一种镍基单晶材料统一的拉压不对称微观模型的建立方法与流程

文档序号:11155666阅读:678来源:国知局
一种镍基单晶材料统一的拉压不对称微观模型的建立方法与制造工艺
本发明涉及航空材料
技术领域
,具体涉及一种确定航空发动机热端部件材料初始屈服强度的细观模型的建立方法。
背景技术
:镍基单晶高温合金由于其优异的高温力学性能,已广泛应用于航空发动机的高温热端部件。镍基单晶高温合金的微观结构由两部分构成:固溶强化的基体相γ相和LI2型晶体结构的强化相γ'相,由于γ'相的存在,这类合金都具有反常的力学特性:(1)屈服反常,在峰值温度点以前,屈服强度随温度的升高而升高;(2)拉压非对称性,拉伸和压缩条件下的屈服强度不一样;(3)力学性能的方向性,单向拉伸/压缩的力学性能、疲劳力学性能和蠕变力学性能等都和材料的加载方向密切相关。镍基单晶高温合金的屈服行为作为其最重要的力学行为之一,综合反映了上述的力学反常特性。目前针对镍基单晶高温合金的初始屈服行为研究,主要有两大类模型:宏观唯像模型和基于滑移机理的晶体学模型。目前,以上两种模型都不能实现单晶材料所有加载方向初始屈服强度的预测。事实上,镍基单晶高温合金的力学性能与其变形过程中激活的滑移系类型密切相关。资料研究表明,镍基单晶高温合金发生变形时内部滑移系的竞争关系与温度和加载方向密切相关,低温时,八面体滑移系占主导地位,高温时,立方体滑移系占主导地位,中等温度区时,八面体滑移系和立方体滑移同时存在;在中温区内,加载方向接近[001]时,八面体滑移占主导地位,而当加载方向接近[-111]时,立方体滑移系占主导地位,当加载方向在[011]附近时,两种滑移系同时作用。技术实现要素:发明目的:针对上述现有技术,提出一种镍基单晶材料统一的拉压不对称微观模型的建立方法,能够预测中温区镍基单晶材料在所有加载方向下的初始屈服强度。技术方案:一种镍基单晶材料统一的拉压不对称微观模型的建立方法,包括如下步骤:1),获取镍基单晶材料中温区沿[001]、[012]和[-111]方向单调拉伸的初始屈服强度,镍基单晶材料沿[001]方向单调压缩的初始屈服强度,以及镍基单晶材料的其它四组任意不同方向单调拉伸或者单调压缩的初始屈服强度;2),基于LCP模型的拉压不对称理论,考虑不同加载方向下不同滑移系之间的竞争关系,建立统一的拉压不对称微观模型,包括如下步骤:21),建立不同滑移系占主导地位时的细观拉压不对称模型:当八面体滑移系占主导地位时,八面体滑移系上分切应力表示为:S1σoct=Tn+A0exp[(-H0+A2S2σoct+δA3S3σoct)/RT]式中,S1表示八面体滑移系上的Schmid因子,其滑移面的法向为(111),滑移方向为,并记为Tn为当八面体滑移系占主导地位时与温度相关的分切应力;H0为交滑移激活能;S2表示立方体滑移系上的Schmid因子,其滑移面的法向为(010),滑移方向为并记为S3表示十二面体滑移系上的Schmid因子,其滑移面的法向为(111),滑移方向为并记为R为波尔兹曼常数,T为试验温度;A0、A2、A3为材料常数;δ表示材料的受载状态,拉伸状态时,δ=1,压缩状态时,δ=-1;σoct为当八面体滑移系占主导地位时的初始屈服应力,其中,参数b1=1/[Tn+A0exp(-H0/RT)],参数b2=(-b1A0A2/RT)exp(-H0/RT),参数b3=(-b1A0A3/RT)exp(-H0/RT);当立方体滑移系占主导地位时,立方体滑移系上分切应力表示为:S2σcub=Tn'+A4exp[(-H0+A5)/RT]式中,S2表示立方体滑移系上的Schmid因子,其滑移面的法向为(010),滑移方向为并记为Tn'为当立方体滑移系占主导地位时与温度相关的分切应力;H0为交滑移激活能;R为波尔兹曼常数,T为试验温度;A4、A5为材料常数;σcub为当立方体滑移系占主导地位时的初始屈服应力,其中,参数b4=Tn'+A4exp[(-H0+A5)/RT];22),建立滑移控制因子:定义滑移控制因子SCF表征晶体变形过程中内部滑移系的竞争关系:SCF=f(T,N)其中,T表示试验温度;N表示立方体滑移系与八面体滑移系的Schmid因子之比,当八面体滑移系占主导地位时,滑移控制因子SCF记为SCFoct:当立方体滑移系占主导地位时,滑移控制因子SCF记为SCFcub:上式中,D1、D2、D3、D4为与温度相关材料常数;23),建立统一的拉压不对称细观模型:在滑移控制因子SCF建立的基础上,镍基单晶材料的初始屈服应力σ表示为:σ=SCFoctσoct+SCFcubσcub式中,σoct表示当八面体滑移系占主导地位时的初始屈服应力,σcub表示当立方体滑移系占主导地位时的初始屈服应力;将不同滑移系占主导地位时的屈服应力代入上式,得统一拉压非对称细观模型为:3),通过软件计算得到统一拉压不对称微观模型的模型参数。进一步的,所建立的统一拉压非对称细观模型模型参数的识别方法为:所述统一拉压不对称微观模型的模型参数包括D1、D2、D3、D4、b1、b2、b3、b4,确定方法为:(1)b1,b3的确定:由步骤1)中[001]方向的单向拉伸和压缩试验得到,八面体滑移系占主导地位时,SCFoct=1,SCFcub=0,并且S2(010)[001]=0;根据统一拉压非对称细观模型得到:其中,σt[001]和σc[001]分别表示[001]方向的单向拉伸和压缩的初始屈服强度,S1(111)[001]和S3(111)[001]分别表示[001]方向八面体滑移系和十二面体滑移系的Schmid因子,解得(2)b2,b4的确定:b2,b4分别由[012]方向和[-111]方向的单向拉伸试验确定;其中,和σt[012]分别表示[-111]和[012]方向的拉伸初始屈服强度,S1(111)[012]、S2(010)[012]、S3(111)[012]分别表示对应滑移系和加载方向上的Schmid因子,且S3(111)[012]=0,解得,(3)D1、D2、D3、D4的确定:D1、D2、D3、D4由八面体滑移系和立方体滑移系共同作用区单调拉伸和单调压缩的初始屈服强度经Matlab非线性拟合获得。有益效果:本发明的一种镍基单晶材料统一的拉压不对称微观模型的建立方法,本发明建立的模型考虑了晶体变形过程中八面体滑移系和立方体滑移系之间的竞争关系,克服了已有屈服强度预测模型预测范围小的缺点,可以准确地预测镍基单晶材料在不同加载方向不同温度下的初始屈服强度,真实反映镍基单晶材料的拉压不对称性。为已有的各种材料模型提供初始的材料数据,丰富了镍基单晶材料的材料数据库,对于进一步分析镍基单晶材料的强度和疲劳提供了基础。附图说明图1为本发明方法流程图;图2为PWA1480单晶材料593℃下沿不同方向拉伸的初始屈服强度试验结果和模拟结果;图3为PWA1480单晶材料593℃下沿不同方向压缩的初始屈服强度试验结果和模拟结果;图4为RENEN4单晶材料760℃下沿不同方向拉伸和压缩的初始屈服强度试验结果和模拟结果。具体实施方式下面结合附图对本发明做更进一步的解释。如图1所示,一种镍基单晶材料统一的拉压不对称微观模型的建立方法,包括如下步骤:1),从PWA1480单晶材料母材以及RENEN4单晶材料母材上分别取材,沿不同方向切割加工出φ5mm的标准拉伸试样进行高温静力拉伸试验,沿不同方向切割加工出φ13mm的圆形标准压缩试样进行高温静力压缩试验。试验条件见表1,获取PWA1480材料在593℃下以及RENEN4材料在760℃下,沿[001]、[012]和[-111]方向单调拉伸的初始屈服强度,镍基单晶材料沿[001]方向单调压缩的初始屈服强度,以及镍基单晶材料的其它四组任意不同方向单调拉伸或者单调压缩的初始屈服强度。表12),基于LCP模型的拉压不对称理论,考虑不同加载方向下不同滑移系之间的竞争关系,建立统一的拉压不对称微观模型,包括如下步骤:21),建立不同滑移系占主导地位时的细观拉压不对称模型:当八面体滑移系占主导地位时,八面体滑移系上分切应力表示为:S1σoct=Tn+A0exp[(-H0+A2S2σoct+δA3S3σoct)/RT]式中,S1表示八面体滑移系上的Schmid因子,其滑移面的法向为(111),滑移方向为,并记为Tn为当八面体滑移系占主导地位时与温度相关的分切应力;H0为交滑移激活能;S2表示立方体滑移系上的Schmid因子,其滑移面的法向为(010),滑移方向为并记为S3表示十二面体滑移系上的Schmid因子,其滑移面的法向为(111),滑移方向为并记为R为波尔兹曼常数,T为试验温度;A0、A2、A3为材料常数,通过拟合得到;δ表示材料的受载状态,拉伸状态时,δ=1,压缩状态时,δ=-1;σoct为当八面体滑移系占主导地位时的初始屈服应力,其中,参数b1=1/[Tn+A0exp(-H0/RT)],参数b2=(-b1A0A2/RT)exp(-H0/RT),参数b3=(-b1A0A3/RT)exp(-H0/RT)。当立方体滑移系占主导地位时,立方体滑移系上分切应力表示为:S2σcub=Tn'+A4exp[(-H0+A5)/RT]式中,S2表示立方体滑移系上的Schmid因子,其滑移面的法向为(010),滑移方向为并记为Tn'为当立方体滑移系占主导地位时与温度相关的分切应力;H0为交滑移激活能;R为波尔兹曼常数,T为试验温度;A4、A5为材料常数;σcub为当立方体滑移系占主导地位时的初始屈服应力,其中,参数b4=Tn'+A4exp[(-H0+A5)/RT]。22),建立滑移控制因子:定义滑移控制因子SCF表征晶体变形过程中内部滑移系的竞争关系:SCF=f(T,N)其中,T表示试验温度;N表示立方体滑移系与八面体滑移系的Schmid因子之比,当八面体滑移系占主导地位时,滑移控制因子SCF记为SCFoct:当立方体滑移系占主导地位时,滑移控制因子SCF记为SCFcub:上式中,D1、D2、D3、D4为与温度相关材料常数,通过拟合得到。23),建立统一的拉压不对称细观模型:在滑移控制因子SCF建立的基础上,镍基单晶材料的初始屈服应力σ表示为:σ=SCFoctσoct+SCFcubσcub式中,σoct表示当八面体滑移系占主导地位时的初始屈服应力,σcub表示当立方体滑移系占主导地位时的初始屈服应力;将不同滑移系占主导地位时的屈服应力代入上式,得统一拉压非对称细观模型为:3),通过软件计算得到统一拉压不对称微观模型的模型参数,模型参数包括D1、D2、D3、D4、b1、b2、b3、b4,确定方法为:(1)b1,b3的确定:由步骤1)中[001]方向的单向拉伸和压缩试验得到,八面体滑移系占主导地位时,SCFoct=1,SCFcub=0,并且S2(010)[001]=0;根据统一拉压非对称细观模型得到:其中,σt[001]和σc[001]分别表示[001]方向的单向拉伸和压缩的初始屈服强度,S1(111)[001]和S3(111)[001]分别表示[001]方向八面体滑移系和十二面体滑移系的Schmid因子,解得(2)b2,b4的确定:b2,b4分别由[012]方向和[-111]方向的单向拉伸试验确定;其中,和σt[012]分别表示[-111]和[012]方向的拉伸初始屈服强度,S1(111)[012]、S2(010)[012]、S3(111)[012]分别表示对应滑移系和加载方向上的Schmid因子,且S3(111)[012]=0,解得,(3)D1、D2、D3、D4的确定:D1、D2、D3、D4由八面体滑移系和立方体滑移系共同作用区单调拉伸和单调压缩的初始屈服强度经Matlab非线性拟合获得。本实施例中,利用此法求得的镍基单晶材料统一拉压不对称细观模型的模型参数如表2所示。表2材料参数b1b2b3b4D1D2D3D4PWA1480(593℃)2.12e-31.64e-4-3.4e-42.355e-3120.915101.125RENEN4(760℃)2.78e-33.86e-4-3.74e-42.56e-3151.0219.81.02本实施例对PWA1480和RENEN4分别建立统一的拉压不对称细观模型,用PWA1480和RENEN4在不同加载方向下单调拉伸和压缩的初始屈服强度对模型进行验证。将模型预测的初始屈服强度与试验结果进行对比,见图2至图4,发现模拟结果和试验结果吻合良好,验证了模型的可靠性。本发明开发的镍基单晶材料统一拉压不对称细观模型在已有LCP模型拉压不对称的理论基础上,考虑了不同加载方向下材料变形过程中不同滑移系之间的竞争关系,提出滑移控制因子的概念并给出其具体形式,真实反映镍基单晶材料变形过程的细观机理,所以本专利开发的新模型较LCP模型适用范围更广,预测精度更高。以上所述仅是本发明的优选实施方式,应当指出,对于本
技术领域
的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1