一种电力系统暂态稳定评估方法

文档序号:26051394发布日期:2021-07-27 15:26阅读:117来源:国知局
一种电力系统暂态稳定评估方法

本发明属于电力系统稳定分析技术领域,涉及一种电力系统暂态稳定评估方法。



背景技术:

暂态稳定性破坏是电力系统发生大规模停电事故的重要原因,如何快速准确判断电力系统的暂态稳定性是电力系统安全防控要考虑的重要问题之一。近年来,诸如支持向量机、极限学习机等数据驱动方法已经被用于分析预设故障下的电力系统暂态稳定性。一般来说,由于故障仍未发生,往往采用稳态数据作为输入特征。由于电力系统在同一种运行方式不同预设故障下的暂态稳定性不同,一般利用不同预设故障下的数据集分别构建多个机器学习模型的方式,得到多个不同预设故障下的暂态稳定评估模型。

事实上,相似预设故障下的数据集具有相似性,得到的暂态稳定评估模型也具有相似性。如果对相似的数据集分开训练不同的暂态稳定评估模型,会使相似数据集之间无法充分利用,在有限数据集下不利于模型性能的提升。本发明引入多任务学习和孪生网络,提出一种考虑多预设故障下基于多任务孪生网络的电力系统暂态稳定评估方法。采用聚类方法对不同预设故障下的数据集进行聚类,按照不同预设故障之间的相似度评价指标将不同预设故障分为不同聚类;采用多任务孪生神经网络对同一聚类中不同预设故障下的数据集进行学习,相当于有效地增加每个预设故障暂态稳定评估任务的训练数据量,有利于提高预设故障下暂态稳定评估模型的泛化能力。



技术实现要素:

本发明的目的是提出一种电力系统暂态稳定评估方法,针对预设故障下的暂态稳定评估问题,采用聚类方法对不同预设故障下的数据集进行聚类,按照相似度将数据集分为不同聚类,然后分别对同一聚类中不同预设故障对应的数据集进行训练,构建得到用于多种预设故障下暂态稳定评估的多任务孪生神经网络。通过相似数据集和多任务孪生神经网络有效提高暂态稳定评估模型的准确率。

本发明提出的电力系统暂态稳定性预测方法,首先从暂态稳定仿真数据中采集电力系统在故障发生前的数据和暂态稳定标签,通过对暂态稳定标签的统计结果和最大最小化方法得到不同预设故障下的数据集;然后,基于jaccard距离和hausdorff距离构建不同预设故障的相似性评价指标,采用聚类算法实现对不同预设故障的聚类;依次对每个聚类内的不同预设故障训练参数共享的孪生神经网络,得到用于暂态稳定评估的多任务孪生神经网络;最后,根据暂态稳定标签的统计结果,以及暂态稳定评估的多任务孪生神经网络,得到电力系统在所有f个预设故障下的暂态稳定评估结果。

本发明提出的电力系统暂态稳定评估方法,其优点是:

本发明的电力系统暂态稳定评估方法,能够考虑电力系统中多个预设故障数据集之间存在的相似性,构建了基于jaccard距离指标和hausdorff距离指标的相似性评价指标,基于相似性评价指标对不同预设故障的数据集进行聚类;然后,对同一聚类内的不同预设故障训练参数共享的多任务孪生神经网络用于暂态稳定评估,采用不同预设故障下的数据集训练参数共享的孪生神经网络,相当于增加了每个任务的训练数据量,从而提高了用于电力系统暂态稳定评估模型的泛化能力,有利于提高电力系统暂态稳定评估结果的准确性。

附图说明

图1是本发明方法的流程框图。

图2是本发明方法步骤(4-1)的示意图。

具体实施方式

本发明提出的电力系统暂态稳定性预测方法,首先从暂态稳定仿真数据中采集电力系统在故障发生前的数据和暂态稳定标签,通过对暂态稳定标签的统计结果和最大最小化方法得到不同预设故障下的数据集;然后,基于jaccard距离和hausdorff距离构建不同预设故障的相似性评价指标,采用聚类算法实现对不同预设故障的聚类;依次对每个聚类内的不同预设故障训练参数共享的孪生神经网络,得到用于暂态稳定评估的多任务孪生神经网络;最后,根据暂态稳定标签的统计结果,以及暂态稳定评估的多任务孪生神经网络,得到电力系统在所有f个预设故障下的暂态稳定评估结果。

上述电力系统暂态稳定评估方法,其流程框图如图1所示,具体下步骤如下:

(1)根据电力系统历史运行和未来规划情况并考虑电网未来可能出现的重负荷情况,设置s0种运行工况,每种运行工况下分别设置f种预设故障,利用数值计算方法对电力系统在s0种运行工况下分别发生f种预设故障后的暂态稳定性进行仿真计算,依次采集故障发生前的发电机特征、线路特征以及不同预设故障下的暂态稳定标签,根据暂态稳定标签的统计结果和最大最小归一化方法,得到数据集o0,具体步骤如下:

(1-1)对一个具有n台发电机的电力系统,根据电力系统历史运行和未来规划情况并考虑电网未来可能出现的重负荷情况,设置s0种运行工况,每种运行工况下分别设置f种预设故障,利用数值计算方法对电力系统在s0种运行工况下的分别发生f种预设故障后的暂态稳定性进行仿真计算,依次采集第k种运行工况下所有发电机在故障发生前的有功功率pgik、机端电压vgik、线路的有功功率pljk、线路的无功功率qljk和暂态稳定性标签[y1k,y2k,…,yak,…,yfk],构成原始数据集[pgik,vgik,pljk,qljk,y1k,y2k,…,yak,…,yfk],上标k表示运行工况编号,即s0种运行工况中的第k种运行工况,k=1,2,…,s0,下标i表示第i台发电机,i=1,…,n,下标j表示第j条线路,j=1,…,m,m为电力系统中的线路数,yak是电力系统在第k种运行工况下发生第a种预设故障后的暂态稳定标签,下标a表示第a种预设故障,a=1,…,f,若电力系统在第k种运行工况下发生第a种预设故障后发生暂态失稳,则yak=1,若电力系统在第k种运行工况下发生第a种预设故障后能够保持暂态稳定,则yak=0,在本发明的一个实施例中,所采用的电力系统为新英格兰10机39节点系统,发电机台数n=10,线路数m=34,运行工况数s0=5000,预设故障为在所有34条线路中间分别发生三相永久短路故障,故障切除时间为0.1秒,因此预设故障总数f=34;

(1-2)根据最大最小归一化方法,分别对步骤(1-1)的原始数据集中的pgik、vgik、pljk和qljk进行归一化处理,得到归一化后的故障发生前所有发电机的有功功率归一化后的故障发生前所有发电机母线的电压幅值归一化后的故障发生前所有线路的有功功率归一化后的故障发生前所有线路的无功功率归一化的公式为:

(1-3)依次对步骤(1-1)得到的暂态稳定标签[y1k,y2k,…,yak,…,yfk]在s0种运行工况下的取值进行统计,若第a个预设故障的暂态稳定标签yak满足说明第a个预设故障始终会使电网发生暂态失稳,则将第a个预设故障放入故障集合z1中,且不进行后续暂态稳定评估孪生神经网络的构建,若第a个预设故障的暂态稳定标签yak满足说明第a个预设故障不会引起电网发生暂态失稳,则将第a个预设故障放入故障集合z0中,且不进行后续暂态稳定评估孪生神经网络的构建,若第a个预设故障的暂态稳定标签满足说明第a个预设故障只在一部分运行工况下会使电网发生暂态失稳,则将第a个预设故障放入故障集合z2中,记z2中最终有b个预设故障,b个预设故障分别记为e(1),e(2),…,e(b),b个预设故障的暂态稳定标签分别记为ye(1)k,ye(2)k,...,ye(b)k,在本发明的一个实施例中,故障集合z1为空集,故障集合z0包含1个预设故障,z2包含33个预设故障,即b=33;

(1-4)根据步骤(1-2)的和步骤(1-3)中故障集合z2中的暂态稳定标签ye(1)k,ye(2)k,...,ye(b)k,得到经过数据预处理后的数据集o0:

(2)根据电力系统历史运行和未来规划情况并考虑电网未来可能出现的重负荷情况,对步骤(1-1)的电力系统重新设置s1×b种运行工况,考虑步骤(1-3)得到的故障集合z2中的b种预设故障,利用数值计算方法依次进行电力系统暂态稳定仿真计算,从仿真结果数据中采集故障发生前的发电机特征、线路特征以及不同预设故障下的暂态稳定性标签,根据暂态稳定标签的统计结果和步骤(1-2)的最大最小归一化方法,得到新数据集onew,具体步骤如下:

(2-1)根据电力系统历史运行和未来规划情况并考虑电网未来可能出现的重负荷情况,对步骤(1-1)的电力系统重新设置s1×b种运行工况,编号分别记为s0+1,s0+2,…,s0+s1×b,利用数值计算方法依次对电力系统在第d个运行工况下发生步骤(1-3)得到的故障集合z2中第种预设故障进行暂态稳定仿真计算,采集第d种运行工况下所有发电机在故障发生前的有功功率pgid、机端电压vgid、线路的有功功率pljd、线路的无功功率qljd和暂态稳定性标签得到数据集其中d=s0+1,s0+2,…,s0+s1×b,在本发明的一个实施例中,设定s1=3000;

(2-2)根据步骤(1-2)的最大最小归一化方法,对步骤(2-1)得到的数据集中的pgid、vgid、pljd和qljd进行归一化处理,得到第d种运行工况下,归一化后的故障发生前所有发电机的有功功率归一化后的故障发生前所有发电机母线的电压幅值归一化后的故障发生前所有线路的有功功率归一化后的故障发生前所有线路的无功功率

(2-3)根据步骤(2-2)的和步骤(2-1)的暂态稳定标签得到经过数据预处理后的新数据集onew:

(3)基于jaccard距离指标和hausdorff距离指标,计算步骤(1-3)中故障集合z2中b种预设故障之间的相似度评价指标d(e,g),其中,e表示步骤(1-3)中故障集合z2中的第e个预设故障,e=e(1),…,e(b),g表示步骤(1-3)中故障集合z2中的第g个预设故障,g=e(1),…,e(b)且g≠e,利用相似度评价指标d(e,g)以及聚类算法,对步骤(1-3)中故障集合z2中的b种预设故障进行聚类,最终得到b个聚类,其中,第l个聚类中包含预设故障的个数为p(l),l=1,…,b,具体步骤如下:

(3-1)依次计算故障集合z2中第e个预设故障在所有s0种运行工况下的暂态稳定标签向量和故障集合z2中的第g个预算故障在所有s0种运行工况下的暂态稳定标签向量之间的jaccard距离指标,jaccard距离指标的计算公式如下:

其中,m00为yek和ygk同时等于0的运行工况总数,m01为yek等于0且ygk等于1的运行工况个数,m10为yek等于1且ygk等于0的运行工况个数,m11为yek和ygk同时等于0的运行工况总数,k=1,2,…,s0;

(3-2)依次取出与故障集合z2中第e个预设故障的暂态稳定标签中yek=1相对应运行工况的特征集和与故障集合z2中第g个预设故障的暂态稳定标签中yek=1相对应运行工况的特征集计算之间的hausdorff距离,记为h(e,g),其中,h(e)表示故障集合z2中第e个预设故障的暂态稳定标签中yek=1所对应运行工况集合,h(g)表示故障集合z2中第g个预设故障的暂态稳定标签中ygk=1所对应运行工况集合;

(3-3)根据步骤(3-1)计算得到的j(e,g)和步骤(3-2)计算得到的h(e,g),计算故障集合z2中不同预设故障之间的相似度评价指标d(e,g):

d(e,g)=w1×j(e,g)+w2×h(e,g)

其中,w1和w2为人为设置的权重,并满足w1+w2=1,在本发明的一个实施例中设置为w1=0.5,w2=0.5;

(3-4)利用步骤(3-3)得到的故障集合z2中不同预设故障之间的相似度评价指标d(e,g),对故障集合z2中b种预设故障进行聚类,最终得到b个聚类,其中,第l个聚类中包含的预设故障的个数为p(l),l=1,…,b,将第l个聚类记为c(l)={q(l)1,q(l)2,…,q(l)r(l),…,q(l)p(l)},q(l)r(l)表示第l个聚类c(l)中第r(l)个预设故障在故障集合z2中的预设故障编号,r(l)=1,…,p(l),聚类算法和聚类数b可以根据人工经验指定,或依次设置聚类数量为2,3,…,b,计算不同聚类数量下聚类结果的轮廓系数,选取具有最大轮廓系数的聚类个数为最佳聚类数,在本发明的一个实施例中采用的聚类算法为谱聚类算法,利用最大轮廓系数最终确定的聚类数b=2;

(4)基于步骤(1)得到的数据集o0、步骤(2)得到的数据集onew和步骤(3)得到的b个聚类结果,训练用于暂态稳定评估的多任务孪生神经网络,具体步骤如下:

(4-1)将步骤(1-4)得到的数据集o0和步骤(2-3)得到的数据集onew按照预设故障的不同,分为b个数据集dfault(1),dfault(2),…,dfault(b),分别对应步骤(1-3)中的b个预设故障,其中,第e个预设故障对应数据集的输入特征包括归一化后的故障发生前所有发电机的有功功率归一化后的故障发生前所有发电机母线的电压幅值归一化后的故障发生前所有线路的有功功率归一化后的故障发生前所有线路的无功功率每个数据集的暂态稳定标签为yeu(e),其中,上标u(e)表示第e个预设故障对应的第u(e)个运行工况,且u(e)=1,2,…,s0,s0+s1×(e-1)×b+1,s0+s1×(e-1)×b+2,…,s0+s1×e×b,数据集划分的示意图参见图2;

(4-2)基于步骤(4-1)的数据集dfault(1),dfault(2),…,dfault(b),利用步骤(3-4)的聚类结果和孪生神经网络训练算法,依次训练得到b个用于暂态稳定评估的多任务孪生神经网络,其中,第l个多任务孪生神经网络ml使用的训练数据为步骤(3-4)中第l个聚类c(l)中预设故障所对应的数据集dfault(q(l)1),dfault(q(l)2),…,dfault(q(l)r(l)),…,dfault(q(l)p(l)),ml的具体结构如下:

(4-2-1)ml的p(l)个输入层:

ml包括p(l)个输入层,其中,第r(l)个输入层有2×n+2×m个神经元,每个神经元的输入包括:归一化后的故障发生前所有发电机的有功功率归一化后的故障发生前所有发电机母线的电压幅值归一化后的故障发生前所有线路的有功功率归一化后的故障发生前所有线路的无功功率其中,上标u(q(l)r(l))表示第l个聚类中第q(l)r(l)个预设故障对应的第u(q(l)r(l))个运行工况;

(4-2-2)ml的参数共享单元:

ml的参数共享单元包含t1(l)个隐含层,其中,第1个隐含层h1(l)的输入为步骤(3-2-1)中ml的p(l)个输入层,第c个隐含层hc(l)的输入为第c-1个隐含层hc-1(l)的输出,c=2,…,t1(l),隐含层的个数t1(l)以及每一层隐含层的神经元数目根据人工经验或计算精度要求反复试探来确定,在本发明的一个实施例中,设t1(l)=3,即第l个神经网络ml的参数共享单元包含3个隐含层,其中第一个隐含层的神经元个数为128,第二个隐含层的神经元个数为64,第三个隐含层的神经元个数为32;

(4-2-3)ml的p(l)个输出单元:

ml的p(l)个输出单元分别包含t2(l)个隐含层和1个输出层,每个输出单元中第一个隐含层的输入为步骤(4-2-2)中参数共享单元的第t1(l)个隐含层的输出,隐含层的个数t2(l)和隐含层神经元数目根据人工经验或计算精度要求反复试探来确定,在本发明的一个实施例中,设t2(l)=1,即每个输出单元分别有1个隐含层,隐含层的神经元个数设为32,输出层包含1个神经元,输出层采用sigmoid函数为激活函数,其中,ml的第r(l)个输出单元的输出为表示电力系统在第u(q(l)r(l))个运行工况下发生第l个聚类中第q(l)r(l)个预设故障后发生暂态失稳,当表示电力系统在第u(q(l)r(l))个运行工况下发生第l个聚类中第q(l)r(l)个预设故障后能够保持暂态稳定;

(5)根据步骤(1-3)中暂态稳定标签的统计结果,以及利用步骤(4)得到的多任务孪生神经网络,得到电力系统分别发生故障集合z0、z1和z2中所有f个预设故障后的暂态稳定评估结果,具体包括如下步骤:

(5-1)根据步骤(1-3)中暂态稳定标签的统计结果,得到电力系统分别发生步骤(1-3)中故障集合z0和故障集合z1中预设故障后的暂态稳定评估结果,具体步骤如下:

(5-1-1)将电力系统分别发生步骤(1-3)中故障集z0中预设故障后的暂态稳定性评估为能够保持暂态稳定;

(5-1-2)将电力系统分别发生步骤(1-3)中故障集z1中预设故障后的暂态稳定性评估为暂态失稳;

(5-2)利用步骤(4)得到的b个多任务孪生神经网络,得到电力系统分别发生步骤(1-3)中故障集合z2中所有b个预设故障后的暂态稳定评估结果,具体步骤如下:

(5-2-1)从数据采集与监视控制系统或广域测量信息系统中采集电力系统中所有发电机的有功功率pgi、所有发电机的机端电压vgi、所有线路的有功功率plj、所有线路的无功功率qlj,构成初始输入特征;

(5-2-2)利用步骤(1-2)的最大最小归一化对初始输入特征进行归一化处理后,得到归一化后的输入特征;

(5-2-3)将步骤(5-2-2)得到的归一化后的特征分别输入至步骤(4)得到的b个多任务孪生神经网络中,得到电力系统分别发生步骤(1-3)得到的故障集z2中所有b个预设故障后的暂态稳定评估结果。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1