细胞阵列计算系统的制作方法_6

文档序号:9929471阅读:来源:国知局
内存单元配合所述非易失随机存储器,两者共同用于所述微处理器计算时所涉及数据的随机存取。
[0176]在实际实施时,细胞中的非易失随机存储器可以是MRAM,所述内存单元阵列则可以是MRAM、DRAM或SRAM硅片,一般可以选取成本较低的一个或多个DRAM硅片,其中每个DRAM硅片是由与所述细胞阵列中各个细胞位置相一致的内存单元形成的内存单元阵列,再将所有DRAM硅片与一个细胞阵列硅片进行3D组合,任一内存单元与细胞阵列中相对应的细胞之间可以通过TSV建立通信联系,由此扩展每个细胞的内存。
[0177]本发明实施例中,通过将至少一个由一个以上内存单元组成的内存单元阵列,与所述细胞阵列叠合形成三维结构,并使每个内存单元阵列中的内存单元与细胞阵列中的细胞一一对应地相连,所述内存单元用于所述微处理器计算时所涉及数据的随机存取,如此便能以较低的成本扩展细胞阵列中每个细胞的内存空间,提高细胞中微处理器的处理效率。
[0178]需要指出的是,图14中仅示出了一个内存单元阵列与所述细胞阵列叠合形成三维结构的情况,本领域技术人员同样也能够理解一个以上内存单元阵列与所述细胞阵列叠合形成三维结构的情况。
[0179]本领域技术人员还能够理解的是,前述主控CPU通过细胞阵列总线与细胞阵列中每个细胞进行通信、任意两个细胞之间不依靠主控CPU进行的通信、任一细胞向目标区域中所有细胞进行群发通信、通过在细胞阵列中设置专职输出细胞作为终点细胞接收并存储其他细胞给主控CPU的输出数据以供主控CPU读取等通信方法,这些同样适用于包含所述内存单元阵列的细胞阵列计算系统。
[0180]需要说明的是,由于细胞阵列中的各个细胞扩展了内存空间,所述主控CPU除了可以访问本细胞的非易失随机存储器,还可以访问与本细胞相对应的内存单元(当与细胞阵列叠加成三维结构的内存单元阵列的数量为一个以上时,则与本细胞相对应的内存单元的数量也会有一个以上),因此所述主控CPU通过所述细胞阵列总线与所述细胞阵列中的每一个细胞进行的通信包括以下情况中的至少一种:按地址读写所述细胞阵列中任一细胞的非易失随机存储器或相应的内存单元;将数据广播到目标区域内每一个细胞的非易失随机存储器或相应的内存单元,并写入该目标区域内每一个细胞的非易失随机存储器或相应的内存单元中相同的相对地址;给所述细胞阵列中任一细胞的微处理器发送指令、发送数据或读取状态;给目标区域内所有细胞的微处理器广播指令。
[0181]当所述细胞阵列中的细胞还包括总线控制器和细胞内部总线时,所述细胞内部总线除了连接所述微处理器、非易失随机存储器,还与本细胞相对应的内存单元相连,所述总线控制器与所述细胞阵列总线、微处理器以及细胞内部总线相连,所述总线控制器用于识别所述主控CPU与本细胞之间进行的通信,连接所述微处理器以传递所述主控CPU发送的指令或数据、状态读取,或者通过所述细胞内部总线连接所述非易失随机存储器或与本细胞相对应的内存单元进行数据的读写操作。
[0182]如前所述,本发明实施例的细胞阵列中的细胞兼具内存、存储和计算三个功能,细胞内的所述非易失随机存储器既能实现所述微处理器计算时所涉及数据的随机存取,又能存储软件的指令代码和需要永久保存的数据,然而所述非易失随机存储器的成本一般是较高的,所以细胞中的非易失随机存储器用作存储部分的空间同样是有限的,那么当存在大量文件或数据需要存储在细胞阵列中的各个细胞时,有限的存储空间便无法满足存储要求,甚至还有可能会影响微处理器的处理效率,如何扩展细胞的存储空间则同样是亟待解决的问题。
[0183]基于上述考虑,本发明实施例还给出了细胞阵列计算系统的又一种结构,如图15所示,所述细胞阵列计算系统除了包括如前所述的主控CPU、细胞阵列和细胞阵列总线,还可以进一步包括至少一个存储单元阵列,所述存储单元阵列是由一个以上存储单元组成的二维阵列,所述细胞阵列与所有存储单元阵列叠合形成三维结构,每个存储单元阵列中的存储单元与所述细胞阵列中的细胞一一对应地相连,所述存储单元配合所述非易失随机存储器,两者共同用于存储软件的指令代码和需要永久保存的数据。
[0184]在实际实施时,细胞中的非易失随机存储器可以是MRAM,所述存储单元阵列则具体可以是闪存硅片,一般可以选取成本相对于MRAM更低的一个或多个NAND闪存硅片,其中每个NAND闪存硅片是由与所述细胞阵列中各个细胞位置相一致的存储单元形成的存储单元阵列,再将所有NAND闪存硅片与一个细胞阵列硅片进行3D组合,任一存储单元与细胞阵列中相对应的细胞之间可以通过TSV垂直相连以建立通信联系,由此扩展每个细胞的存储空间。
[0185]具体实施时,所述细胞阵列中的细胞还包括与所述微处理器相连的存储控制器,用于对与本细胞相连的存储单元进行数据存储访问控制。当把一个或多个NAND闪存硅片和一个细胞阵列硅片进行3D组合后,还可以为细胞阵列中的每一个细胞配置NAND闪存控制器,本细胞的MPU通过本细胞的NAND闪存控制器才可以实现对与本细胞相对应的存储单元进行读写。当大量文件或者数据储存在NAND闪存中时,对数据的搜索可以由各个细胞通过各自的NAND通道进行搜索,得到极大的加速。大型软件系统的编译同样需要对成千上万个源代码文件进行编译,当这些源代码保存在这样的细胞阵列计算系统中时,编译同样得到了极大的加速。
[0186]本发明实施例提供的包含所述存储单元阵列的细胞阵列计算系统,能以较低的成本扩展细胞阵列中每个细胞的存储空间,提高各个细胞的数据存储能力。
[0187]需要指出的是,图15中仅示出了一个存储单元阵列与所述细胞阵列叠合形成三维结构的情况,本领域技术人员同样也能够理解一个以上存储单元阵列与所述细胞阵列叠合形成三维结构的情况。
[0188]本领域技术人员能够理解的是,前述主控CPU通过细胞阵列总线与细胞阵列中每个细胞进行通信、任意两个细胞之间不依靠主控CPU进行的通信、任一细胞向目标区域中所有细胞进行群发通信、通过在细胞阵列中设置专职输出细胞作为终点细胞接收并存储其他细胞给主控CPU的输出数据以供主控CPU读取等通信方法,这些同样适用于包含所述存储单元阵列的细胞阵列计算系统。
[0189]如前所述,由于细胞中的非易失随机存储器用作内存和存储部分的空间都非常有限,因此如何同时扩展细胞的内存和存储空间是亟待解决的问题。基于上述考虑,本发明实施例还给出了细胞阵列计算系统的再一种结构,如图16所示,所述细胞阵列计算系统除了包括主控CPU、细胞阵列和细胞阵列总线,还可以进一步包括至少一个上述存储单元阵列和至少一个上述内存单元阵列。同时包含所述存储单元阵列和内存单元阵列的细胞阵列计算系统可以参考上述仅包含存储单元阵列或仅包含内存单元阵列的细胞阵列计算系统的具体实施,此处不再赘述。
[0190]本发明实施例提供的同时包含所述存储单元阵列和内存单元阵列的细胞阵列计算系统,能以较低的成本同时扩展细胞阵列中每个细胞的存储和内存空间,提高各个细胞的数据存储能力以及细胞中微处理器的处理效率,从而能更进一步提升计算系统的整体性會K。
[0191]虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。
【主权项】
1.一种细胞阵列计算系统,其特征在于,包括:主控CPU、细胞阵列、细胞阵列总线和至少一个存储单元阵列; 所述细胞阵列是由一个以上兼具计算和存储功能的细胞组成的二维阵列,其中每一个细胞包括微处理器和非易失随机存储器;所述非易失随机存储器用于所述微处理器计算时所涉及数据的随机存取,还用于存储软件的指令代码和需要永久保存的数据; 所述存储单元阵列是由一个以上存储单元组成的二维阵列,所述细胞阵列与所有存储单元阵列叠合形成三维结构,每个存储单元阵列中的存储单元与所述细胞阵列中的细胞一一对应地相连;所述存储单元用于存储软件的指令代码和需要永久保存的数据; 每一个细胞储存各自在所述细胞阵列中的位置作为ID以供细胞中的软件或硬件读取; 所述主控CPU通过所述细胞阵列总线与所述细胞阵列中的每一个细胞进行通信; 所述细胞阵列中的相邻细胞之间有通信接口,能相互发送数据。2.根据权利要求1所述的细胞阵列计算系统,其特征在于,所述细胞阵列中的细胞还包括与所述微处理器相连的存储控制器,用于对与本细胞相连的存储单元进行数据存储访问控制。3.根据权利要求1所述的细胞阵列计算系统,其特征在于,还包括至少一个内存单元阵列,所述内存单元阵列是由一个以上内存单元组成的二维阵列,所述细胞阵列与所有内存单元阵列叠合形成三维结构,每个内存单元阵列中的内存单元与所述细胞阵列中的细胞一一对应地相连,所述内存单元用于所述微处理器计算时所涉及数据的随机存取。4.根据权利要求3所述的细胞阵列计算系统,其特征在于,所述细胞阵列中的细胞还包括总线控制器和细胞内部总线,所述细胞内部总线连接所述微处理器、非易失随机存储器以及与本细胞相对应的内存单元,所述总线控制器与所述细胞阵列总线、微处理器以及细胞内部总线相连,所述总线控制器用于识别所述主控CPU与本细胞之间进行的通信,连接所述微处理器以传递所述主控CPU发送的指令或数据、状态读取,或者通过所述细胞内部总线连接所述非易失随机存储器或与本细胞相对应的内存单元进行数据的读写操作。5.根据权利要求1所述的细胞阵列计算系统,其特征在于,所述细胞阵列中的任意两个细胞之间能进行通信,参与细胞间通信的细胞包含起点细胞、终点细胞和中转细胞,所述起点细胞为向所述终点细胞发出数据的细胞,所述终点细胞为最终接收所述起点细胞所发数据的细胞,所述中转细胞为沿细胞间通信路径依次相邻且通过所述通信接口中转所述起点细胞所发数据的细胞,所述细胞间通信路径是由所述起点细胞、中转细胞和终点细胞所构成的数据收发路径。6.根据权利要求5所述的细胞阵列计算系统,其特征在于,所述细胞阵列中的任一细胞还能作为所述起点细胞向目标区域内的所有细胞进行群发通信,参与所述群发通信且位于目标区域内的细胞作为所述起点细胞、或作为所述终点细胞、或同时作为所述中转细胞和终点细胞,参与所述群发通信且位于目标区域外的细胞作为所述起点细胞或中转细胞。7.根据权利要求5或6所述的细胞阵列计算系统,其特征在于,所述细胞阵列中还设有至少一个专职输出细胞,所述专职输出细胞作为所述终点细胞接收并存储其他细胞给所述主控CPU的输出数据,并以中断信号通知所述主控CPU读取所述输出数据。8.根据权利要求5或6所述的细胞阵列计算系统,其特征在于,所述细胞阵列中的细胞还包括与所述微处理器相连的网络控制器,所述网络控制器用于在进行细胞间通信时,对发出的数据、中转的数据或者最终接收的数据进行收发控制,还用于向所述微处理器发送中断信号。9.根据权利要求1所述的细胞阵列计算系统,其特征在于,所述存储单元与所述细胞阵列中相对应的细胞之间通过过硅通孔建立通信联系。10.根据权利要求1所述的细胞阵列计算系统,其特征在于,所述非易失随机存储器为MRAM,所述存储单元阵列为闪存硅片,所述细胞阵列在一个硅片上。
【专利摘要】一种细胞阵列计算系统,包括:主控CPU、细胞阵列、细胞阵列总线和至少一个存储单元阵列;细胞阵列是由一个以上兼具计算和存储功能的细胞组成的二维阵列,其中每一个细胞包括微处理器和非易失随机存储器;存储单元阵列是由一个以上存储单元组成的二维阵列,细胞阵列与所有存储单元阵列叠合形成三维结构,每个存储单元阵列中的存储单元与细胞阵列中的细胞一一对应地相连;所述存储单元配合所述非易失随机存储器共同用于存储软件的指令代码和需要永久保存的数据;主控CPU通过细胞阵列总线与细胞阵列中每个细胞进行通信;相邻细胞间有通信接口,能相互发送数据。本发明能克服现有计算机架构因CPU与内存、存储之间存在的通信瓶颈,提升系统整体性能。
【IPC分类】G06F12/02
【公开号】CN105718380
【申请号】CN201510456457
【发明人】戴瑾, 郭一民, 王践识
【申请人】上海磁宇信息科技有限公司
【公开日】2016年6月29日
【申请日】2015年7月29日
当前第6页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1