用于车辆接近速度传感器的前端传感器的制作方法

文档序号:6727528阅读:162来源:国知局
专利名称:用于车辆接近速度传感器的前端传感器的制作方法
各种类型的近程传感器(proximity sensor)被用于其中要确定到物体的距离以及在某些情况下要确定物体相对于所述传感器的速度的多种应用中。可以将这些数据提供给处理系统,所述处理系统分析所接收的数据并且确定是否已经超过安全门限。如果已经超过安全门限,则处理器可以确定是否要设置警报或采取其他行动。近程传感器例如被用于多种应用中,其中可以包括夜盗警报、障碍检测和汽车。在汽车中的近程传感器可以用于确定在所述汽车附近的其他车辆或物体的相对位置和相对速度。在汽车系统中,可以使用该位置和速度数据来例如在车速控制下运行的同时调整汽车的速度、施加可用的制动能力的一部分来减慢车辆的速度或向司机提供可听或可视的警报指示。
与在上述系统中使用的近程传感器或速度传感器相关联的问题之一是检测在指定范围之外的物体以及可能引起虚假警报被登记的物体。具体地说,在车辆系统中,不能基于范围来区别物体可能导致突然进行制动、在速度控制系统中的速度的调整或响应于虚假警报的车辆的其他突然加速或减速。
除了需要能够基于范围来区别物体之外,在车辆中使用的传感器必须在物理上小、重量轻、高度可靠和低成本。对于这些传感器的系统要求经常在传感器的技术性能上和在物理和经济因素上非常严格。传感器越复杂,则零件数量越大,并且伴随有成本越高、质量越大、传感器的物理体积越大并且传感器的可靠性越低。
因此,提供这样一种传感器系统将非常有意义,它能够将在指定范围内的物体与该范围之外的物体相区别,满足物理和经济要求,并且可靠。
公开了一种传感器,它能够根据物体相对于传感器的范围来区别物体。所述传感器包括天线,它发送传感器信号,并且如果存在物体则接收从其反射的信号。脉冲振荡器提供脉冲第一信号,它具有第一频率和相位,其中所述脉冲振荡器提供预定脉冲持续时间的并且具有预定脉冲重复频率的脉冲第一信号。脉冲振荡器向双模式混频器的第一输入端口提供所述脉冲第一信号,所述双模式混频器还经由第二端口连接到天线。双模式混频器从第一输入端口向第二端口并且然后向天线发送所述脉冲第一信号的一部分以作为传感器信号被发送。另外,所述双模式混频器使用所述第一信号的一部分来与所接收的反射信号混合,并且提供混合信号来作为第三端口的输出。因此,所述脉冲的第一信号提供要作为传感器信号被发送的信号和用于混频器的本地振荡器信号。如果在所述双模式混频器中,脉冲第一信号和所接收的反射信号同时存在,则所述双模式混频器提供了混合的信号输出。因此,仅仅当相对于物体的范围使得到物体的和来自物体的信号传播时间小于或等于所述脉冲第一信号的预定脉冲长度时可以检测到物体。
另外,移相器可以被串联地插在双模式混频器的第二端口和天线之间。所述移相器具有第一移相器端口,并且接收在双模式混频器的第一端口和第二端口之间传输的第一信号的一部分。所述移相器可以选择性地将从双模式混频器接收的第一信号的发送部分移相。所发送的移相的第一信号被作为输出从移相器的第二移相器端口发送到天线。所述天线接收所发送的移相的第一信号,并且将其作为传感器信号发送。在存在物体的情况下,天线接收到从其反射的反射信号。天线向移相器的第二移相器端口提供所接收的反射信号。移相器可以选择性地将所接收的反射信号移相,并且从第一移相器端口作为输出提供移相的反射信号。双模式混频器在第二端口接收移相的反射信号,其中双模式混频器被配置和安排来将移相的反射信号与由脉冲信号源提供的脉冲第一信号混合。以这种方式,信号可以被移相以便两个传感器信号和它们各自的反射信号回波彼此正交,即两个信号彼此具有相差90度。因此,可以提供同相或正交相位的信号分量以增强传感器的精度和功能。
在随后的详细说明中描述了上述方法和系统的其他形式、特征和方面。
通过随后结合附图的详细说明,将更全面地理解本发明,其中

图1是用于速度测量的传感器前端的一个实施例的方框图;图2是在图1中所述的实施例中使用的各种波形的时序图;图3是用于在图1中所述的IQ信道的位置向量的图示;图4A是适合用于本发明的混频器的一个实施例;图4B是适合用于本发明的混频器的另一个实施例;图4C是适合用于本发明的混频器的另一个实施例;图5是适合用于本发明的移相器电路的示意图;图6是适合用于本发明的采样器模块的示意图7是用于速度测量的传感器前端的另一个实施例的方框图。
公开了一种传感器前端,它能够区别在指定范围内的物体和在该指定范围外的物体并且与当前的传感器相比较具有减少数量的部件。具体地说,所述传感器前端包括脉冲信号源,它向双模式混频器提供脉冲的第一信号(pulsedfirst signal)。双模式混频器发送要从天线发送的脉冲的第一信号的一部分来作为传感器信号。双模式混频器还使用脉冲第一信号的一部分来作为本地振荡器,以便通过将脉冲的第一信号与所接收的反射信号混合而形成基带视频信号来下变频所接收的反射信号。这些下变频的信号然后被处理和提供作为传感器输出信号。因此,只有当脉冲的第一信号和反射的信号同时存在于双模式混频器中时才将检测到物体。因此,为了被检测到,物体必须具有这样的范围,它使得到物体以及从物体的总的传播时间小于由脉冲的振荡器提供的信号的脉冲宽度。
图1-3描述了传感器前端的基本架构和操作,图4A、4B、4C、5和6描述了适合在图1中所述实施例之内使用的电路。图7描述了也能够利用图4A-6中所描述的电路的传感器前端的另一个实施例。
转向图1,传感器前端100包括控制器102,它产生包括发送触发器103、采样保持脉冲105和相位控制脉冲107的多个控制脉冲。脉冲调制器104接收发送触发器103和向脉冲振荡器106提供具有预定脉冲宽度的选通函数“on”脉冲。脉冲振荡器106通过在“on”脉冲有效时、即在预定脉冲宽度提供第一信号而响应于“on”脉冲。在“on”脉冲有效时间期间,由脉冲振荡器提供的第一信号包括第一频率、第一幅度和第一相位。发送传感器103具有预定的脉冲重复频率。
双模式混频器108耦接到脉冲振荡器106,并且在第一输入端口107接收第一信号。如下更详细所述。双模式混频器108提供在第一输入端口107和第一输入/输出端口111之间的预定数量的信号传输。因此,第一信号的一部分通过双模式混频器108并且作为在第一输入/输出端口111的输出被提供。第一输入/输出端口111可以直接耦接到天线端口113,或优选的,可以将移相器110串联地插在图1所述的第一输入/输出端口111和天线端口113之间。移相器110被配置和布置来从控制器102接收相位控制脉冲107,并且通过选择性地将从双模式混频器接收的所发送的第一信号移相来响应于相位控制脉冲107。天线112是发送和接收天线,它具有公共的孔径,用于发送作为传感器信号121的所发送的第一信号和接收从物体122反射的反射信号123。
当物体122存在于天线112的波束宽度内的时候,传感器信号121的一部分从其被反射,并且该反射的信号123被天线112捕获。如果被使用的话,则移相器110被配置和布置来从控制器102接收相位控制脉冲107,并且通过选择性地将从天线112接收的反射信号123移相来响应于相位控制脉冲107。双模式混频器108从移相器110接收被移相的反射信号123,并且将所述被移相的反射信号123与由脉冲振荡器106提供的第一信号混合。因此,反射信号123和第一信号的混合将仅仅发生在脉冲调制器104向脉冲振荡器提供选通函数“on”脉冲的时间期间。因此,仅仅当在脉冲调制器104向脉冲振荡器提供选通函数“on”脉冲的时间期间,反射信号123被接收和下变频时,可以检测物体122。这将固有地使得可以根据物体相对于天线112的范围来区别物体。仅仅可以检测到这样的物体,所述物体具有这样的范围,其中传感器信号和反射信号的传播小于选通函数“on”脉冲的预定脉冲宽度。因此,检测范围可以被设置为Rd≤c2*τw]]>方程1其中c是光速,τw是选通函数“on”脉冲的预定脉冲宽度。在这个范围之外的物体将不会被检测到。
双模式混频器108提供从第一信号和反射信号123的混合操作获得的信号(“混合信号”)来作为来自第一输出端口117的输出。在选通函数“on”脉冲的持续时间期间,保持电容器117接收和存储被提供的混合信号。前置放大器116耦接穿过保持放大器,使得在保持电容器上的信号被前置放大器116放大,然后被提供到采样模块118。采样模块118被配置和布置来接收采样脉冲105,并且通过在采样脉冲105的时间提供表示前置放大器110的输出的采样输出信号来响应于采样脉冲105。该采样输出可以被提供到模数转换器。
如上所述,在一个优选实施例中,移相器110用于选择性地将从双模式混频器108接收的第一信号和从天线112接收的反射信号123之一或两者移相。移相器优选地提供在第一信号和被提供到双模式混频器108的反射信号之间总共90度的相移。这可以通过下列方式来完成将被发送的信号和被接收的信号都移相45度,或者将两个信号之一移相90度。
提供在第一信号和被提供到双模式混频器108的反射信号之间总共90度的相移被称为同相和正交相位信令(“I/Q信令”)。I/Q信令用于在检测指定范围内的物体中提供提高的概率。来自固定的或者如果天线移动则保持不变的范围的物体122的反射信号123的传输可以被表示为Ereturn=Acos(2πf0t+2(2πR0)λ)]]>方程2其中A是常数,f0是频率,t是时间,R0是相对于物体的范围,项2(2πR0)λ]]>方程3是天线112向物体122的传感器信号121和从物体122向天线112的反射信号的双向传输产生的相移。双模式混频器的操作提供了一个结果,它是正弦第一信号和反射信号123的非线性相乘,混频器的输出是Emixer=Bcos(4πR0λ)]]>方程4其中B是与所接收的信号123的强度相关联的常数,R0是相对于物体的范围,λ是信号的波长。很清楚,当范围R0是λ/8的整数倍时,来自双模式混频器108的输出信号将是零,并且将检测不到固定的或相对于移动天线保持恒定位置的物体。I/Q信令通过使用第二信号(即Q信号)来解决这个问题,所述Q信号是正交的,即与第一信号(即I信号)具有90度的相差。因此,具有满足方程4的范围的物体将被正交的Q信号检测到。因此,物体的位置可以在I/Q空间内被确定,在I/Q空间中,两个正交的I信号和Q信号的每一个均表示在I/Q正交向量空间中的位置向量。由这两个信号向量的相加产生的向量表示在两个测量的时间中相对于物体的位置向量。
图2描述了用于图解在图1中描述的传感器前端100的操作的多种波形。具体地说,波形202表示由控制器102提供的发送触发器103。在图2所述的波形中,发送脉冲103的上升边沿在t1被提供到发送调制器104。波形204表示具有预定脉冲宽度“T”的脉冲调制选通函数“on”脉冲。脉冲振荡器106接收脉冲调制器脉冲,并且提供第一信号,所述第一信号在第一频率振荡、具有第一相位和在预定脉冲宽度的持续时间具有第一幅度。如果物体122在天线112的波束宽度内,则能量将从其反射并且被接收作为反射信号123,所述反射信号123如波形208中所示由传感器信号衰减和延时。所接收的反射信号被双模式混频器108下变频为如在波形210中所描述的基带视频电平。控制器102在产生下一个脉冲之前提供如在波形210中所图解的采样触发器脉冲来采样所述基带视频电平。或者,如果单个脉冲未包括足够的能量来对保持电容器充电。则可以在提供采样触发器脉冲之前接收几个脉冲以保证保持电容器具有足够大的充电,从而进行适当的操作。
如上所述,优选的是,I/Q信令被用于传感器前端中。如图2所示,第一组波形201被称为同相I信号,在203中图解的波形表示正交相位Q信号。同上,波形202图解了发送触发器脉冲。在波形204中图解的发送脉冲调制器脉冲是预定的脉冲宽度,并且被脉冲振荡器接收。但是,在这种情况下,移相器将信号移相90度,因此提供与先前提供的“同相”信号具有相差90度的信号。在发射器脉冲的持续时间提供如在波形206中所图解的正交相位信号。所接收的能量提供波形208,所述波形208随后被下变频为如波形210中所图解的视频基带电平,所述视频基带电平将在如波形212中所图解的采样触发器时间被采样。
如上所述,同相和正交相位信道的信号幅度构成物体单个位置的测量结果,并且可以由在图3中所示的IQ信号空间中的向量表示。在图3的图示中,第一位置向量302被图解,其中I位置向量比Q位置向量大得多,以便按照合成向量303来确定第一位置。第二位置向量304包括由合成向量305图解的、具有大致相等的幅度和不同位置的同相和正交位置向量。因此,理论上,可以在图2所示的脉冲重复频率的四个周期中获得位置向量数据,其中对于第一测量的进行是第一同相测量,然后第一正交测量,然后第二同相测量,然后第二正交测量。因为位置向量表示在两个分立的时间间隔上物体的相位变化,因此多普勒频率——它与在传感器和物体之间的接近速率成比例——可以使用下述方程来被计算fd=12πdφdt≈12π(arctan(AqAi)2-arctan(AqAi)1)(t2-t1)]]>方程5其中,Ai和Aq是位置向量的独立分量的幅度。
由上述方程确定的接近速率精度与位置向量的独立分量的幅度的测量精度模糊性(measurement accuracy ambiguity)成比例地降低,该降低也由于信噪比的低值。接近速率的模糊性可能使得使用包括系数“2π”的数据来获得位置向量相移,由其来计算接近速率,如上方程5所述。这种情况可能发生在下面的条件下,诸如当存在极高的接近速率时,或如果在测量的采样之间发生大的逝去时间。因此,可以通过在多普勒循环的一个周期内完成数据获取时间、即在连续的位置向量测量之间的时间来避免所述模糊性。可以通过从在特定范围界限外部的物体消除物体回波来避免幅度或范围的模糊性或两者。如上所述,通过将总的传播时间、即从传感器到物体的双向范围限制为小于脉冲调制器选通函数“on”脉冲的脉冲宽度来完成在期望范围之外的物体的区别。以这种方式,双模式混频器108将反射信号转换为基带视频信号,其中基带视频信号具有与所接收的信号的信号强度和相位成比例的幅度,在此所述相位与脉冲振荡器信号的相位相关联。因此,仅仅检测在指定范围内的物体。
在可以用于汽车传感系统的一个实施例中,将讨论各种系统参数,诸如发射器脉冲宽度、脉冲重复频率、保持电容、视频带宽和I和Q采样时间。对于汽车系统的一个实施例,表1包括对于安全带预拉伸系统的可能的测量要求。
表1
在200千米/小时的接近速率,在1.0毫秒中的范围变化是.055米,影响的时间是.09秒。用于5米的最大检测范围的脉冲调制器选通函数“on”脉冲的脉冲宽度是33.33纳秒。
通过用于在1毫秒的数据获取时间内获取和处理位置向量数据的能力来确定速度测量极限。为了保证在5米的最大检测范围检测物体,必须延伸脉冲宽度,以便在发送信号和接收信号之间发生足够的时间重叠。对于足够宽的、即能够在单个脉冲重复频率周期期间对保持电容充电的视频带宽,可以在脉冲重复频率的四个周期中获得位置向量数据。在5米范围的物体将产生17纳秒的重叠,因此忽略延迟的所需视频带宽可以被示为23兆赫兹。如果脉冲重复频率是1兆赫兹,则用于获得位置向量数据所需要的时间是4毫秒。
为了清楚地确定多普勒频率,在双向相位中的最大变化是2π弧度,并且对于4微秒的数据获取周期,最大速度是1554米/秒。不可能在汽车系统中遇到这样的高速度。可以在降低带宽以便于更大可能的检测和测量精度之间进行折中。因此,对于250千米/小时的最大速度,最小获取时间是大约90微秒。因此,在1兆赫兹的脉冲重复频率,对于两个位置向量的四个分量的每一个可以采用大约20个采样,或者可以对于单个脉冲探测将视频带以20的因子降低。而且,可以使用雷达范围方程来近似在下面参数条件下的操作检测范围Rmax=(PtGtGrλ2σ(4π)3FskTBnα)4]]>方程6其中Pt是发射器功率(.001瓦),Gt是发射天线增益(10),Gr是接收天线增益(10),λ是工作波长(.0124米),Fs是前端噪音系数(10),σ是物体雷达通过部分(5平方米),T是以开尔文为单位的绝对温度(300°K),k是玻耳兹曼常数(1.38*10-23J/K),α是所需的检测信噪比(30),Bn是系统噪声带宽(5.0MHz)。对于这些系统参数,方程6示出了大约8.8米的工作检测范围和在5米的大约24.7dB的信噪比。可以用于这个系统的其他应用包括周界安全系统(perimeter security system)和电子警戒线(electronic fence)。
图4A、4B和4C描述了适合用于图1中描述的传感器前端100的双模式混频器的三个实施例。图4A是双平衡混频器(“DBM”)400,它包括第一平衡不平衡转换器(balun)404和第二平衡不平衡转换器408以及四二极管环(quad diode ring)406。
图4B描述了适合用于图1描述的传感器前端的双模式混频器的另一个实施例。混频器420是单平衡混频器。单平衡混频器420具有在第一输入端口107和第一输入/输出端口111之间的固有隔离,这是通过与来自平衡不平衡转换器424、通过二极管421和423的双极驱动信号相关联的零位(null)。电感器430被提供来防止来自第一输入/输出端口111的射频能量进入第一输出端口117。电容器428被增加来防止下变频的基带视频信号通过第一输入/输出端口117发送。
图4C描述了可以作为适合用于图1中描述的传感器前端的双模式混频器的正交混合网络混频器(quadarature hybrid mixer)440。正交混合网络是将在一个端子的输入信号划分为在混合网络的相对侧上的端子输出的两个信号的器件。所述两个输出信号通常具有输入信号的功率的一半,并且彼此具有相差90度。可以使用任何端口来作为输入端口,其他端口按照正交混合网络的已知属性响应。以这种方式,在发送期间,由于通过端口之间的信号,可以使用正交混合网络,在接收期间,正交混合网络可以被用作混频器,因为本地振荡器和输入信号均将被提供到输出端口以使用适当的混频器二极管来混合。
如图4C所示,正交混合网络440包括通常被称为本地振荡器输入的第一端口442,它接收第一信号107。正交混合网络440还包括第二端口444,它连接到移相器110,并且分别向移相器110提供或从移相器110接收信号111。端口446和448分别耦接到与地451耦接的混频器二极管450和452。端口446和448还分别经由电感器454和456耦接以向保持电容器114提供信号并且向其提供信号117。
图5描述了适合用于在此所述的传感器前端的移相器110的一个实施例。移相器110包括正交混合网络506,它具有四个端子502、504、505和507,其中端子502被任意地设置为输入端子。如上所述,正交混合网络是将在一个端子的输入信号划分为在混合网络的相对侧上的端子上输出的两个信号的器件。所述两个输出信号通常具有输入信号的功率的一半,并且彼此具有相差90度。在所图解的实施例中,在端子502输入的信号将在端子505和507之间被划分和移相。如果在端子502输入信号,则在端子505和507存在的任何反射将通过混合网络被传播,并且将在端子502和504被输出。因此,耦接到端子505和507的任何传输线或电路元件的阻抗和反射率可以引起向正交混合网络506的向回反射,并且提供在端子502输入的信号的相移版本来作为在端子504的输出。传输线508和510在所关心频率的1/4的波长,并且将作为用于终结阻抗(terminating impedance)的阻抗变换器。移相控制信号被输入到端子522,并且将接通或关断PIN二极管512和514。当接通时,PIN二极管将1/4波长传输线508和510的端口短路到地,导致反射率为1,并且在到两条传输线的输入上具有几乎无穷大的阻抗。在关断PIN二极管的512和514的情况下,在“关断”状态中的PIN二极管的寄生电抗将由1/4波长传输线508和510分别变换。
图6描述了适合用于在图1中所述的传感器前端的宽带采样电路。在图6中所述的电路使用高速双极采样脉冲611和613来迅速地接通和关断二极管620和630以取样在输入636上存在的信号,并且在节点626提供采样的输出。适合产生高速采样脉冲611和613的脉冲产生器包括阶跃恢复二极管(StepRecovery Diode,SRD)614,它具有很快的变换时间,即,当施加反偏压时,SRD将迅速地从导通转换到不导通状态。当来自驱动器604的驱动信号下降时,SRD将断开,并且快速负向脉冲被提供到电容器618和632,所述电容器618和632将区别负向脉冲并提供脉冲611和613。
图7描述了用于传感器前端的替代结构。具体上,传感器前端700包括分立的同相和正交相位的信道,以便允许同时获取I和Q信号分量。这个实施例利用具有分立的发射器天线710和接收天线726的、匹配幅度和正交相位信道。在这个实施例中,不需要移相器。同样通过较快地同时获取I和Q信道数据,避免了获取具有较少的、由于在I和Q测量之间的时间期间物体运动而导致的固有误差的位置向量。另外,可以使用较高的发射器功率,这是因为与图1中所述的实施例一样,不需要传输信号来建立发射器功率电平。获取采样的方法与图2和图3中所述的相同,并且图4A-6中图解的电路可以被用作在图7中所述的实施例中的部件电路。因为可以使用较高的发射器功率,因此可以获得较大范围的检测,并且也可以获得在5米的指定范围的信噪比的提高。
如上所述,范围区别是发射器脉冲宽度的函数。对于在图1-7中所述的实施例,发射器脉冲宽度可以被改变来调查具体的范围单元。例如,可以初始地使用与短范围相称的短脉冲来用于近距离,以便可以首先检测到较为靠近传感器的物体。当脉冲宽度提高时,逐渐变大的范围单元将落入物体检测范围内,以便可以区别在指定范围的物体,并且更准确地确定物体范围。
本领域内的技术人员应当还明白对于上述用于传感器前端的方法和装置的改变和修改。因此,本发明应当被看作被所附的权利要求的范围和精神唯一地限定。
权利要求
1.一种传感器前端,用于根据范围来区别物体,所述传感器包括天线,具有用于发送传感器信号和接收反射信号的公共孔径;第一信号模块,被配置和安排来提供具有预定持续时间的第一信号;混频器模块,连接到第一信号模块和天线,其中第一信号的一部分被所述混频器传送到天线并且从所述天线发送,并且其中在存在物体的情况下,经由天线来从物体接收反射信号;并且混频器被配置和安排使得当所接收的反射信号和脉冲第一信号的一部分同时存在于混频器中时,脉冲第一信号和所接收的反射信号提供混合的信号输出。
2.如权利要求1所述的传感器前端,还包括移相器,具有第一端口和第二端口,第二端口连接到天线,移相器被配置和安排来选择性地将从天线在第二端口接收的反射信号移相,并且作为第一端口的输出而提供移相的反射信号;其中,第一信号模块包括脉冲信号源,它提供具有预定的信号持续时间并且具有预定的脉冲重复频率的脉冲第一信号,所述第一信号具有第一频率和第一相位;其中,混频器模块包括具有第一端口、第二端口和第三端口的双模式混频器,所述双模式混频器的第一端口耦接到所述脉冲信号源并且从其接收第一信号,所述双模式混频器的第二端口耦接到移相器的第一端口,所述双模式混频器被配置和安排来从第一端口向第二端口发送第一信号的一部分,并且提供第一信号的被发送部分来作为来自第二端口的输出;其中,所述移相器接收在所述第一端口的第一信号的发送部分,用于这些的所述移相器被配置和安排来选择性地将所述第一信号的被发送部分移相,并且作为来自第二端口的输出提供被发送的移相的第一信号;所述天线接收所述被发送的移相的第一信号,并且发送所述被发送的移相的第一信号来作为传感器信号,在存在物体时,天线从其接收反射信号,并且向移相器的第二端口提供所述反射信号;所述移相器接收在第二端口的所述反射信号,所述移相器被配置和安排来选择性地将反射信号移相,并且作为来自第一端口的输出提供移相的反射信号;双模式混频器接收在第二端口的移相的反射信号,所述双模式混频器被配置和安排来将移相的反射信号与由脉冲信号源提供的脉冲第一信号混合,并且提供混合的信号来作为来自第三端口的输出;接收器,具有耦接到双模式混频器的第三端口的输入和用于提供物体的存在与不存在的指示的输出;由此提供混合的信号,并且只有当物体具有小于预定信号持续时间的一半与光束的乘积的范围以便移相的反射信号与脉冲的第一信号的至少一部分同时存在于双模式混频器,才检测物体。
3.如权利要求2所述的传感器前端,其中移相器选择性地提供在第一信号的发送部分和反射信号之间的总共90度的相移,以便形成同相和正交相位信号。
4.如权利要求3所述的传感器前端,其中移相器选择性地向第一信号的发送部分提供45度的相移,并且向反射信号提供45度的相移。
5.如权利要求3所述的传感器前端,其中移相器选择性地向第一信号的发送部分提供90度的相移,并且向反射信号提供0度的相移。
6.如权利要求3所述的传感器前端,其中移相器选择性地向反射信号提供90度的相移,并且向第一信号的被发送部分提供0度的相移。
7.如权利要求2所述的传感器前端,其中脉冲信号源包括脉冲调制器,用于提供脉冲调制信号,它具有预定信号持续时间和脉冲重复频率;振荡器,连接到所述脉冲调制器,并且通过在脉冲调制信号的预定持续时间提供第一信号来响应于脉冲调制信号。
8.如权利要求2所述的传感器前端,其中双模式混频器是双平衡混频器。
9.如权利要求2所述的传感器前端,其中双模式混频器是单平衡混频器。
10.如权利要求2所述的传感器前端,其中双模式混频器是正交混合混频器。
11.如权利要求2所述的传感器前端,其中接收器包括保持电容器,它连接在双模式混频器的第三端口和电压基准节点之间,其中保持电容器存储所述混合信号的至少一部分;前置放大器,连接到保持电容器,并且提供作为输出的预放大的混合信号;采样模块,连接到前置放大器,并且被配置和安排来对预放大的混合信号采样和提供采样的预放大的混合信号来作为传感器输出信号。
12.如权利要求11所述的传感器前端,还包括信号处理模块,连接到采样模块以接收传感器输出信号并且提供指示物体位置的信号作为输出。
13.如权利要求12所述的传感器前端,其中信号处理模块提供指示物体速度的信号作为第二输出。
14.如权利要求2所述的传感器前端,其中第一频率在微波范围中。
15.如权利要求2所述的传感器前端,其中第一频率在毫米波范围中。
16.一种根据范围来区别物体的方法,包括步骤提供具有预定持续时间的脉冲的第一信号;在存在物体时从天线发送脉冲的第一信号;从物体接收反射信号;向混频器提供脉冲的第一信号和所接收的反射信号,以便当所接收的反射信号和脉冲的第一信号的一部分同时存在于混频器中时,混频器提供混合信号输出。
全文摘要
本发明公开了一种传感器前端,它能够根据物体相对于传感器的范围来区别物体。所述传感器包括天线,它发送传感器信号,并且如果存在物体则从其接收反射信号。脉冲振荡器提供具有第一频率和相位的脉冲第一信号。其中脉冲振荡器提供预定脉冲持续时间的并且具有预定脉冲重复频率的脉冲第一信号。脉冲振荡器向双模式混频器的第一输入端口提供脉冲第一信号,所述双模式混频器还经由第二端口耦接到天线。双模式混频器从第一输入端口向第二端口且然后向天线发送脉冲第一信号的一部分,以作为传感器信号被发送。另外,双模式混频器然后提供混合信号来作为在第三端口的输出。因此,脉冲第一信号同时提供将作为传感器信号被发送的信号和用于混频器的本地振荡器信号。如果所接收的反射信号与脉冲第一信号同时存在于双模式混频器中,则双模式混频器将仅仅提供混合信号输出。因此,仅仅当相对于物体的范围使得到物体的以及从物体的信号传播时间小于或等于脉冲第一信号的预定脉冲长度时才可以检测到物体。
文档编号G08G1/16GK1613018SQ02827008
公开日2005年5月4日 申请日期2002年12月12日 优先权日2002年1月9日
发明者肯尼思·V·帕格里亚 申请人:蒂科电子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1