一种计算双面组件阵列排布背面辐射量的方法与流程

文档序号:13704428阅读:316来源:国知局

本发明涉及一种计算双面组件阵列排布背面辐射量的方法,属于光伏系统设计技术领域。



背景技术:

随着光伏组件发电技术越发成熟,在部分国家和地区,光伏组件发电已经可以实现平价上网,但是,追求更高的转换效率,更低的度电成本是光伏行业永恒的追求和强大的驱动力。近年来,双面组件以其结构及两面皆可发电的特性受到广泛关注,与传统光伏组件相比,双面组件采用了双面玻璃的结构,具有强抗pid性和强耐磨性等优势。但是,在双面组件的实际应用中,双面组件的发电量并没有达到理想预期,特别是组件背面的发电量,除却电池本身技术上的一些影响外,其安装方式和安装环境也是影响组件背面发电量的重要因素。

直接影响双面组件背面的发电量因素的主要是组件背面辐射量的大小,而影响双面组件背面辐射量的因素主要有安装地散射辐射与直射辐射的比例、组件安装方位角、组件倾角、组件高度、组件安装场地的反射率和组件间距这6个因素。由于双面组件背面辐射量的影响因素较多,因此建立研究双面组件背面辐射量的数学模型,对优化双面组件的安装方式,进一步最大化双面组件发电量具有非常重要的意义。



技术实现要素:

本发明所要解决的问题是克服现有技术的缺陷,提供一种计算双面组件阵列排布背面辐射量的方法,基于辐射角系数法和组件阵列排布的空间几何关系,采用perez半球辐照模型,建立计算双面组件阵列排布背面辐射量的数学模型。

为解决上述技术问题,本发明提供一种计算双面组件阵列排布背面辐射量的方法,包括以下步骤:

1)计算太阳直射光入射在地面反射到单排双面组件背面的瞬时辐射量;

2)计算散射光入射在地面反射到单排双面组件背面的瞬时辐射量;

3)计算空中散射入射在单排双面组件背面的瞬时辐射量;

4)将所述步骤1)、步骤2)、步骤3)的瞬时辐射量相加得到单排双面组件背面接收到的瞬时总辐射量;

5)对双面组件的头排、尾排接收到的瞬时辐射量进行修正;

6)计算整个双面组件背面一天接收到的总辐射量。

前述的步骤1)计算太阳直射光入射在地面反射到单排双面组件背面的瞬时辐射量,包括以下步骤:

1-1)判断太阳直射光在地面是否形成“光亮区”,当太阳直射光相对于双面组件正面的方位角的绝对值小于90°,即双面组件正面迎着太阳光入射方向时,其入射极限角β1为:

其中,l代表组件阵列安装的宽度,a代表组件安装倾角,γ代表组件正面方位角,d代表组件安装间距;

如果太阳高度角αs大于入射极限角β1,则直射光在双面组件前、后排地面形成“光亮区”,反之则地面无太阳直射光入射;

当太阳直射光相对于双面组件正面的方位角的绝对值大于90°,即双面组件正面背对着太阳光入射方向时,其入射极限角β2为:

如果太阳高度角αs大于入射极限角β2,则直射光在双面组件前、后排地面形成“光亮区”,反之则地面无太阳直射光入射;

1-2)当直射光在地面形成“光亮区”时,假设地面反射出去的辐射光是各向同性的,根据视角系数法模型求出单排双面组件背面接收到太阳直射光经地面反射过来的瞬时辐射量。

前述的对于太阳直射光相对于双面组件正面的方位角的绝对值大于90°的情况,当太阳高度角大于入射极限角但小于双面组件安装倾角时,太阳直射光在双面组件前、后排地面形成“光亮区”,只有双面组件后排地面的“光亮区”能反射辐射光到组件背面。

前述的2)计算散射光入射在地面反射到单排双面组件背面的瞬时辐射量时,假设双面组件阵列排布下的整个地面都接收到来自空中的散射辐射,且地面上所接收到的散射光的辐射强度是一致的,并且地面反射出去的辐射是各向同性的,则能反射到双面组件背面的地面面积计算式s如下:

其中,m为双面组件阵列的长度,a代表组件安装倾角,l代表组件阵列安装的宽度,d代表组件安装间距,h代表组件的安装高度;

根据视角系数模型求出单排双面组件背面接收到散射光经地面反射过来的瞬时辐射量。

前述的视角系数模型为:

i2in,j=i1out,j·f1→2,

其中,j=1,2,i2in,1为单排双面组件背面接收到太阳直射光经地面反射过来的瞬时辐射量,i2in,2为单排双面组件背面接收到散射光经地面反射过来的瞬时辐射量,i1out,1为地面反射出的总辐射量,i1out,2为地面散射出的总辐射量,

f1→2为组件背面相对于地面的视角系数,

其中,a1为地面“光亮区”面积,a2为双面组件背面面积,s为双面组件背面上的点跟地面“光亮区”上点的连线,θ1为连线s与地面法线之间的夹角,θ2为连线s与组件背面法线之间的夹角;

由于直射光在双面组件前、后排地面形成“光亮区”,所以,分别计算前、后排地面“光亮区”的面积,进而求得组件背面相对于前、后排地面的视角系数,然后,再分别计算前、后排反射过来的瞬时辐射量,相加得到单排双面组件背面接收到直射光经地面反射过来的瞬时辐射量;

但是对于只有双面组件后排地面的“光亮区”能反射辐射光到组件背面的情况,则只需求解后排地面“光亮区”的面积,进而求得组件背面相对于后排地面的视角系数,再计算后排反射过来的瞬时辐射量,即单排双面组件背面接收到直射光经地面反射过来的瞬时辐射量。

对于散射光入射在地面反射到双面组件背面的情况,将s作为地面“光亮区”面积,求解视角系数。

前述的步骤3)采用perez半球散射辐射模型,假设水平散射辐射以跟水平夹角为6.5°的角度入射至双面组件背面,则单排双面组件接收到的空中散射辐射量i3为:

i3=idiffuse·f2·d·m·sinζ,

其中,idiffuse为该时刻空中散射辐射强度,d为双面组件安装间距,m为双面组件阵列的长度,ζ为水平带系数角,

f2为水平亮度系数,计算公式为:

系数f21、f22、f23由查表得出。

前述的步骤5)对双面组件的头排、尾排接收到的瞬时辐射量进行修正具体为:

假设双面组件向南安装,对于头排,即最靠近南边的双面组件,在计算太阳直射光经地面反射至双面组件背面瞬时辐射量时,头排的“光亮区”面积取(-h·tana,h·sina·cosγ),其中,h代表组件的安装高度,a代表组件的安装倾角,γ代表组件正面的方位角;

对于尾排,太阳直射光在尾排后排形成的“光亮区”的面积与散射光入射在地面反射到尾排的面积一样,视角系数取为

空中散射入射至尾排背面的瞬时辐射量为:

i3=idiffuse·f2·m·l·sina。

前述的假设双面组件一天从早上6点到下午18点都能接收太阳辐射,累积计算各个小时的瞬时辐射总量,即得到该双面组件阵列排布下单排双面组件背面一天所接收到的总辐射量i:

i=3600·∑(is1+is2+...is13)

其中,is1、is2...is13为上午6点到下午18点之间13个小时,每个小时平均太阳高度角下双面组件背面接收到的瞬时总辐射量;

最后,将头、尾两排和中间所有排数双面组件背面一天中接收到的总辐射量累加起来,即可得到整个阵列排布下双面组件的背面辐射量。

本发明的有益效果为:

本发明方法考虑了双面组件阵列排布的安装倾角、安装高度、安装间距、安装方位角和空中直射与散射强度比例等影响因素,能够较为准确地计算出双面组件背面接收到的总辐射量,显著提高了双面组件背面辐射量的计算准确性,对优化双面组件安装方式有着重要意义。

附图说明

图1是直射光入射于地面反射至双面组件背面示意图;

图2是散射光于地面反射至双面组件背面示意图;

图3是水平散射光直接入射至双面组件背面示意图。

具体实施方式

下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。

本发明提供了一种计算双面组件阵列排布背面辐射量的方法,包括以下步骤:

(1)如今的太阳能电池为了更大效率地利用太阳光,在组件的表面都涂上了抗反射涂层,从组件表面反射出的太阳光非常少可忽略不计,因此,阵列排布的双面组件背面辐射来源主要有直射光入射在地面反射到组件背面的辐射,散射光入射在地面反射到组件背面的辐照,以及空中散射入射在双面组件背面的辐射这三个部分。在计算整个组件背面辐射量的时候,也是将其这三部分辐射分开计算,最后再累加起来得到整个背面受到的瞬时总辐射量。

(2)直射光入射在地面反射到双面组件背面的光路图参见图1。

判断直射光在地面是否形成“光亮区”,当太阳直射光相对于双面组件正面的方位角的绝对值小于90°,即组件正面迎着太阳光入射方向时,其入射极限角为:

其中,l代表组件阵列安装的宽度,a代表组件安装倾角,γ代表组件正面方位角,d代表组件安装间距;

如果太阳高度角αs大于入射极限角,则直射光在双面组件前、后排地面形成“光亮区”,反之则地面无直射光入射。

(3)当太阳直射光相对于双面组件正面的方位角的绝对值大于90°,即组件正面背对着太阳光入射方向时,其入射极限角为:

其中,l代表组件阵列安装的宽度,a代表组件安装倾角,γ代表组件正面方位角,d代表组件安装间距;

如果太阳高度角αs大于入射极限角,则直射光在双面组件前、后排地面形成“光亮区”,反之则地面无直射光入射。

(4)对于太阳直射光相对于双面组件正面的方位角的绝对值大于90°的情况,当太阳高度角大于入射极限角但小于双面组件安装倾角时,直射光在双面组件前、后排地面形成“光亮区”,只有双面组件后排地面的“光亮区”能反射辐射光到组件背面。

(5)当直射光在地面形成“光亮区”时,假设地面反射出去的辐射光是各向同性的,根据视角系数法模型求出单排双面组件背面接收到直射光于地面反射过来的瞬时辐射量。

(6)假设双面组件阵列排布下的整个地面都接收到来自空中的散射辐射,且地面上所接收到的散射光的辐射强度是一致的,并且地面反射出去的辐射是各向同性的。这样,能反射到双面组件背面的地面面积就可以根据组件的安装方式简单求出,与每个时刻太阳高度角没有关系。对于单排双面组件,能接收散射并反射到组件背面的地面面积为:

其中,m为双面组件阵列的长度。

同样的,也根据视角系数模型求出单排双面组件背面接收到散射光经地面反射过来的瞬时辐射量。散射光入射在地面反射到组件背面的光路图如图2所示。

步骤(5)和步骤(6)中的视角系数模型为:

i2in,j=i1out,j·f1→2,

其中,j=1,2,i2in,1为双面组件背面接收到直射光经地面反射过来的瞬时辐射量,i2in,2为双面组件背面接收到散射光经地面反射过来的瞬时辐射量,i1out,1为地面反射出的总辐射量,i1out,2为地面散射出的总辐射量,

f1→2为组件背面相对于地面的视角系数,

其中,a1为地面“光亮区”面积,a2为双面组件背面面积,s为双面组件背面上的任意点跟地面“光亮区”上任意点的连线,θ1为连线s与地面法线之间的夹角,θ2为连线s与组件背面法线之间的夹角。

由于直射光在双面组件前、后排地面形成“光亮区”,所以,分别计算前、后排地面“光亮区”的面积,进而求得组件背面相对于前、后排地面的视角系数,然后,再分别计算前、后排反射过来的瞬时辐射量,相加得到双面组件背面接收到直射光经地面反射过来的瞬时辐射量。

但是对于只有双面组件后排地面的“光亮区”能反射辐射光到组件背面的情况,则只需求解后排地面“光亮区”的面积,进而求得组件背面相对于后排地面的视角系数,再计算后排反射过来的瞬时辐射量,即为双面组件背面接收到直射光经地面反射过来的瞬时辐射量。

对于散射反射,将s作为地面“光亮区”面积,求解视角系数。

(7)阵列排布的双面组件背面虽然无法像正面一样接收到大量的散射光照射,但是位于组件背面的上表面仍然能接收到空中的散射。空中散射入射在双面组件背面的光路图如图3所示,使用perez半球散射辐射模型,取水平带系数角为6.5°,即perez模型中的水平散射辐射以跟水平夹角为6.5°的角度入射至双面组件背面,计算单排双面组件接收到的空中散射辐射量i3为:

i3=idiffuse·f2·d·m·sinζ,

其中,idiffuse为该时刻空中散射辐射强度,可通过地面气象站或辐照仪测出,d为双面组件安装间距,m为双面组件阵列的长度,ζ为水平带系数角,

f2为水平亮度系数,计算公式为:

其中,m为大气质量,取1.5,h0为大气层外阳光垂直辐射量,θz为天顶角。

系数f21、f22、f23可由下表1得出:

表1f21、f22、f23系数值

清晰度ξ与直射辐射、散射辐射、天顶角有关:

其中,idirect为该时刻太阳直接辐射强度。

(8)取每个小时的平均太阳高度角对应时刻的太阳直接辐射强度和散射辐射强度,计算单排双面组件接收到的空中散射辐射量i3,并分别计算该太阳高度角下双面组件背面接收到直射光于地面反射过来的瞬时辐射量i2in,1和双面组件背面接收到散射光经地面反射过来的瞬时辐射量i2in,2,累加得到单排双面组件背面所接收到瞬时总辐射量:

is=i2in,1+i2in,2+i3。

其中,太阳直接辐射强度和散射辐射强度取该地区以往气象数据中该时段的平均值。

(9)假设双面组件一天从早上6点到下午18点都能接收太阳辐射,累积计算各个小时的瞬时辐射总量,即可得到该双面组件阵列排布下单排双面组件背面一天所接收到的总辐射量:

i=3600·∑(is1+is2+...is13)

其中,is1、is2...is13为上午6点到下午18点之间13个小时,每个小时平均太阳高度角下整个双面组件背面所接收到的瞬时总辐射量。

(10)需要注意的是,步骤(5)、(6)、(7)、(8)计算的单排组件背面所接收到辐射量针对的是除头尾两排的中间排数,要计算整个双面组件阵列的背面辐射量,需对头、尾两排进行简单修正。

以双面组件向南安装为例,对于头排,即最靠近南边的双面组件,在计算直射光经地面反射至双面组件背面辐射量时,由于其头排没有了其余双面组件的遮挡,地面光亮区较宽,但在计算视角系数时,并不是所有“光亮区”地面均能反射至组件背面,如以组件最低点处作为x轴坐标的原点,正南方向为x轴的负方向,其头排组件向南方向的“光亮区”地面范围为(-h·tana,h·sina·cosγ),其中,h代表组件的安装高度,a代表组件的安装倾角,γ代表组件正面的方位角,其余计算均与上述步骤一样。

对于尾排,由于其向北方向再无组件排布,其直射光在尾排后排形成的“光亮区”与散射光入射至地面能反射至尾排的面积一样,向北均趋于无限大,其向北方向地面反射至组件背面的视角系数大小约为其中,a代表组件的安装倾角,其余计算均与上述步骤一样。且没有了后排组件的遮挡,空中水平散射光直接入射至尾排背面就不存在遮挡问题,整个背面均可接收水平散射辐射,计算公式变为:

i3=idiffuse·f2·m·l·sina。

最后,将头、尾两排和中间所有排数双面组件背面一天中接收到的辐射量累加起来,即可得到整个阵列排布下双面组件的背面辐射量。

值得注意的是,本发明方法仅针对于复数排布的双面组件阵列。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1