中描述的方法来合成。
“寡核苷酸”或“多聚核苷酸”可以同义使用,是指天然的或修饰的核苷单体通过磷酸二酯键或其类似物连接成的线性聚合物。术语“寡核苷酸”通常指较短的聚合物,例如含有从大约3个到大约100个单体,术语“多聚核苷酸”通常指较长的聚合物,例如含有从大约100个单体到很多千个单体,例如10000个单体或以上。包含探针或引物的寡核苷酸通常的长度范围从12到60个核苷酸,更通常从18到40个核苷酸。寡核苷酸和多聚核苷酸可以是天然或合成的。寡核苷酸和多聚核苷酸包括脱氧核糖核苷、核糖核苷及其非天然的类似物,例如它们的端基异构形式、肽核酸(PNAs)等,只要它们能够通过规则单体-单体相互作用模式与靶基因组特异性结合,例如Watson-Crick类型的碱基配对、碱基堆积、Hoogsteen或反Hoogsteen类型的碱基配对等。一般来说,核苷单体通过磷酸二酯键连接。只要核苷酸由一系列字母例如″ATGCCTG″表示时,应该被理解为核苷酸从左到右是按照5’→3’次序的,除非特别注明,其中“A”表示脱氧腺苷,“C”代表脱氧胞苷,“G”代表脱氧鸟苷,“T”代表脱氧胸苷,“U”代表核糖核苷,尿苷。一般来说,寡核苷酸含有四种天然的脱氧核糖核苷酸,但是,它们也可以含有核糖核苷或非天然的核苷酸类似物。对于本领域的专业技术人员来说,何时可以在本文描述的方法或过程中使用含有天然的或非天然的核苷的寡核苷酸是非常清楚的。例如,当需要用酶处理时,通常需要仅由天然核苷酸构成的寡核苷酸。同样,当酶的活力需要特定的寡核苷酸或多聚核苷酸底物、例如单链DNA、RNA/DNA双链体等时,选择适当的寡核苷酸或多聚核苷酸底物组成完全在本领域的专业技术人员的知识范围内寡核苷酸,特别是在专著论文的指导下,例如Sambrook等的Molecular Cloning,Second Edition(Cold Spring Harbor Laboratory,New York,1989),及类似参考书。寡核苷酸和多聚核苷酸可以是单链或双链的。
“寡核苷酸标签”是指与多聚核苷酸结合、并被用来在反应中鉴定和/或追踪多聚核苷酸的寡核苷酸。一般来说,寡核苷酸标签被结合到多聚核苷酸的3’-或5’-末端以形成线性的偶联物,在本文中有时被称为“加标签的多聚核苷酸”或等价的“寡核苷酸标签-多聚核苷酸偶联物”、或“标签-多聚核苷酸偶联物”。寡核苷酸标签的大小和组成可以广泛地变化,下面的参考文献为选择适合于具体实施方案的寡核苷酸标签组提供了指导Brenner的美国专利No.5,635,400;Brenner等,Proc.Natl.Acad.Sci.,971665-1670(2000);Shoemaker等,NatureGenetics,14450-456(1996);Morris等的欧洲专利申请0799897A1;Wallace的美国专利No.5,981,179等。在本发明的不同应用中,寡核苷酸标签的长度每个可以分别在4到36个核苷酸、或6到30个核苷酸、或8到20个核苷酸的范围内。在一种情况下,寡核苷酸标签成组或按所有组成成分使用,其中组中的每个寡核苷酸标签具有独一无二的核苷酸序列。在某些实施方案中,特别是当寡核苷酸标签被用于分类多聚核苷酸时,或当它们通过特异性杂交被鉴定时,该组中的每个寡核苷酸标签的熔点温度与该组中每个其它的成员的熔点温度基本上相同。在这种情况下,组中的寡核苷酸标签的熔点温度彼此之间在10℃的范围内;在另一个实施方案中,它们彼此之间在5℃的范围内;在另一个实施方案中,它们彼此之间在2℃的范围内。另一方面,寡核苷酸标签是交叉杂交最少的组的成员。也就是说,该组中每个成员的核苷酸序列与该组中每个其它成员的序列之间有足够的不同,以至于在严格的条件下,没有成员能够与任何其它成员的互补序列形成稳定的双链体。在一种情况下,交叉杂交最少的组的每个成员的核苷酸序列与每个其它成员的序列至少有两个核苷酸的区别。这样的寡核苷酸标签组的大小在几十到很多千甚至几百万的范围内,例如从50个到1.6×106。在另一个实施方案中,这种大小在200到40,000的范围内,或从200到40,000个、或从200到10,000个的范围内。
“聚合酶链反应”或“PCR”是指通过DNA互补链的同时引物延伸在体外扩增特异的DNA序列的反应。换句话说,PCR是用于制造两侧具有引物结合位点的靶核酸的多个拷贝或复制本的反应,这种反应含有下列步骤的一个或多个重复(i)将靶核酸变性,(ii)将引物与引物结合位点退火,以及(iii)在存在核苷三磷酸的情况下通过核酸聚合酶延伸引物。一般来说,反应在热循环仪器中按照为每一步最适化的不同温度循环进行。具体温度、各步骤的时限和步骤间的变化速度依赖于本领域的普通技术人员所熟知的许多因素,例如在下列参考文献中例举的McPherson等主编的PCRA Practical Approach和PCR2APractical Approach((IRL Press,Oxford,分别在1991年和1995年出版)。例如,在使用Taq DNA聚合酶的常规PCR中,双链靶核酸可以在>90℃的温度下变性,引物退火在50-75℃的温度范围内进行,引物延伸在72-78℃的温度范围内进行。术语“PCR”包含了该反应的衍生形式,包括但不限于RT-PCR、实时PCR、嵌套PCR、定量PCR、多重PCR等。反应的体积从几百纳升例如200nL到几百微升例如200L。“反转录PCR”或“RT-PCR”是指之前通过反转录反应将靶RNA转变为互补的单链DNA、然后进行扩增的PCR,例如Tecott等的美国专利No.5,168,038,该专利在此引为参考。“实时PCR”是指其中反应产物即扩增子的量在反应进程中被监测的PCR。有许多形式的实时PCR,其主要差别在于用于监测反应产物的检测化学方法,例如Gelfand等的美国专利5,210,015(″taqman″),Wittwer等的美国专利6,174,670和6,569,627(插入染料),Tyagi等的美国专利No.5,925,517(分子信标),这些专利在此引为参考。实时PCR的检测化学方法在Mackay等,Nucleic Acids Research,301292-1305(2002)中有综述,在此也引为参考。“嵌套PCR”是指两个阶段的PCR,其中第一次PCR的扩增子成为使用一套新引物的第二次PCR的样品,新的引物中至少有一个结合到第一次的扩增子的内部位置上。在本文中使用时,对于嵌套扩增反应来说“起始引物”是指用于产生第一个扩增子的引物,“第二引物”是指用于产生第二个、或嵌套扩增子的一个或多个引物。“多重PCR”是指在同样的反应混合物中同时进行多个靶序列(或单个靶序列及一个或多个参比序列)的PCR反应,例如Bernard等,Anal.Biochem.,273221-228(1999)(双色实时PCR)。通常情况下,对于每个被扩增的序列使用不同的引物组。“定量PCR”是指被设计用来测定样品或样本中一个或多个特定的靶序列的丰度的PCR。定量PCR包含了对这些靶序列的绝对定量和相对定量。定量测量可以使用一个或多个参比序列来进行,它们可以被分别测试分析或与靶序列一起进行分析。参比序列对于样品或样本来说可以是内源的,也可以是外源的,在后一种情况下,可以含有一个或多个竞争子模板。典型的内源参比序列包括下列基因的转录本片段β-肌动蛋白、GAPDH、β2-微球蛋白、核糖体RNA等。定量PCR技术对于本领域的普通技术人员来说是熟知的,例如在下面的被引为参考的文献中例举的Freeman等,Biotechniques,26112-126(1999);Becker-Andre等,Nucleic Acids Research,179437-9447(1989);Zimmerman等,Biotechniques,21268-279(1996);Diviacco等,Gene,1223013-3020(1992);Becker-Andre等,Nucleic Acids Research,179437-9446(1989)等。
“多态性”或“遗传性变型”是指在一个遗传位点上发生了一个或多个核苷酸的取代、倒位、插入或缺失,或DNA从一个遗传位点转位到另一个遗传位点。在一种情况下,多态性是指多种可替换的核苷酸序列之一,其可以在个体的遗传位点中存在,并且其可以在同样的个体或种群中其它个体中相同的位点上的其它序列上含有核苷酸的取代、插入或缺失。个体在遗传位点上可以是纯合或杂合的;也就是说,个体可以在两个等位基因上具有相同的核苷酸序列,也可以在每个等位基因上具有不同的核苷酸序列。在一种情况下,遗传位点的插入和缺失,与种群中的另一个个体的同样位点(或同样个体的另一个等位基因)相比,包含了在该位点上增加或缺少了1到10个核苷酸。一般来说,插入或缺失是针对种群中该位点上的主要等位基因来说的,例如在种群中以50%或以上的频率存在的等位基因。
“引物”是指天然的或合成的寡核苷酸,在与多聚核苷酸模板形成双链体后,它们能够作为核酸合成的起始点从其3’末端开始沿着模板被延伸,从而形成延长的双链体。在延伸过程中添加的核苷酸的序列由模板多聚核苷酸的序列决定。通常情况下引物通过DNA聚合酶来延伸。引物的长度通常在14到36个核苷酸的范围内。
“结果输出值”是指被测量、检测和/或计算的一个或多个信号产生基团或标记物的特性,可以被转化为数字或数值。在一种情况下,分析的结果输出值通过使用或应用能够将分子水平上的分析结果转化为可以被检测和记录的信号的仪器和/或方法来获得。这样的仪器或方法可以被称为“结果输出装置”(或仪器)或“结果输出程序”(或方法)。结果输出值也可以包括、或称为这种被收集或记录的数据的真实数字表示。例如,使用微阵列作为结果输出装置的杂交分析的结果输出值总的来说是指在微阵列的每个区块或杂交位点上产生的引号以及它们的数字、图形和/或图象表示。
“固体支持物”、“支持物”、和“固相支持物”可以互换使用,是指具有刚性或半刚性表面的材料或一组材料。在许多实施方案中,固相支持物的至少一个表面是基本上平的,尽管在某些实施方案中希望将用于不同化合物的合成区域用例如孔、抬高的区域、针、蚀刻的凹槽等进行物理上的分隔。根据其它的实施方案,固相支持物将采用珠子、树脂、凝胶、微球体或其它几何构型的形式。微阵列通常含有至少一个平的固相支持物,例如玻璃的显微镜载玻片。
对于一个分子与另一个分子、例如标记的靶序列与探针的结合来说,“特异的”或“特异性”是指两个分子之间的识别、接触和稳定的复合物的形成,同时该分子与其它分子之间基本上少有识别、接触或复合物的形成。在一种情况下,对于第一个分子与第二个分子的结合来说,“特异的”是指在第一个分子与反应或样品中的其它分子识别和形成复合物的程度上,它与第二个分子形成最大数量的复合物。在优选情况下,该最大数量至少为50%。一般来说,参与特异的结合事件的分子在其表面上或孔洞中具有能够引起彼此结合的分子之间的特异性识别的区域。特异性结合的例子包括抗体-抗原相互作用、酶-底物相互作用、多聚核苷酸和/或寡核苷酸之间的双链体或三链体的形成、受体-配体相互作用等。在本文中使用时,对于特异性或特异性结合来说,“接触”是指两个分子接近到足够使弱的非共价化学相互作用,例如范德华力、氢键、碱基堆积力、离子和疏水相互作用等,成为分子间的主要相互作用。
对于多种荧光标记物来说,“光谱可分辨的”是指标记物的荧光发射条带足够独特,即充分不重叠,以至于与相应标记物结合的分子标签可以通过标准的光检测系统在相应的标记物产生的荧光信号的基础上被鉴别出来,例如使用具有带通滤波器和光电倍增管的系统等,示例的系统在美国专利Nos.4,230,558、4,811,218等中有描述,或在Wheeless等的Flow CytometryInstrumentation and Data Analysis(Academic Press,New York,1985)的21-76页中有描述。在一种情况下,光谱可分辨的有机染料例如荧光素、若丹明等,是指波长发射最大值至少间隔20nm,在另一种情况下,至少间隔40nm。在另一种情况下,对螯合的镧系元素化合物、量子点等来说,光谱可分辨是指波长发射最大值至少间隔10nm,在另一种情况下,至少间隔15nm。
“Tm”被用于指“解链温度”(melting temperature)。解链温度是总的双链核酸分子中有一半解离为单链时的温度。在本技术领域内公知有几种等式可用于计算核酸的Tm。正如在标准的参考文献中指出的那样,当核酸存在于含有1M NaCl的水性溶液中时,对Tm值的简单估算可以通过等式Tm=81.5+0.41(%G+C)来计算(参见例如Anderson和Young的Nucleic Acid Hybridization中的Quantitative FilterHybridization(1985))。其它的参考文献(例如Allawi,H.T.和Santa Lucia,J.,Jr.,Biochemistry 36,10581-94(1997))中包含了其它的计算方法,其中为计算Tm值考虑到了结构和环境以及序列特征的因素。
“样品”是指一些来自生物、环境、医学或病人来源的材料,需要在其中检测或测量靶核酸。一方面它意味着包括样本或培养物(例如微生物培养物)。另一方面,它也意味着包括生物和环境样品。样品可以包括合成来源的样本。生物样品可以是动物包括人类、液体、固体(例如粪便)或组织,以及液体和固体食物和饲料产品,以及例如乳制品、蔬菜、肉类和肉类副产品和废物等的成分。生物样品可以包括从病人获取的材料,包括但不限于培养物、血液、唾液、脑脊液、胸膜液、乳汁、淋巴、痰、精液、针管吸出物等。生物样品可以从所有各种科的家畜以及未驯化或野生动物获得,所述动物包括但不限于例如有蹄动物、熊、鱼类、啮齿动物等。环境样品包括环境材料例如表面物质、土壤、水和工业样品,以及从食品和乳制品加工仪器、装置、设备、器具、一次性和非一次性物品获得的样品。这些例子不被解释为对可用于本发明的样品的类型的限制。
发明详述本发明提供了使用单个结果输出装置例如高容量微阵列分析来自多重基于杂交分析的产物的方法,该分析中的每个被定向用于分析不同基因组中的位点。具体来说,本发明的多重基于杂交的分析包含了杂交或退火步骤,其中分析中的一个或多个寡核苷酸成分与一个或多个靶多聚核苷酸中与它们互补的序列发生特异性杂交,从而形成识别结构,在本文中被称为“探针-基因组复合物”,以及酶法处理步骤,其中一种或多种酶作用于一个或多个它们对应的识别结构,从而产生可扩增的探针。在一种情况下,多个多重基于杂交的分析的一个或多个杂交步骤彼此分开进行,之后将这些步骤的产物合并以执行一个或多个酶法处理步骤。可扩增的探针是核酸结构,例如双链体、环状单链DNA等,它们能够整个或部分复制以产生能够与微阵列上与其互补的序列发生特异性杂交的探针。在本发明中使用的从基于杂交的分析获得的序列信息包括靶核苷酸例如基因组片段、RNA、cDNA等中特定核酸序列的存在与否或含量。在一种情况下,从基于杂交的分析获得的序列信息包括特定基因组位点的单核苷酸多态性(SNPs)、插入或缺失的存在与否。
正如上面提到的那样,本发明的基于杂交的分析的杂交步骤明显比酶法处理步骤长。因此,把来自多重基于杂交的分析的探针-基因组复合物合并后,酶法处理可以在可能发生任何显著的解离和探针的假性重新退火,即与源自其它基于杂交的分析的靶多聚核苷酸重新退火。杂交步骤和酶法处理步骤的孵育时间的相对长度可以广泛地变化,依赖于本领域的普通技术人员所熟知的因素,例如探针和靶多聚核苷酸的复杂度和浓度、盐浓度、辅助因子的存在与否、杂交加速剂的存在与否、温度、处理步骤中使用的酶的类型、酶反应的条件等。在一种情况下,杂交步骤的孵育时间比酶处理步骤的时间长100倍。在另一种情况下,杂交步骤的孵育时间比酶处理步骤的时间长10倍。在另一种情况下,基于杂交的分析的杂交步骤需要的孵育时间在几个小时例如2-4小时到几十小时例如24到72小时的范围内;在另一种情况下,这种孵育时间可以在从2到48个小时、或从2到24个小时的范围内。在另一种情况下,基于杂交的分析中的一个或多个酶法处理步骤需要的孵育时间在1到60分钟的范围内;或者在另一种情况下,该步骤可能需要的孵育时间在1到30分钟的范围内。
探针-基因组复合物和/或杂交步骤的其它反应试剂或产物的酶法处理或加工可以包括使用具有几种不同活性的一种或多种酶。处理所用的酶事实上包括任何酶,只要它们允许或增强能够将成功地检测其目的靶序列的探针与不能检测靶序列的那些探针区分开来的能力。通常情况下,这是通过选择能够以探针-基因组复合物作为底物并通过酶活性产生新的或修饰的结构的酶来进行的。然而,酶类,特别是能够识别并消化与其靶序列不杂交或错误杂交的探针的核酸酶,也在本发明的酶法处理的范围内。在一种情况下,酶法处理或加工包括用聚合酶、连接酶、核酸外切酶、核酸内切酶、裂解酶、磷酸酶、激酶等进行处理或加工。在另一种情况下,酶法处理包括了用一种或多种其底物包含了核酸模板的酶进行处理。在另一种情况下,这样的处理包括在模板驱动的反应中使用至少一种DNA聚合酶或至少一种DNA连接酶进行处理。
在本发明中多路化(multiplexing)发生在两个水平上。首先,基于杂交的分析被设计为测量多个位点上的一个或多个靶多聚核苷酸例如基因组片段的特征。在每个基于杂交的分析中被测量的位点的数目可以广泛变化,其上限依赖于众所周知的因素,包括使用的结果输出装置的容量、探针浓度和反应时间之间的平衡、被测量的遗传特性(例如,与性状相关的研究需要非常大量的测量,遗传鉴定则需要相对少的测量,不利的药物反应测试可能需要中等数量的测量,例如几十到几百个)等。在一种情况下,在每个基于杂交的分析中被分析的位点的数量在从几十例如10到20,到成千上万例如五万到十万的范围内。在另一种情况下,每个基于杂交的分析中的位点的数量在从10到40,000的范围内,或在从100到30,000的范围内,或在从100到20,000的范围内。其次,在将来自多重基于杂交的分析的分析产物进行合并,用于在单一的结果输出设备上测定多个信号时也发生了多路化。通常,在本发明的被合并的基于杂交的分析产物的数量与待分析的不同基因组样品的数量之间存在一一对应;然而,本发明也包含了来自不同个体的不同数量的样品通过不同数量的其产物被合并的基于杂交的分析进行分析的情况。这种多路化水平依赖于结果输出装置的容量和每个基于杂交的分析所测量的位点的数量。在一种情况下,可以被多路化的基于杂交的分析的数量是简单的结果输出装置的容量,例如微阵列上的区块的数量,除以在基于杂交的分析中被测量的位点的数量。例如在一种情况下,当每个测量需要两个区块时(例如等位基因1上纯合,等位基因2上纯合,或等位基因1和2上杂合),具有100,000个区块的微阵列可以被用作50个基于杂交的测试分析的结果输出装置,其中每个分析测量1000个位点的接合性。正如下面将更全面地讨论的那样,在微阵列区块的使用、不同颜色的荧光染料、每个基于杂交的测试分析测量的位点的数量、结果输出装置的容量等之间进行的具体平衡,是本领域的专业技术人员的常规设计选择。
在一个实施方案中,本发明的可扩增的探针含有至少一个寡核苷酸标签,它被复制和标记,以产生被标记的寡核苷酸探针。在该实施方案中,被标记的寡核苷酸探针与标签互补序列的微阵列杂交以用于检测。在该实施方案中,对于每个不同的基因组的每个不同的位点,存在独一无二的被标记的寡核苷酸标签。也就是说,由(i)寡核苷酸标签的核苷酸序列和(ii)产生可检测信号的标记物组成的配对与特定基因组的特定位点具有独一无二的关联。寡核苷酸标签上的标记物的身份可以基于各种各样的物理或化学性质,包括但不限于光吸收、荧光、化学发光、电化学发光、质量、电荷等。基于这些性质的信号可以直接或间接地产生。例如,标记物可以是荧光分子,它与被扩增的寡核苷酸标签共价结合,直接产生光学信号。此外,标记物可以含有多个组分,例如半抗原-抗体复合物,该组分反过来可以包含产生光学信号的荧光染料、产生能够生成光学信号的产物的酶等。在优选情况下,寡核苷酸标签上的标记物是与被扩增的寡核苷酸标签直接或间接结合的荧光标记物。在一种情况下,这种荧光标记物是从含有2到6种光谱可解析的荧光染料或量子点的组中选择的荧光染料或量子点。
荧光标记物及其与寡核苷酸例如寡核苷酸标签的结合在许多综述中有描述,包括Haugland的Handbook of Fluoresent Probes and ResearchChemicals,Ninth Edition(Molecular Probes,Inc.,Eugene,2002),Keller和Manak的《DNA Probes,2ndEdition(Stockton Press,New York,1993),Eckstein主编的寡核苷酸Oligomucleotides and AnaloguesAPractical Approach(IRL Press,Oxford,1991),Wetmur,Critical Reviewsin Biochemistry and Molecular Biology,26227-259(1991)等。用于本发明的具体方法在下面的参考文献样本中被公开Fung等的美国专利4,757,141,Hobbs,Jr.等的美国专利5,151,507,Cruickshank的美国专利5,091,519。在一种情况下,一种或多种荧光染料被用作标记物以标记靶序列,例如在Menchen等的美国专利5,188,934(4,7-二氯荧光素染料),Begot等的美国专利5,366,860(光谱可分辨的若丹明染料),Lee等的美国专利5,847,162(4,7-二氯若丹明染料),Khanna等的美国专利4,318,846(醚取代的荧光素染料),Lee等的美国专利5,800,996(能量转移染料),Lee等的美国专利5,066,580(氧杂蒽染料),Mathies等的美国专利5,688,648(能量转移染料)等中公开的那样。标记也可以使用量子点进行,正如在下面的专利和专利公开中公开的那样,它们在此引为参考6,322,901、6,576,291、6,423,551、6,251,303、6,319,426、6,426,513、6,444,143、5,990,479、6,207,392、2002/0045045、2003/0017264等。在本文中使用时,术语“荧光标记物”包括了通过一个或多个分子的荧光吸收和/或发射性质传送信息的信号基团。这种荧光性质包括荧光强度、荧光寿命、发射光谱特征、能量转移等。
易于掺入到标记的寡核苷酸中的可商购的荧光核苷酸类似物包括例如Cy3-dCTP、Cy3-dUTP、Cy5-dCTP、Cy5-dUTP(AmershamBiosciences,Piscataway,N.J.,USA)、荧光素-12-dUTP、四甲基若丹明-6-dUTP、Texas Red-5-dUTP、Cascade Blue-7-dUTP、BODIPYFL-14-dUTP、BODIPYR-14-dUTP、BODIPYTR-14-dUTP、Rhodamine GreenTM-5-dUTP、Oregon Green488-5-dUTP、TexasRed-12-dUTP、BODIPY630/650-14-dUTP、BODIPY650/665-14-dUTP、Alexa Fluor488-5-dUTP、AlexaFluor532-5-dUTP、Alexa Fluor568-5-dUTP、AlexaFluor594-5-dUTP、Alexa Fluor546-14-dUTP、荧光素-12-UTP、四甲基若丹明-6-UTP,Texas Red-5-UTP、Cascade Blue-7-UTP、BODIPYFL-14-UTP、BODIPYTMR-14-UTP、BODIPYTR-14-UTP、Rhodamine Green-5-UTP、Alexa Fluor488-5-UTP、AlexaFluor546-14-UTP(Molecular Probes,Inc.Eugene,Oreg.,USA)。用于定制合成(custom synthesis)具有其它荧光团的核苷酸的方案可以获得。Henegariu等的“Custom Fluorescent-Nucleotide Synthesis as anAlternative Method for Nucleic Acid Labeling”,Nature Biotechnol.18345-348(2000),其公开的内容在此以其全文引为参考。
此外,其它可用于合成后结合的荧光团包括,特别是,AlexaFlnor350、Alexa Fluor532、Alexa Flnor546、Alexa Fluor568、AlexaFluor594、Alexa Fluor647、BODIPY 493/503、BODIPY FL、BODIPYR6G、BODIPY 530/550、BODIPY TMR、BODIPY 558/568、BODIPY558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665、Cascade Blue、Cascade Yellow、丹磺酰、lissamine若丹明B、Marina Blue、Oregon Green488、OregonGreen514、Pacific Blue、若丹明6G、若丹明绿、若丹明红、四甲基若丹明、Texas Red(可以从Molecular Probes,Inc.,Eugene,Oreg.,USA获得),以及Cy2、Cy3.5、Cy5.5和Cy7(Amersham Biosciences,Piscataway,N.J.USA,等)。
FRET串联荧光团也可以使用,例如PerCP-Cy5.5、PE-Cy5、PE-Cy5.5、PE-Cy7、PE-Texas Red以及APC-Cy7,此外PE-Alexa染料(610,647,680)和APC-Alexa染料也可以使用。
金属银粒子可以被镀在阵列的表面上以增强结合在阵列上的荧光标记的寡聚物的信号。Lakowicz等,BioTechniques 3462-68(2003)。
生物素或其衍生物也可以用作检测性寡核苷酸上的标记物,然后被可检测的标记的亲和素/链霉亲和素衍生物(例如藻红蛋白偶联的链霉亲和素)或可检测的标记的抗生物素抗体结合。可以加入毛地黄毒甙(digoxigenin)作为标记物,然后被可检测的标记的抗毛地黄毒甙抗体(例如荧光素偶联的抗毛地黄毒甙抗体)结合。氨基烯丙基-dUTP残基可以被加入到检测性寡核苷酸中,然后与N-羟基琥珀酰亚胺(NHS)衍生(derivitized)的荧光染料偶联,例如前面列出的那些。一般来说,任何偶联对的成员都可以被加入到检测性寡核苷酸中,只要可检测的标记的偶联配偶体可以被结合并允许检测。在本文中使用的术语“抗体”是指任何类型的抗体分子或其任何亚片段,例如Fab。
其它适合用于检测性寡核苷酸的标记物可以包括荧光素(FAM)、毛地黄毒甙、二硝基苯酚(DNP)、丹磺酰、生物素、溴代脱氧尿苷(BrdU)、六聚组氨酸(6xHis)、磷光体-氨基酸(例如P-tyr、P-ser、P-thr),或任何其它适合的标记物。在一个实施方案中,下面的半抗原/抗体对被用于检测,其中每个抗体用可检测的标记物衍生生物素/α-生物素、毛地黄毒甙/α-毛地黄毒甙、二硝基苯酚(DNP)/α-DNP、5-羧基荧光素(FAM)/α-FAM。
正如上面提到的那样,寡核苷酸标签可以被间接地标记,特别是用随后可以被捕获试剂结合的半抗原标记,例如在Holtke等的美国专利5,344,757、5,702,888和5,354,657,Huber等的美国专利5,198,537,Miyoshi的美国专利4,849,336,Misiura和Gait的PCT公开WO 91/17160等中公开的那样。本发明可以用许多不同的半抗原-捕获试剂对用于,既可用于靶序列也可用于与靶序列一起使用的检测性寡核苷酸,如下文的描述。半抗原的例子包括生物素、脱生物素(des-biotin)和其它的衍生物、二硝基苯酚、丹磺酰、荧光素、CY5和其它染料、毛地黄毒甙等。对于生物素来说,捕获试剂可以是亲和素、链霉亲和素或抗体。抗体可以被用作其它半抗原的捕获试剂(许多染料-抗体对可以商购,例如从Molecular Probes公司)。
图1A和1B图解了本发明的一个实施方案的操作,该实施方案用于特定的基于杂交的分析(该分析基于两个寡核苷酸成分的模板驱动连接)。基于杂交的分析分别在来自基因组G1的DNA样品和来自基因组G2的DNA样品上进行。分别含有寡核苷酸标签t1到tK的探针p1到pK(100)和分别含有寡核苷酸标签tK+1到t2K的探针p1到pK(102),在分开的反应混合物中分别与基因组G1 DNA和基因组G2 DNA结合,条件是使所述探针与其各自的含有靶位点的DNA链(104)和(106)特异杂交,对于基因组G1是L1从LK((108)到(110),对于基因组G2)是(112)到(114)。经过一段时间的孵育后,包含有后续步骤的酶的识别结构的探针-基因组复合物形成(分别为(118)和(116)),该孵育时间依赖于本领域的普通技术人员所熟知的参数,例如靶的复杂度、探针浓度、温度等,将在下文更全面地讨论。杂交步骤的产物被合并(120),并用适当的酶处理用于具体的测试分析。在图1A的例子中,探针p1到pK与它们对应的模板形成完全配对的双链体,将它们用常规的连接酶进行连接。探针p1到pK中每个的上游部分可以任选具有抗核酸酶的3’末端,这种情况下,连接产生的分子能够抗3’-核酸外切酶的消化。(或者,如果连接产生了环状的探针,也可以获得同样的结果)。在这种情况下,酶法处理步骤包含了用连接酶处理然后用3’-核酸外切酶处理,从而产生了可扩增的探针。3’-核酸外切酶使未能连接的探针消化并不能被扩增,举例,这是因为不存在允许所用的连接酶的识别结构形成的靶多聚核苷酸。在探针-基因组复合物(121)形成后,只要两个探针成分与其对应的模板形成完全配对的双链体时,探针成分的末端(122)就被连接在一起。在这样的连接之后(象这里举例的那样),被成功连接的探针的寡核苷酸标签被扩增和标记(124),从而产生了被标记的寡核苷酸标签,它们然后与微阵列(132)进行特异性杂交,如图1B所示。在该图中,为方便起见,对应于每个不同基因组的所有标签互补序列被成组一起显示在8x8的区块内,例如虚线指示的区块(134)。这样的分组对于本发明的实践来说不是必需的,相应的标签互补序列可以在微阵列上互相混合,只要它们的地址已知。在该图解中,显示了四个8×8的区块,展示了可以从每个杂交位点收集到的三种类型的信号。图解假定每个位点有两个可能的等位基因存在,并且个体可以在任何一个等位基因上是纯合的,也可以在该等位基因上是杂合的。空心圆圈代表着在特定位点的第一个等位基因上是纯合的个体的信号,黑色实心圆圈代表着在该位点的第二个等位基因上是纯合的个体的信号,灰色实心圆圈代表着在该位点的可能的等位基因上是杂合的个体的信号。
图1C-1E中例举的方法显示了从测试分析获得的信息可以通过杂交位点的地址和信号特征进行编码。根据这些例子选择具体的实施方案可能需要本领域的专业技术人员所熟知的平衡设计,例如相对于能够测量多种荧光染料的发射的更复杂的检测系统,探针的花费减少。图1C显示了示意图,其中包含在椭圆形(140)中的两个杂交位点(142)和(144)各含有不同的标签互补序列,它们与单一位点的不同等位基因相关。在该示意图中,荧光染料具有四种不同的发射条带(分别用灰色、交叉平行线、点状和黑色的方块表示),对应于四个不同的个体;杂交位点(142)和(144)对应于单一位点J上的两个不同等位基因。在这样的实施方案中,必须产生的具有不同寡核苷酸标签的探针的数量大大减少;但是需要能够同时分辨四个不同发射条带的检测系统。在该例子中,从两个杂交位点的荧光发射中测定了四个不同个体的每个个体的位点的接合性。图1D显示了上面讨论的示意图与图1A-1B的关系。也就是说,每个不同个体的每个不同位点分派有不同的寡核苷酸标签,这些标签可以用三种方式之一进行标记,这依赖于个体是否在等位基因1或等位基因2中是纯合的、或在等位基因1和等位基因2中是杂合的。因此,椭圆形(150)识别了分别对应于个体1到4中同样位点的四个杂交位点(152)、(154)、(156)和(158),并通过两种荧光染料的荧光发射确定每个这些个体中位点J的接合性。
图1E显示了编码杂交位点的信号的另一个示意图。基因组G1到GN(160)被显示为分开的线(162)到(172),每个按照从左到右的次序含有位点L1到LK。在每个基因组的每个位点上,探针被显示为杂交。在该示意图中,位点成对分组(176),其中一个基因组中的每一对都具有同样的寡核苷酸标签,不同基因组中同样的对具有不同的寡核苷酸标签。在该流程中,通过四种光谱可分辨的染料的发射确定两个双等位基因位点的接合性。在单一杂交位点上,发射信号被收集到4个通道中,以便两个通道给出一个位点的接合性,另两个通道给出第二个位点的接合性。
正如上面讨论的那样,可扩增的探针是从已经在特异性结合到靶基因组上的后续反应中被修饰的探针形成的。修饰允许探针可以被选择,例如通过除去未修饰探针或与它们分离、通过破坏未修饰的探针和/或非靶多聚核苷酸、或通过其它这样的方法。修饰可以包括化学或酶法修饰,例如连接或用聚合酶延伸。在一种情况下,探针通过连接进行修饰,以便它们形成闭合环状DNAs。在另一种情况下,探针通过核酸聚合酶延伸以掺入含有捕获基团例如生物素的修饰核苷酸。在另一种情况下,上述的两种修饰被一个或多个模板驱动的酶促反应所影响。探针的例子包括分子倒置探针、扣锁探针、滚环探针、带有“邮政编码”标签的基于连接的探针、单碱基延伸探针等,例如Hardenbol等,Nature Biotechnology,21673-678(2003),Nilsson等,Science,2652085-2088(1994),Baner等,Nucleic Acids Research,265073-5078(1998),Lizardi等,Nat.Genet.,19225-232(1998),Gerry等,J.Mol.Biol.,292251-262(1999),Fan等,Genome Research,10853-860(2000),国际专利公开WO 2002/57491和WO 2000/58516,美国专利6,506,594和4,883,750等,这些文献在此引为参考。在一种情况下,本发明的探针是分子倒置探针,例如在Hardenbol等(前面有引证)和Willis等的美国专利6,858,412中公开的那些,这些文献在此引为参考。在分子倒置探针的情况下,可扩增的探针的形成是通过在靶基因组上的模板驱动的反应中将探针环化,然后用一种或多种非环化多聚核苷酸(例如靶基因组、未连接的探针、探针连环体(concatatemers)等)的核酸外切酶消化。在另一种情况下,探针含有寡核苷酸标签和靶特异性的区域,通过聚合酶反应进行延伸以加入带有捕获基团的核苷酸,例如生物素,如同在Fan等(见前面的引证)和Mao等的PCT公开WO 02/097113中所公开的那样。可扩增的探针通过在用捕获试剂,例如抗亲和素化(avidinated)的磁珠,衍生的固相支持物上捕获被延伸的探针,然后将它们从反应混合物中分离来形成。
有多种终止剂-捕获基团组合可以获得。优选情况下,双脱氧核苷三磷酸被用做终止剂。在一种情况下,捕获基团可以被这样的用炔基氨基基团衍生的终止剂所结合,如同在Hobbs等的美国专利5,047,519和Taing等的国际专利公开WO 02/30944中所教的那样,在此引为参考。优选的捕获基团包括生物素或生物素衍生物,例如脱生物素,它们可以用链霉亲和素或亲和素或可商购的抗体、以及二硝基苯酚、毛地黄毒甙、荧光素和若丹明来进行捕获,所有这些试剂都可用作NHS酯,可以与炔基氨基衍生的终止剂反应。这些试剂以及用于这些化合物的抗体捕获试剂可以从Molecular Probes,Inc.(Eugene,Oreg.)获得。
基于杂交的分析示例有许多基于杂交的分析,其中包含了与靶多聚核苷酸例如基因组DNA片段形成结构或复合物的杂交步骤,以及酶法处理的步骤,其中一种或多种酶或者识别这些结构或复合物为底物,或者由于底物被这些结构或复合物保护而不能识别底物。具体来说,这样的分析被广泛用在多重格式中,以同时在多个位点分析DNA样品,例如等位基因特异性的多重PCR、阵列引物延伸(APEX)技术、溶液相引物延伸或连接分析等,它们被描述在下列示例的参考文献中Syvanen,NatureGenetics Supplement,37S5-S10(2005);Shumaker等,Hum.Mut.,7346-354(1996);Huang等的美国专利6,709,816和6,287,778;Fan等的美国专利公开2003/0003490;Gunderson等的美国专利公开2005/0037393;Hardenbol等,Nature Biotechnology,21673-678(2003);Nilsson等,Science,2652085-2088(1994);Baner等,Nucleic AcidsResearch,265073-5078(1998);Lizardi等,Nat.Genet.,19225-232(1998);Gerry等,J.Mol.Biol.,292251-262(1999);Fan等,GenomeResearch,10853-860(2000);国际专利公开WO 2002/57491和WO2000/58516;美国专利6,506,594和4,883,750,等。
在一种情况下,基于杂交的分析包括了环化探针、例如扣锁探针、滚环探针、分子倒置探针、用于多重PCR的线性扩增分子等,例如在美国专利5,871,921、6,235,472、5,866,337和日本专利JP.4-262799中公开的扣锁探针,在Aono等JP-4-262799和Lizardi的美国专利Nos.5,854,033、6,183,960、6,344,239中公开的滚环探针,在Hardenbol等(参见上文引证)和Willis等的美国专利6,858,412中公开的分子倒置探针,以及在Faham等的美国专利公开2003/0104459中公开的线性扩增分子,这些文献在此引为参考。这些探针是合适的,因为未环化的探针可以被单链核酸外切酶消化,从而极大地降低由杂散的扩增等引起的背景噪音。在分子倒置探针(MIPs)、扣锁探针和滚环探针的情况下,产生标记的靶序列的结构是通过在靶多聚核苷酸上,在模板驱动的反应中环化探针的线性形式,然后用核酸外切酶例如核酸外切酶I对反应混合物中的未环化的多聚核苷酸、例如靶多聚核苷酸、未连接的探针、探针连环体等进行消化而形成的。
图2A-2B显示了分子倒置探针以及这些这些探针是如何被用于本发明的。如图2A所示,在允许靶特异性区域1(216)和靶特异性区域2(218)与每个分开的分析中相应的靶多聚核苷酸(200)的互补区域形成稳定的双链体的情况下,将一组(或一套)线性的探针分子(如图所示用于样品1)与基因组样品1到K中的每种分别混合。靶特异性区域的末端彼此之间可以互相拼接(被“缺刻”分开),或者在它们之间可能有几个核苷酸(例如1-10个核苷酸)的间隙(220),这依赖于所用的分子倒置探针分析的实施方案。在经过足够允许特异性杂交进行的时间后,分析混合物1到K被合并(222),用于随后的酶处理步骤。在一种分子倒置探针分析中,合并的混合物被分成四份等份试样,分别进行酶法处理(分别进行A、C、G或T延伸,然后进行连接和核酸外切酶处理),然后将等份试样重新合并,将标记的寡核苷酸标签与结果输出平台进行特异性杂交。
在与靶特异性区域杂交后,两个靶特异性区域的末端通过连接反应或延伸反应后再进行连接反应、即所谓的“空隙填充反应”被共价连接。后一种反应的进行是通过用DNA聚合酶延伸一个靶特异性区域的游离3’-末端,以至于延伸的末端与另一个靶特异性区域具有5’-磷酸或类似基团的末端拼接,以允许连接。在一种情况下,每个分子倒置探针都具有图2A中所示的结构。除了靶特异性区域(216和218)之外,这样的探针在序列中可以包含第一个引物结合位点(202)、裂解位点(204)、第二个引物结合位点(206)、用于制造含有寡核苷酸标签(210)的标记的靶序列的一个末端的第一个临近标签的序列(208)(通常为限制性核酸内切酶位点和/或引物结合位点),以及用于制造标记的靶序列的另一个末端的第二个临近标签的序列(214)。此外,在后面的步骤中也可以通过使用含有水解位点的引物进行扩增来加入裂解位点(204)。在操作中,在靶特异性区域进行特异性杂交和连接后,除了环化的探针,将反应混合物用优选消化所有单链核酸核酸外切酶进行处理。经过这样的处理后,用在引物(202)和引物(206)之间裂解探针的裂解试剂处理环化的探针,使得结构变为线性(230)。裂解位点(204)及其相应的裂解试剂是本领域的普通技术人员的设计选择。在一种情况下,裂解位点(204)是包含了含有尿嘧啶核苷酸的序列的片段,裂解试剂用尿嘧啶-DNA糖基化酶处理,然后加热。环化的探针开环后,线性的产物通过例如PCR使用引物(232)和(234)进行扩增,形成扩增子(236)。然后对寡核苷酸标签(210)进行扩增和标记,与标签互补序列的微阵列例如GenFlex阵列(Affymetrix,Santa Clara,Calif.)等进行特异性杂交。
图2B显示了为一个位点的四种可选核苷酸中的每种产生不同信号、例如不同的荧光信号的标记示意图,其中微阵列被用于检测由标记的寡核苷酸标签产生的信号。在该示意图中,从四个等份试样(250)到(256)(分别用寡核苷酸标签t23(251)、t24(253)、t25(255)和t26(257)图示)中的每个获得的扩增子(236)分别与引物对(280)和(282)、(284)和(286)、(288)和(290)以及(292)和(294)结合,并通过例如PCR进行扩增。引物(280)、(284)、(288)和(292)已经分别连接有光谱可分辨的荧光染料FA、FC、FG和FT。在扩增之后,相应的产物被合并、变性并加入(258)到微阵列(260)上,以便每个寡核苷酸标签与其标签互补序列特异性杂交。然后用常规的仪器例如GeneChipScanner 3000(Affymetrix,Santa Clara,CA)或类似的仪器收集来自微阵列(260)的区块的荧光信号并进行分析。
使用固相支持物的基于杂交的分析在本技术领域内,适合于本发明的使用微阵列等平台进行多重基于杂交的分析的方法是众所周知的。用于在固相支持物例如微阵列上添加标记序列的选择条件和材料的指导可以在文献中发现,例如Wetmur,Crit.Rev.Biochem.Mol.Biol.,26227-259(1991),DeRisi等,Science,278680-686(1997),Chee等,Science,274610-614(1996),Duggan等,Nature Genetics,2110-14(1999),Schena主编的MicroarraysA Practical Approach(IRL Press,Washington,2000),Freeman等,Biotechniques,291042-1055(2000)等参考文献。用于执行可重复的、可控制的杂交反应的方法和装置在美国专利Nos.5,871,928、5,874,219、6,045,996和6,386,749、6,391,623中有描述,每篇都在此引为参考。杂交条件一般包括低于大约1M的盐浓度,更经常低于大约500mM以及低于大约200mM。杂交温度可以低至5℃,但是在典型情况下高于大约22℃,更典型高于大约30℃,优选超过大约37℃。杂交通常在严格条件下进行,即在该条件下探针将与完全互补的靶序列稳定地杂交,但是不能与具有一个或多个误配的序列稳定地杂交。杂交条件的严格性依赖于几种因素,例如探针序列、探针长度、温度、盐浓度、有机溶剂例如甲酰胺的浓度等。对任何具体的实施方案来说如何选择这些因素是本领域的普通技术人员通常的设计选择的问题。通常情况下,严格条件被选择为在特定的离子强度和pH下,比特定序列的Tm低大约5℃。示例性的杂交条件包括在pH7.0到8.3和温度至少25℃时,盐浓度至少0.01M到大约1M Na离子浓度(或其它盐)。其它的示例性杂交条件包括如下5×SSPE(750mM NaCl,50mM磷酸钠,5mMEDTA,pH7.4)。
将标记的靶序列添加到GenFlex微阵列(Affymetrix,Santa Clara,CA)上的示例性杂交步骤如下将标记的靶序列在95-100℃变性10分钟,在冰上迅速冷却2-5分钟。微阵列用6 X SSPE-T(0.9M NaCl,60mM NaH2PO4,6mM EDTA(pH7.4),0.005%Triton X-100)+0.5mg/ml BSA预杂交几分钟,然后用120μL杂交溶液(描述见下文)在42℃的杂交箱中以40RPM旋转,杂交2小时。杂交溶液的组成是3MTMACL(四甲基氯化铵),50mM MES((2-[N-吗啉代]乙磺酸)钠盐)(pH6.7),0.01%的Triton X-100,0.1mg/ml鲱鱼精子DNA,任选50pM荧光素标记的对照寡核苷酸,0.5mg/ml BSA(Sigma)以及标记的靶序列,总反应体积大约为120L。微阵列用1 X SSPE-T在室温清洗两次,每次大约10秒,然后用1 X SSPE-T在杂交箱中以40RPM旋转清洗,于40℃15-20分钟。然后将微阵列在流体台(例如型号FS400,Affymetrix,Santa Clara,CA)上用6 X SSPE-T在22℃清洗10次。根据所用的标记物的性质,例如直接或间接,可能还需要其它的处理步骤。含有标记的靶序列的微阵列可以在共焦扫描仪(例如可以从Affymetrix购买到的)扫描,所述扫描仪具有每个区块60-70个像素的分辨率和滤光片和适合于所用的标记物的其它设置。GeneChip软件(Affymetrix)或类似软件可用于将图象文件转化为数字文件,以用于进一步的数据分析。
样品制备用于本发明的含有靶多聚核苷酸例如基因组DNA片段的样品或样本可以来自各种各样的来源,包括细胞培养物、动物或植物组织、病人活组织切片、环境样品等。使用常规的技术制备样品用于本发明的分析,所用技术一般依赖于获得样品或样本的来源。
在对样品进行反应前,通常希望对样品进行一个或多个样品制备操作。典型情况下,这些样品制备操作包括例如从全细胞样品、病毒等中提取细胞内物质如核酸等的操作。
对于那些全细胞、病毒或其它组织样品将被分析的实施方案来说,在继续各种样品制备操作之前,一般需要从细胞或病毒中提取核酸。因此,在样品收集后,可以将核酸从收集的细胞、病毒外壳中释放到粗提液中,然后进行其它的处理以制备用于后续操作的样品,例如杂蛋白(结合了DNA的)的变性、纯化、过滤、脱盐等。将核酸从样品细胞或病毒释放出来,以及结合了DNA的蛋白的变性一般通过化学、物理或电解裂解的方法进行。例如,化学方法一般使用裂解试剂破坏细胞并从细胞中提取核酸,然后用离液序列高的盐例如异硫氰酸胍或尿素处理提取液,以变性任何杂蛋白和潜在的干扰蛋白。一般来说,当使用化学提取和/或变性方法时,适合的试剂可以被掺入到样品制备仓、分离的附加仓中,也可以从外部导入。
在提取后,通常希望将核酸与粗提液中的其它成分、例如变性的蛋白、细胞膜颗粒、盐等分开。颗粒物质的除去一般通过过滤、絮凝等方法进行。在装置中可以方便地引入各种过滤类型。此外,当使用化学变性方法时,可能希望在进行后面的步骤之前先对样品脱盐。样品的脱盐和核酸的分离一般可以在单个步骤中进行,例如通过将核酸结合在固相上并洗掉杂质盐或对样品进行凝胶过滤层析、使盐通过透析膜等。适合于核酸结合的固相支持物包括例如硅藻土、二氧化硅(例如玻璃棉)等。适合的凝胶排阻介质在本技术领域内也是众所周知的,也可以容易地掺入到本发明的装置中,可以从例如Pharmacia和SigmaChemical公司购买到。
在某些应用例如测量病人血液的罕见细胞中的靶多聚核苷酸时,在进行分析前可以进行富集步骤,例如通过免疫磁性分离。这样的分离或富集可以使用各种本技术领域已知的技术和材料来进行,象下列被引为参考的代表性文献中所公开的那样Terstappen等的美国专利6,365,362;Terstappen等的美国专利5,646,001;Rohr等的美国专利5,998,224;Kausch等的美国专利5,665,582;Kresse等的美国专利6,048,515;Kausch等的美国专利5,508,164;Miltenyi等的美国专利5,691,208;Molday的美国专利4,452,773;Kronick的美国专利4,375,407;Radbruch等的Methods in Cell Biology,Vol42,chapter 23(Academic Press,New York,1994);Uhlen等的Advances inBiomagnetic Separation(Eaton Publishing,Natick,1994);Safarik等,J.Chromatography B,72233-53(1999);Miltenyi等,Cytometry,11231-238(1990);Nakamura等Biotechnol.Prog.,171145-1155(2001);Moreno等,Urology,58386-392(2001);Racila等,Proc.Natl.Acad.Sci.,954589-4594(1998);Zigeuner等,J.Urology,169701-705(2003);Ghossein等,Seminars in Surgical Oncology,20304-311(2001)。
在一种情况下,用于分析的基因组DNA使用标准的可商购的DNA提取试剂盒获得,例如PureGeneDNA Isolation Kit(Gentra Systems,Minneapolis,MN)。在另一种情况下,为了用含有从大约1000到50,000个探针的多重基于杂交的分析来分析人类基因组DNA,可以使用含量在大约200ng到大约1μg的范围内的DNA样品。当样品材料稀缺时,在分析之前,可以通过全基因组扩增或类似技术扩增样品DNA,以增加可用于分析的DNA的总量。在本技术领域内现有几种全基因组、或部分基因组扩增技术,例如在下列引为参考的文献中Telenius等,Genormics,13718-725(1992);Cheung等,Proc.Natl.Acad.Sci.,9314676-14679(1996);Dean等,Genome Research,111095-1099(2001);美国专利Nos.6,124,120、6,280,949、6,617,137等。
上面的教导其目的在于说明本发明,其细节并不对本发明权利要求的范围构成限制。在描述本发明的优选示范实施方案时,对于本领域的专业技术人员来说,显然可以在其中进行各种改变和修饰而不背离本发明,附随的权利要求其目的是覆盖位于本发明的真正本质和范围内的所有这样的改变和修饰。
权利要求
1.同时分析多个基因组以获得每个基因组中一个或多个位点的序列信息的方法,该方法包括下列步骤为每个基因组提供一组探针,该组中的每个探针对于基因组的位点来说是特异性的;将每组探针分别与其相应的基因组杂交,以在分开的反应混合物中形成探针-基因组复合物;将分开的反应混合物合并,并对探针-基因组复合物进行酶法处理以形成可扩增的探针;对可扩增的探针进行扩增和标记以形成标记的探针,使得对于每个不同基因组的每个不同位点来说有一个独一无二的标记的探针;以及将标记的探针与微阵列上它们相应的互补序列进行特异性杂交,使得与微阵列特异性杂交的标记探针的存在与否表明所述多个基因组中每个的一个或多个位点中每个的序列信息。
2.权利要求1的方法,其中来自每个所述组的每个所述探针都含有寡核苷酸标签。
3.权利要求2的方法,其中所述的扩增和标记步骤包括扩增和标记所述探针中的所述寡核苷酸标签,使得对于每个不同基因组的每个不同位点来说有独一无二的标记的寡核苷酸标签。
4.权利要求3的方法,其中所述特异性杂交步骤包括将所述标记的寡核苷酸标签与所述微阵列上它们相应的标签互补序列进行特异性杂交,使得所述微阵列上的标记的寡核苷酸标签的存在与否表明所述每个基因组的所述一个或多个位点中每个的所述序列信息。
5.权利要求4的方法,其中每个标记的寡核苷酸标签具有核苷酸序列和用于产生光学信号的标记物,以及其中每个所述基因组的每个所述位点被至少一个标记的寡核苷酸标签的核苷酸序列和标记物所鉴定。
6.权利要求5的方法,其中对于不同位点的所述寡核苷酸标签是不同的,以及其中在所述多个基因组中中每个的至少一个位点中,对于不同的所述基因组的相同位点来说,有一个以上的寡核苷酸标签是相同的。
7.权利要求6的方法,其中所述一个以上的相同的所述寡核苷酸标签每个用不同的光谱可分辨的荧光染料标记。
8.权利要求5的方法,其中所述序列信息包括所述位点上的单核苷酸多态性、核苷酸插入或核苷酸缺失的身份。
9.权利要求8的方法,其中所述酶法处理所述探针-基因组复合物的步骤包括使用DNA聚合酶在模板驱动的反应中延伸探针。
10.权利要求8的方法,其中所述酶法处理所述探针-基因组复合物的步骤包括在模板驱动的反应中将探针的第一个组分与探针的第二个组分连接。
11.权利要求8的方法,其中每个所述探针是可环化的探针。
12.权利要求11的方法,其中每个所述可环化的探针是分子倒置探针,以及其中每个所述可扩增的探针是环化的分子倒置探针。
13.同时分析多个样品以确定一个或多个被分析物的存在或含量的方法,该方法包括下列步骤为每个样品提供一组探针,其中包含了针对每个被分析物的至少一个探针,该组中的每个探针对于至少一个被分析物来说是特异性的,以及该组中的每个探针都连接有寡核苷酸标签;将每组探针分别与其相应的样品反应,以在分开的反应混合物中形成探针-被分析物复合物;将分开的反应混合物合并,并对探针-被分析物复合物进行酶法处理以形成可扩增的探针;对可扩增的探针进行扩增和标记以形成标记的寡核苷酸标签,使得对于每个不同样品的每个不同被分析物来说有独一无二的标记的寡核苷酸标签;以及将标记的寡核苷酸标签与微阵列上它们相应的互补序列进行特异性杂交,使得与微阵列特异性杂交的标记的寡核苷酸标签的存在与否表明所述多个样品中每个的一个或多个被分析物中每个的存在或含量。
全文摘要
本发明提供了对多个基于杂交的分析进行多路结果输出的方法,这些分析测试中每个都包含了一个或多个杂交或退火步骤以及一个或多个酶法处理步骤。一方面,本发明允许通过将一组探针与不同的基因组分别进行杂交,以在分开的反应混合物中形成探针—基因组复合物组,然后将它们合并并进行酶法处理以形成可扩增的探针,从而对多个基因组进行同时分析。从这些可扩增的探针可以产生标记的探针,使得对于每个不同的基因组的每个不同位点来说存在独一无二的标记探针,然后将这些探针在微阵列上与它们相应的互补序列进行特异性杂交。另一方面,从可扩增的探针可以产生标记的寡核苷酸标签。本发明适用于多重基于杂交的分析,以检测从许多不同个体获得的基因组样品的特征。通过对不同个体的样品分别进行杂交,然后将它们合并进行酶法处理的步骤,人们可以利用杂交反应和酶反应之间天然的反应速度差异,以确保在单一结果输出平台上对产物分析的多个分析。
文档编号G06F19/00GK101087890SQ200580031840
公开日2007年12月12日 申请日期2005年7月25日 优先权日2004年7月26日
发明者保罗·哈顿伯尔, 乔治·卡林-诺伊曼, 托马斯·D·威利斯, 马尼施·贾殷, 尼古拉斯·纳克莱里奥 申请人:帕拉列勒生物科学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1