触控装置中动态阈值调整电路的制作方法

文档序号:6637062阅读:167来源:国知局
触控装置中动态阈值调整电路的制作方法
【专利摘要】本发明涉及一种触控装置中动态阈值调整电路,调整电路的输入端包括每列的触控检测节点的采样值输入端、全屏的触控检测节点的采样值输入端、低阈值输入端以及高阈值输入端,调整电路的输出端为动态阈值输出端;其中包括列阈值计算模块,用以根据每列的触控检测节点的采样值与低阈值更新每列的列阈值;全屏加权平均值计算模块,用以根据全屏的触控检测节点的采样值与低阈值更新全屏加权平均值;以及阈值比较与更新模块,用以根据更新后的列阈值、更新后的全屏加权平均值、低阈值以及高阈值更新全屏阈值。采用本发明的触控装置中动态阈值调整电路可以根据不同的应用场合实时、动态地更新触控检测节点采样阈值,提高了触摸检测结果的可靠性。
【专利说明】触控装置中动态阈值调整电路

【技术领域】
[0001]本发明涉及电子【技术领域】,尤其涉及电子电路,具体是指一种触控装置中动态阈值调整电路。

【背景技术】
[0002]现有技术中对纵横分布在触摸屏表面形成的矩阵式的投射式电容节点,在每个采样周期中,触控电路得到所需的采样数据矩阵。将无触摸状态下采样得到的数据矩阵作为基准值,然后把每次采样值与基准值对比,计算两者的差值,当差值大于预先设定的基准值(阈值)时,就认为有触摸事件发生,反之,则认为没有触摸事件发生。
[0003]现有触控电路中,通过预先设定的某一投射电容节点采样阈值,来判断触控事件的发生与否。针对不同应用场合所带来的不同干扰信号或噪声,阈值无法实时更新,易造成误触摸,影响触摸检测结果的可靠性。


【发明内容】

[0004]本发明的目的是克服了上述现有技术的缺点,提供了一种能够根据不同的应用场合实时动态地更新触控节点采样阈值、提高触摸检测结果的可靠性、结构简单、应用范围广泛的触控装置中动态阈值调整电路。
[0005]为了实现上述目的,本发明的触控装置中动态阈值调整电路具有如下构成:
[0006]该触控装置中动态阈值调整电路,其主要特点是,所述的调整电路的输入端包括每列的触控检测节点的采样值输入端、全屏的触控检测节点的采样值输入端、低阈值输入端以及高阈值输入端,所述的调整电路的输出端为所述的动态阈值输出端;所述的电路包括:
[0007]列阈值计算模块,用以根据每列的触控检测节点的采样值与所述的低阈值更新每列的列阈值;
[0008]全屏加权平均值计算模块,用以根据全屏的触控检测节点的采样值与低阈值更新全屏加权平均值;以及
[0009]阈值比较与更新模块,用以根据更新后的列阈值、更新后的全屏加权平均值、低阈值以及高阈值更新全屏阈值。
[0010]进一步地,所述的列阈值计算模块包括:
[0011]列平均值计算单元,用以根据每列的触控检测节点的采样值与所述的低阈值的差值计算得到列平均值;
[0012]列加权平均值计算单元,用以根据所述的列平均值计算得到列加权平均值;以及
[0013]列阈值更新单元,用以当所述的列加权平均值大于所述的低阈值时,将所述的列加权平均值设置为更新后的列阈值;以及当所述的列加权平均值不大于所述的低阈值时,将所述的低阈值设置为更新后的列阈值。
[0014]更进一步地,所述的列平均值计算单元包括第一比较器、第一二路复用器、第一累加器、第一计数器、第一减法器以及第一除法器;所述的第一比较器的第一输入端、第一减法器的第一输入端分别与所述的低阈值输入端相连接;所述的第一比较器的第二输入端、第一减法器的第二输入端分别与所述的每列的触控检测节点的采样值输入端相连接;所述的第一二路复用器的第一输入端与所述的第一减法器的输出端相连接,所述的第一二路复用器的第二输入端接地,所述的第一二路复用器的复位端与所述的电路的系统复位端相连接,所述的第一二路复用器的使能端与所述的第一比较器的输出端相连接;所述的第一累加器的第一输入与所述的第一二路复用器的输出端相连接;所述的第一累加器的输出端分别与所述的第一累加器的第二输入端以及所述的第一除法器的第一输入端相连接;所述的第一计数器的复位端与电路的系统复位端相连接,所述的第一计数器的时钟端与电路的系统时钟端相连接,所述的第一计数器的使能端与第一比较器的输出端相连接,所述的第一计数器的输出端与所述的第一除法器的第二输入端相连接;所述的第一除法器的输出端与所述的列加权平均值计算单元的输入端相连接。
[0015]更进一步地,所述的列加权平均值计算单元包括第一乘法器以及第一移位寄存器,所述的第一乘法器的第一输入端与列阈值比例相连接,所述的第一乘法器的第二输入端与所述的列平均值计算单元的输出端相连接,所述的第一乘法器的输出端与所述的第一移位寄存器的输入端相连接,所述的第一移位寄存器的输出端与所述的列阈值更新单元的输入端相连接。
[0016]更进一步地,所述的列阈值更新单元包括第二比较器以及第二二路复用器;所述的第二比较器的第一输入端、第二二路复用器的第一输入端分别与所述的列加权平均值计算单元的输出端相连接,所述的第二比较器的第二输入端、第二二路复用器的第二输入端分别与所述的低阈值输入端相连接,所述的第二比较器的输出端与所述的第二二路复用器的使能端相连接;所述的第二二路复用器的复位端与所述的电路的系统复位端相连接,所述的第二二路复用器的输出端与所述的阈值比较与更新模块的输入端相连接。
[0017]进一步地,所述的全屏加权平均值计算模块包括:
[0018]全屏平均值计算单元,用以根据全屏的触控检测节点的采样值与所述的低阈值的差值计算得到全屏平均值;以及
[0019]全屏加权平均值计算单元,用以根据所述的全屏平均值计算得到全屏加权平均值。
[0020]更进一步地,所述的全屏平均值计算单元包括第三比较器、第三二路复用器、第二累加器、第二计数器、第二减法器以及第二除法器;所述的第三比较器的第一输入端、第二减法器的第一输入端分别与所述的低阈值输入端相连接;所述的第三比较器的第二输入端、第二减法器的第二输入端分别与所述的每列的触控检测节点的采样值输入端相连接;所述的第三二路复用器的第一输入端与所述的第二减法器的输出端相连接,所述的第三二路复用器的第二输入端接地,所述的第三二路复用器的复位端与所述的电路的系统复位端相连接,所述的第三二路复用器的使能端与所述的第三比较器的输出端相连接;所述的第二累加器的第一输入与所述的第三二路复用器的输出端相连接;所述的第二累加器的输出端分别与所述的第二累加器的第二输入端以及所述的第二除法器的第一输入端相连接;所述的第二计数器的复位端与电路的系统复位端相连接,所述的第二计数器的时钟端与电路的系统时钟端相连接,所述的第二计数器的使能端与第三比较器的输出端相连接,所述的第二计数器的输出端与所述的第二除法器的第二输入端相连接;所述的第二除法器的输出端与所述的全屏加权平均值计算单元的输入端相连接。
[0021]更进一步地,所述的全屏加权平均值计算单元包括第二乘法器以及第二移位寄存器,所述的第二乘法器的第一输入端与全屏阈值比例相连接,所述的第二乘法器的第二输入端与所述的全屏平均值计算单元的输出端相连接,所述的第二乘法器的输出端与所述的第二移位寄存器的输入端相连接,所述的第二移位寄存器的输出端与所述的阈值比较与更新模块的输入端相连接。
[0022]进一步地,所述的阈值比较与更新模块包括第四比较器、第五比较器、第六比较器、第一三路复用器、第一加法器、三输入或门以及第三移位寄存器;所述的第四比较器的第一输入端与所述的低阈值输入端相连接,所述的第四比较器的第二输入端与所述的全屏加权平均值计算模块的输出端相连接;所述的第五比较器的第一输入端与所述的低阈值输入端相连接,所述的第五比较器的第二输入端与所述的全屏加权平均值计算模块的输出端相连接,所述的第五比较器的第三输入端与所述的高阈值输入端相连接;所述的第六比较器的第一输入端与所述的全屏加权平均值计算模块的输出端相连接,所述的第六比较器的第二入端与所述的高阈值输入端相连接;所述的三输入或门第一输入端与所述的第四比较器的输出端相连接,所述的三输入或门第二输入端与所述的第五比较器的输出端相连接,所述的三输入或门第三输入端与所述的第六比较器的输出端相连接,所述的三输入或门的输出端与所述的第一三路复用器的使能端相连接;所述的第一三路复用器的第一输入端与所述的全屏加权平均值计算模块的输出端相连接,所述的第一三路复用器的第二输入端与所述的低阈值输入端相连接,所述的第一三路复用器的第三输入端与所述的高阈值输入端相连接,所述的第一三路复用器的第一复位端和第二复位端分别与所述的电路的系统复位端相连接,所述的第一三路复用器的输出端与所述的第一加法器的第一输入端相连接;所述的第一加法器的第二输入端与所述的列阈值计算模块的输出端相连接,所述的第一加法器的输出端与所述的第三移位寄存器的输入端相连接,所述的第三移位寄存器的输出端与所述的动态阈值输出端相连接。
[0023]采用了该发明中的触控装置中动态阈值调整电路,与现有技术相比,具有以下有益效果:
[0024]本发明的触控装置中动态阈值调整电路,能够根据不同的应用场合实时动态地更新触控节点采样阈值,提高触摸检测结果的可靠性;本发明的触控装置中动态阈值调整电路,结构简单,应用范围广泛。

【专利附图】

【附图说明】
[0025]图1为本发明的触控装置中动态阈值调整电路的结构示意图。
[0026]图2为本发明的列阈值计算模块的电路结构示意图。
[0027]图3为本发明的全屏加权平均值计算模块的电路结构示意图。
[0028]图4为本发明的阈值比较与更新模块的电路结构示意图。

【具体实施方式】
[0029]为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。
[0030]请参阅图1所示,为本发明的触控装置中动态阈值调整电路的结构示意图,其中所述的调整电路的输入端包括每列的触控检测节点的采样值输入端、全屏的触控检测节点的采样值输入端、低阈值输入端以及高阈值输入端,所述的调整电路的输出端为所述的动态阈值输出端;所述的电路包括:
[0031]列阈值计算模块,用以根据每列的触控检测节点的采样值与所述的低阈值更新每列的列阈值;
[0032]全屏加权平均值计算模块,用以根据全屏的触控检测节点的采样值与低阈值更新全屏加权平均值;以及
[0033]阈值比较与更新模块,用以根据更新后的列阈值、更新后的全屏加权平均值、低阈值以及高阈值更新全屏阈值。
[0034]本发明的触控装置中动态阈值调整电路在采样周期内,对全屏上的所有触控检测节点进行采样和保存,采样数据(采样值)保存在SRAM中;接着,将采样数据(采样值)与各自的基准数据(即低阈值)对比并计算差值,把该差值作为检测数据替换原采样数据;然后,先计算每列的列阈值,再计算全屏模式下的全屏加权平均值,最后根据列更新阈值以完成全屏阈值的更新。
[0035]请参阅图2所示,为本发明的列阈值计算模块的电路结构示意图。所述的列阈值计算模块包括:
[0036]列平均值计算单元,用以根据每列的触控检测节点的采样值与所述的低阈值的差值计算得到列平均值;
[0037]列加权平均值计算单元,用以根据所述的列平均值计算得到列加权平均值;以及
[0038]列阈值更新单元,用以当所述的列加权平均值大于所述的低阈值时,将所述的列加权平均值设置为更新后的列阈值;以及当所述的列加权平均值不大于所述的低阈值时,将所述的低阈值设置为更新后的列阈值。
[0039]所述的列平均值计算单元包括第一比较器C0M1、第一二路复用器MUX1、第一累加器ACC1、第一计数器Cl、第一减法器SI以及第一除法器Dl ;所述的第一比较器COMl的第一输入端、第一减法器SI的第一输入端分别与所述的低阈值L0W_THRD输入端相连接;所述的第一比较器COMl的第二输入端、第一减法器SI的第二输入端分别与所述的每列的触控检测节点的采样值输入端相连接;所述的第一二路复用器MUXl的第一输入端与所述的第一减法器SI的输出端相连接,所述的第一二路复用器MUXl的第二输入端接地,所述的第一二路复用器MUXl的复位端与所述的电路的系统复位端sys_rst相连接,所述的第一二路复用器MUXl的使能端与所述的第一比较器COMl的输出端相连接;所述的第一累加器ACCl的第一输入与所述的第一二路复用器MUXl的输出端相连接;所述的第一累加器ACCl的输出端分别与所述的第一累加器ACCl的第二输入端以及所述的第一除法器Dl的第一输入端相连接;所述的第一计数器Cl的复位端与电路的系统复位端sys_rst相连接,所述的第一计数器Cl的时钟端与电路的系统时钟端sys_Clk相连接,所述的第一计数器Cl的使能端与第一比较器COMl的输出端相连接,所述的第一计数器Cl的输出端与所述的第一除法器Dl的第二输入端相连接;所述的第一除法器Dl的输出端与所述的列加权平均值计算单元的输入端相连接。
[0040]其中,对于每条1?扫描线(每列)上的触控检测节点(投射电容节点),其采样值大于低阈值的所有触控检测节点的采样值与低阈值的差值相加,并求平均值。此处需要说明的是,本发明中所表述的“每条狀扫描线”或“每条1?线”,均等价于“每列”;本发明中所表述的“投射电容节点”,均等价于“触控检测节点”。
[0041]所述的列加权平均值计算单元包括第一乘法器11以及第一移位寄存器卩1,所述的第一乘法器11的第一输入端与列阈值比例⑶[-狀12相连接,所述的第一乘法器11的第二输入端与所述的列平均值计算单元的输出端相连接,所述的第一乘法器11的输出端与所述的第一移位寄存器町的输入端相连接,所述的第一移位寄存器町的输出端与所述的列阈值更新单元的输入端相连接。
[0042]其中,此处第一移位寄存器是右移8位寄存器,将列平均值计算单元计算得到的列平均值与列阈值比例相乘后再右移8位即可得到列加权平均值。此处需要注意的是,在本发明所设计的算法中,列阈值比例为一个1字节(8位)的变量,即它的理论范围是0?255,与此同时,根据电路实际调试结果,其工程经验值为160?208,通常取为168,而右移8位即除以256,所以此列加权平均值计算单元即是通过列平均值与一个小于1的比例系数(小数)相乘即得到列加权平均值。
[0043]所述的列阈值更新单元包括第二比较器(1)12以及第二二路复用器歷2 ;所述的第二比较器(1)12的第一输入端、第二二路复用器11X2的第一输入端分别与所述的列加权平均值计算单元的输出端相连接,所述的第二比较器(1)12的第二输入端、第二二路复用器歷2的第二输入端分别与所述的低阈值输入端相连接,所述的第二比较器(1)12的输出端与所述的第二二路复用器1^X2的使能端相连接;所述的第二二路复用器1^X2的复位端与所述的电路的系统复位端878^0相连接,所述的第二二路复用器1^X2的输出端与所述的阈值比较与更新模块的输入端相连接。
[0044]此外,列阈值计算模块的工作原理是:
[0045]第一输入比较器⑶肌的输入端分别为每条1?扫描线上投射电容节点的采样值(即所述的每列的触控检测节点的采样值输入端)与低阈值输入端,其输出端分别连接到第一二路复用器1①(1的使能端和第一计数器的使能端;当狀上投射电容节点采样值大于低阈值时,第一二路复用器11X1和第一计数器均使能。第一减法器51计算1?上投射电容节点采样值与低阈值的差值并输出至第一二路复用器歷1的第一输入端,所述的第一二路复用器11X1的第二输入端接地,相当于逻辑0,所述的第一二路复用器1^X1的输出端连接到第一累加器八冗1的数据输入端,所述的第一二路复用器1^X1的复位端连接电路的系统复位端878^0 ;与此同时,第一计数器在电路的系统时钟端控制下记录下1?上投射电容节点采样值大于低阈值的差值个数,其复位端连接电路的系统复位端第一累加器八1X1把每个采样周期内,每条^上投射电容节点采样值与低阈值1013--)的差值进行累加并输出,其输出端连接到第一除法器01的其中一个输入端\,第一计数器的输出端连接到第一除法器01的另一个输入端第一除法器01计算差值累加值与差值个数的商(即^/?),求得的即为每列的平均值,并把该平均值输出到第一乘法器11的其中一个输入端4。第一乘法器11的另一输入端乂工连接列阈值比例⑶狀12,列平均值与的乘积(即^工父^)作为第一乘法器11的输出,该输出连接到第一移位寄存器01的输入端。第一移位寄存器[对输入的乘积项进行右移8位处理,得到每列差值的加权平均值并输出,其输出端连接到第二比较器COM2的其中一个输入端。第二比较器COM2的另一输入端连接低阈值LOW_THRD,其输出端连接到第二二路复用器MUX2的使能端。第二二路复用器MUX2的两个输入端分别连接第一移位寄存器Rl的输出端(即列加权平均值)和低阈值LOW_THRD,其复位端连接电路的系统复位端sys_rst,若列加权平均值大于低阈值LOW_THRD,则把列加权平均值作为该列的阈值FING_THD输出;反之,若LOW_THRD大于列加权平均值,则把LOW_THRD作为该列的更新后的列阈值FING_THD输出。
[0046]请参阅图3所示,为本发明的全屏加权平均值计算模块的电路结构示意图,其中,所述的全屏加权平均值计算模块包括:
[0047]全屏平均值计算单元,用以根据全屏的触控检测节点的采样值与所述的低阈值的差值计算得到全屏平均值;以及全屏加权平均值计算单元,用以根据所述的全屏平均值计算得到全屏加权平均值。
[0048]所述的全屏平均值计算单元包括第三比较器COM3、第三二路复用器MUX3、第二累加器ACC2、第二计数器C2、第二减法器S2以及第二除法器D2 ;所述的第三比较器COM3的第一输入端、第二减法器S2的第一输入端分别与所述的低阈值L0W_THRD输入端相连接;所述的第三比较器COM3的第二输入端、第二减法器S2的第二输入端分别与所述的每列的触控检测节点的采样值输入端相连接;所述的第三二路复用器MUX3的第一输入端与所述的第二减法器S2的输出端相连接,所述的第三二路复用器MUX3的第二输入端接地,所述的第三二路复用器MUX3的复位端与所述的电路的系统复位端sys_rSt相连接,所述的第三二路复用器MUX3的使能端与所述的第三比较器COM3的输出端相连接;所述的第二累加器ACC2的第一输入与所述的第三二路复用器MUX3的输出端相连接;所述的第二累加器ACC2的输出端分别与所述的第二累加器ACC2的第二输入端以及所述的第二除法器D2的第一输入端相连接;所述的第二计数器C2的复位端与电路的系统复位端sys_rst相连接,所述的第二计数器C2的时钟端与电路的系统时钟端sys_Clk相连接,所述的第二计数器C2的使能端与第三比较器COM3的输出端相连接,所述的第二计数器C2的输出端与所述的第二除法器D2的第二输入端相连接;所述的第二除法器D2的输出端与所述的全屏加权平均值计算单元的输入端相连接。
[0049]其中,此处对于全屏投射电容节点(全屏触控检测节点),其采样值大于低阈值L0ff_THRD的所有点的差值相加,并求平均值。
[0050]所述的全屏加权平均值计算单元包括第二乘法器M2以及第二移位寄存器R2,所述的第二乘法器M2的第一输入端与全屏阈值比例ALL_RATE相连接,所述的第二乘法器M2的第二输入端与所述的全屏平均值计算单元的输出端相连接,所述的第二乘法器M2的输出端与所述的第二移位寄存器R2的输入端相连接,所述的第二移位寄存器R2的输出端与所述的阈值比较与更新模块的输入端相连接。
[0051]其中,此处第二移位寄存器是右移8位寄存器,将全屏平均值计算单元计算得到的全屏平均值与全屏阈值比例相乘后再右移8位即可得到全屏加权平均值。此处需要注意的是,在本发明所设计的算法中,全屏阈值比例为一个I字节(8位)的变量,即它的理论范围是O?255,与此同时,根据电路实际调试结果,其工程经验值为160?208,通常取为192,而右移8位即除以256,所以此全屏加权平均值计算单元即是通过全屏平均值与一个小于1的比例系数(小数)相乘即得到全屏加权平均值。
[0052]此外,全屏加权平均值计算模块的工作原理是:
[0053]第三比较器⑶13的输入端分别为全屏电容节点采样值与低阈值,其输出端分别连接到第三二路复用器1^X3的使能端和第二计数器02的使能端;当全屏电容节点采样值大于低阈值时,第三二路复用器1^X3和第二计数器02均使能。第二减法器32计算全屏电容节点采样值与低阈值的差值并输出至所述的第三二路复用器1①(3的第一输入端,所述的第三二路复用器1①(3的第二输入端接地,相当于逻辑0,所述的第三二路复用器1^X3的输出端连接到第二累加器八(^2的数据输入端,所述的第三二路复用器1^X3的复位端连接电路的系统复位端878^0 ;与此同时,第二计数器02在电路的系统时钟端878^1&控制下计下全屏电容节点采样值大于低阈值的个数,其复位端连接电路的系统复位端878^0。第二累加器把每个采样周期内,全屏电容节点采样值与低阈值的差值进行累加并输出,其输出端连接到第二除法器02的其中一个输入端“,第二计数器02的输出端连接到第二除法器02的另一个输入端第二除法器02计算差值累加值与差值个数的商(即^/?),求得的即为全屏平均值,并把该平均值输出到第二乘法器12的其中一个输入端第二乘法器12的另一输入端\连接全屏阈值比例从I狀呢,全屏平均值与从I狀呢的乘积(即^工父^)作为第二乘法器12的输出,该输出连接到第二移位寄存器以的输入端。第二移位寄存器以对输入的乘积项进行右移8位处理,得到全屏差值的加权平均值并把该值作为本模块输出。
[0054]请参阅图4所示,本发明的阈值比较与更新模块的电路结构示意图。所述的阈值比较与更新模块包括第四比较器⑶14、第五比较器⑶15、第六比较器⑶16、第一三路复用器順X、第一加法器八001、三输入或门01?以及第三移位寄存器…;所述的第四比较器⑶14的第一输入端与所述的低阈值输入端相连接,所述的第四比较器(1)14的第二输入端与所述的全屏加权平均值计算模块的输出端相连接;所述的第五比较器(1)15的第一输入端与所述的低阈值输入端相连接,所述的第五比较器(1)15的第二输入端与所述的全屏加权平均值计算模块的输出端相连接,所述的第五比较器⑶15的第三输入端与所述的高阈输入端相连接;所述的第六比较器⑶16的第一输入端与所述的全屏加权平均值计算模块的输出端相连接,所述的第六比较器⑶船的第二入端与所述的高阈值输入端相连接;所述的三输入或门01?第一输入端与所述的第四比较器0014的输出端相连接,所述的三输入或门01?第二输入端与所述的第五比较器⑶15的输出端相连接,所述的三输入或门01?第三输入端与所述的第六比较器⑶16的输出端相连接,所述的三输入或门01?的输出端与所述的第一三路复用器順X的使能端相连接;所述的第一三路复用器順X的第一输入端与所述的全屏加权平均值计算模块的输出端相连接,所述的第一三路复用器的第二输入端与所述的低阈值输入端相连接,所述的第一三路复用器的第三输入端与所述的高阈值输入端相连接,所述的第一三路复用器的第一复位端和第二复位端分别与所述的电路的系统复位端878^0相连接,所述的第一三路复用器順X的输出端与所述的第一加法器八001的第一输入端相连接;所述的第一加法器八001的第二输入端与所述的列阈值计算模块的输出端相连接,所述的第一加法器八001的输出端与所述的第三移位寄存器…的输入端相连接,所述的第三移位寄存器尺3的输出端与所述的动态阈值输出端相连接。
[0055]该阈值比较与更新模块的工作原理是:
[0056]整个阈值比较与更新模块共四个输入信号,分别是低阈值L0W_THRD,高阈值HIGH_THRD,来自全屏加权平均值计算模块的输出AVRG_THRD以及来自列阈值计算模块的输出FING_THD。第四比较器COM4的输入为低阈值L0W_THRD和AVRG_THRD,第五比较器C0M5的输入为低阈值LOW_THRD、AVRG_THRD和高阈值HIGH_THRD,第六比较器C0M6的输入为高阈值HIGH_THRD和AVRG_THRD ;第四比较器COM4、第五比较器C0M5、第六比较器C0M6的输出均连接到三输入或门0R,三输入或门OR的输出端与第一三路复用器MUX的使能端相连接。第一三路复用器MUX的输入分别为LOW_THRD、AVRG_THRD和HIGH_THRD,其复位端连接电路的系统复位端sys_rst ;若第四比较器COM4的比较结果为AVRG_THRD小于L0W_THRD,则第一三路复用器MUX使能,其输出端选择L0W_THRD作为其输出值;若第五比较器C0M5的比较结果为AVRG_THRD大于L0W_THRD且AVRG_THRD小于HIGH_THRD,则第一三路复用器MUX使能,其输出端选择AVRG_THRD作为其输出值;若第六比较器C0M6的比较结果为AVRG_THRD大于HIGH_THRD,则第一三路复用器MUX使能,其输出端选择HIGH_THRD作为其输出值。第一加法器ADDl的输入端连接第一三路复用器MUX的输出端和来自列阈值计算模块的输出FING_THD,该两者相加作为第一加法器ADDl的输出。第三移位寄存器R3把第一加法器ADDl的输出右移I位后输出,相当于求了第一三路复用器MUX输出值和FING_THD之和的平均值,最后把该平均值作为整个电路的输出,即完成比较和更新后的新阈值。
[0057]其中,此处的高阈值HIGH_THRD和低阈值L0W_THRD根据本发明所设计的算法,均为I字节(8位)的变量,即其理论范围均为O?255 ;与此同时,根据电路实际调试结果,其工程经验值如下:高阈值HIGH_THRD取手指按压的最大采样值,为150?240 ;低阈值L0W_THRD取手指按压最大采样值的1/3,即50?80。
[0058]采用了该发明中的触控装置中动态阈值调整电路,与现有技术相比,具有以下有益效果:
[0059]本发明的触控装置中动态阈值调整电路,能够根据不同的应用场合实时动态地更新触控节点采样阈值,提高触摸检测结果的可靠性;本发明的触控装置中动态阈值调整电路,结构简单,应用范围广泛。
[0060]在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。
【权利要求】
1.一种触控装置中动态阈值调整电路,其特征在于,所述的调整电路的输入端包括每列的触控检测节点的采样值输入端、全屏的触控检测节点的采样值输入端、低阈值输入端以及高阈值输入端,所述的调整电路的输出端为所述的动态阈值输出端;所述的电路包括: 列阈值计算模块,用以根据每列的触控检测节点的采样值与所述的低阈值更新每列的列阈值; 全屏加权平均值计算模块,用以根据全屏的触控检测节点的采样值与低阈值更新全屏加权平均值;以及 阈值比较与更新模块,用以根据更新后的列阈值、更新后的全屏加权平均值、低阈值以及高阈值更新全屏阈值。
2.根据权利要求1所述的触控装置中动态阈值调整电路,其特征在于,所述的列阈值计算模块包括: 列平均值计算单元,用以根据每列的触控检测节点的采样值与所述的低阈值的差值计算得到列平均值; 列加权平均值计算单元,用以根据所述的列平均值计算得到列加权平均值;以及 列阈值更新单元,用以当所述的列加权平均值大于所述的低阈值(LOW_THRD)时,将所述的列加权平均值设置为更新后的列阈值;以及当所述的列加权平均值不大于所述的低阈值时,将所述的低阈值设置为更新后的列阈值。
3.根据权利要求2所述的触控装置中动态阈值调整电路,其特征在于,所述的列平均值计算单元包括第一比较器(C0M1)、第一二路复用器(MUX1)、第一累加器(ACC1)、第一计数器(C1)、第一减法器(S1)以及第一除法器(D1);所述的第一比较器(C0M1)的第一输入端、第一减法器(S1)的第一输入端分别与所述的低阈值(LOW_THRD)输入端相连接;所述的第一比较器(C0M1)的第二输入端、第一减法器(S1)的第二输入端分别与所述的每列的触控检测节点的采样值输入端相连接;所述的第一二路复用器(MUX1)的第一输入端与所述的第一减法器(S1)的输出端相连接,所述的第一二路复用器(MUX1)的第二输入端接地,所述的第一二路复用器(MUX1)的复位端与所述的电路的系统复位端(sys_rst)相连接,所述的第一二路复用器(MUX1)的使能端与所述的第一比较器(C0M1)的输出端相连接;所述的第一累加器(ACC1)的第一输入与所述的第一二路复用器(MUX1)的输出端相连接;所述的第一累加器(ACC1)的输出端分别与所述的第一累加器(ACC1)的第二输入端以及所述的第一除法器(D1)的第一输入端相连接;所述的第一计数器(C1)的复位端与电路的系统复位端(sys_rst)相连接,所述的第一计数器(C1)的时钟端与电路的系统时钟端(sys_clk)相连接,所述的第一计数器(C1)的使能端与第一比较器(C0M1)的输出端相连接,所述的第一计数器(C1)的输出端与所述的第一除法器(D1)的第二输入端相连接;所述的第一除法器(D1)的输出端与所述的列加权平均值计算单元的输入端相连接。
4.根据权利要求2所述的触控装置中动态阈值调整电路,其特征在于,所述的列加权平均值计算单元包括第一乘法器(Ml)以及第一移位寄存器(R1),所述的第一乘法器(Ml)的第一输入端与列阈值比例(COL_RATE)相连接,所述的第一乘法器(Ml)的第二输入端与所述的列平均值计算单元的输出端相连接,所述的第一乘法器(Ml)的输出端与所述的第一移位寄存器(R1)的输入端相连接,所述的第一移位寄存器(R1)的输出端与所述的列阈值更新单元的输入端相连接。
5.根据权利要求2所述的触控装置中动态阈值调整电路,其特征在于,所述的列阈值更新单元包括第二比较器(COM2)以及第二二路复用器(MUX2);所述的第二比较器(COM2)的第一输入端、第二二路复用器(MUX2)的第一输入端分别与所述的列加权平均值计算单元的输出端相连接,所述的第二比较器(COM2)的第二输入端、第二二路复用器(MUX2)的第二输入端分别与所述的低阈值(LOW_THRD)输入端相连接,所述的第二比较器(COM2)的输出端与所述的第二二路复用器(MUX2)的使能端相连接;所述的第二二路复用器(MUX2)的复位端与所述的电路的系统复位端(sys_rst)相连接,所述的第二二路复用器(MUX2)的输出端与所述的阈值比较与更新模块的输入端相连接。
6.根据权利要求1所述的触控装置中动态阈值调整电路,其特征在于,所述的全屏加权平均值计算模块包括: 全屏平均值计算单元,用以根据全屏的触控检测节点的采样值与所述的低阈值的差值计算得到全屏平均值;以及 全屏加权平均值计算单元,用以根据所述的全屏平均值计算得到全屏加权平均值。
7.根据权利要求6所述的触控装置中动态阈值调整电路,其特征在于,所述的全屏平均值计算单元包括第三比较器(COM3)、第三二路复用器(MUX3)、第二累加器(ACC2)、第二计数器(C2)、第二减法器(S2)以及第二除法器(D2);所述的第三比较器(COM3)的第一输入端、第二减法器(S2)的第一输入端分别与所述的低阈值(LOW_THRD)输入端相连接;所述的第三比较器(COM3)的第二输入端、第二减法器(S2)的第二输入端分别与所述的每列的触控检测节点的采样值输入端相连接;所述的第三二路复用器(MUX3)的第一输入端与所述的第二减法器(S2)的输出端相连接,所述的第三二路复用器(MUX3)的第二输入端接地,所述的第三二路复用器(MUX3)的复位端与所述的电路的系统复位端(sys_rst)相连接,所述的第三二路复用器(MUX3)的使能端与所述的第三比较器(COM3)的输出端相连接;所述的第二累加器(ACC2)的第一输入与所述的第三二路复用器(MUX3)的输出端相连接;所述的第二累加器(ACC2)的输出端分别与所述的第二累加器(ACC2)的第二输入端以及所述的第二除法器(D2)的第一输入端相连接;所述的第二计数器(C2)的复位端与电路的系统复位端(sys_rst)相连接,所述的第二计数器(C2)的时钟端与电路的系统时钟端(sys_clk)相连接,所述的第二计数器(C2)的使能端与第三比较器(COM3)的输出端相连接,所述的第二计数器(C2)的输出端与所述的第二除法器(D2)的第二输入端相连接;所述的第二除法器(D2)的输出端与所述的全屏加权平均值计算单元的输入端相连接。
8.根据权利要求6所述的触控装置中动态阈值调整电路,其特征在于,所述的全屏加权平均值计算单元包括第二乘法器(M2)以及第二移位寄存器(R2),所述的第二乘法器(M2)的第一输入端与全屏阈值比例(ALL_RATE)相连接,所述的第二乘法器(M2)的第二输入端与所述的全屏平均值计算单元的输出端相连接,所述的第二乘法器(M2)的输出端与所述的第二移位寄存器(R2)的输入端相连接,所述的第二移位寄存器(R2)的输出端与所述的阈值比较与更新模块的输入端相连接。
9.根据权利要求1所述的触控装置中动态阈值调整电路,其特征在于,所述的阈值比较与更新模块包括第四比较器(COM4)、第五比较器(C0M5)、第六比较器(C0M6)、第一三路复用器(MUX)、第一加法器(ADD1)、三输入或门(OR)以及第三移位寄存器(R3);所述的第四比较器(COM4)的第一输入端与所述的低阈值(LOW_THRD)输入端相连接,所述的第四比较器(COM4)的第二输入端与所述的全屏加权平均值计算模块的输出端相连接;所述的第五比较器(C0M5)的第一输入端与所述的低阈值(LOW_THRD)输入端相连接,所述的第五比较器(C0M5)的第二输入端与所述的全屏加权平均值计算模块的输出端相连接,所述的第五比较器(C0M5)的第三输入端与所述的高阈值(HIGH_THRD)输入端相连接;所述的第六比较器(C0M6)的第一输入端与所述的全屏加权平均值计算模块的输出端相连接,所述的第六比较器(C0M6)的第二入端与所述的高阈值(HIGH_THRD)输入端相连接;所述的三输入或门(OR)第一输入端与所述的第四比较器(COM4)的输出端相连接,所述的三输入或门(OR)第二输入端与所述的第五比较器(C0M5)的输出端相连接,所述的三输入或门(OR)第三输入端与所述的第六比较器(C0M6)的输出端相连接,所述的三输入或门(OR)的输出端与所述的第一三路复用器(MUX)的使能端相连接;所述的第一三路复用器(MUX)的第一输入端与所述的全屏加权平均值计算模块的输出端相连接,所述的第一三路复用器(MUX)的第二输入端与所述的低阈值(L0W_THRD)输入端相连接,所述的第一三路复用器(MUX)的第三输入端与所述的高阈值(HIGH_THRD)输入端相连接,所述的第一三路复用器(MUX)的第一复位端和第二复位端分别与所述的电路的系统复位端(sys_rSt)相连接,所述的第一三路复用器(MUX)的输出端与所述的第一加法器(ADD1)的第一输入端相连接;所述的第一加法器(ADD1)的第二输入端与所述的列阈值计算模块的输出端相连接,所述的第一加法器(ADD1)的输出端与所述的第三移位寄存器(R3)的输入端相连接,所述的第三移位寄存器(R3)的输出端与所述的动态阈值输出端相连接。
【文档编号】G06F3/041GK104461136SQ201410725074
【公开日】2015年3月25日 申请日期:2014年12月3日 优先权日:2014年12月3日
【发明者】华晶, 刘新华, 陈长华, 赵海 申请人:无锡华润矽科微电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1