用于检测目标样本属性的方法、设备和系统的制作方法

文档序号:6686876阅读:251来源:国知局
专利名称:用于检测目标样本属性的方法、设备和系统的制作方法
技术领域
本公开一般指导用于检测部分的目标样本存在性和/或属性的方法、设备和系统。
背景技术
接头用于连接两个物体,诸如,例如管件和有利于与所述管件流体连通的设备。这种设备的一个例子是阀。接头也可以用于端接或插塞开口或孔。另外,接头必须针对泄漏保持密封,同时满足有关例如压力、温度和振动的各种设计标准。可能具有优势的是提供可能导致泄漏或初期泄漏状态的早期状态检测,目的是指定自动防故障操作和/或预防性维护。目前,接头之间的连接可能容易泄漏。由于氧化剂、添味剂、药物流体、燃料、有毒物质或者其他令人不快或不希望的物质逃逸,泄漏可能导致危险的状况。泄漏可能导致损失有价值的物质或者涉及精确且足量输送特定物质的过程出现中断。除了在接头之间形成密封的O形环或垫片退化之外,泄漏可能来自连接的机械松弛。一种常见的松弛原因可能是包括接头的系统的热循环或振动。

发明内容
文中所述的本公开的实施例一般指导用于监测和/或检测目标材料样本的一种或多种属性的方法、设备、装置、系统等。本公开的一些实施例,例如指导收集足量的目标样本、检测部分的目标样本的存在性和/或分析目标样本的属性、报告检测和/或分析的结果、和可选地清除目标样本,以允许重复或者循环收集额外的样本。正如以下详细解释,可以收集和分析的样本量可能是目标样本的非常小或者细微的部分,包括例如目标样本的分子级或微观部分。根据有关目标样本存在性或者目标样本的属性的一个或多个因素,文中公开的方法、设备和系统可以响应检测和/或分析提供适当行动或处理的指示。如文中所述的网络化的系统和传感器阵列可以用于各种适当的环境,包括例如指向质量保证、预防性维护、安全(包括趋势分析)、危险警告(包括关闭程序)、化学鉴定和监管、环境监测和/或国土安全的环境。
·
在一些实施例中,例如,文中所述系统响应检测到目标样本以及不希望的样本的位置和/或浓度或者属性,执行提供需要维护或其他纠正行动的指示。在另一些实施例中,文中所述系统可以提供有关检测到的属性或者目标样本存在性的控制事件。例如,在一种实施例中,系统可以防止特定流体(例如,药物、燃料等)分散,如果该系统在该流体包括例如错误的流体中检测到不希望的属性或成分的话。如以下详细描述,本公开的方法、设备、系统等利用若干不同的方法来检测和/或分析目标样本存在性或属性,并且转发或者以其他方式提供有关检测到目标样本存在性或属性的信息。因此,本公开指向各种不同的应用,包括例如药物输送;燃料输送;胎压调节;加压供氢和/或氧;用于汽车和卡车工业的安全系统;用于国际和国内运输的跟踪系统;用于天然气网络的安全系统;存储罐和管线;国土安全,包括危险警告、用于机场、公共建筑、医院、公共交通系统的广域网传感器链路阵列;警方毒品贩卖识别、军事危险识别、工业污染物EPA识别、排放报告、碳信用跟踪和报告、食物链转移、医疗输送和监测应用等。此外,文中所述系统和方法对于实时且循环收集、分析和报告目标样本的一种或多种属性提供适应性的管理和控制。


图I是根据本公开的实施例配置的系统或传感器的示意图;图2A是根据本公开的实施例配置的方法的流程图;图2B是根据本公开的实施例配置且在图2A中示出的方法的一部分的流程图;图3A是示意性分子结构图,而图3B是示出根据本公开的实施例配置的晶体矩阵表征的料层的分子结构的叠置片材的示意图;图3C至3E和3G是截面侧视图,而图3F是根据本公开的实施例配置有平行且间隔开的料层的对应结构构造的等轴截面视图;图4A至4C是根据本公开的实施例配置的系统的一部分的示意性截面侧视图;图5A和5B是根据本公开的额外实施例配置的系统的示意性侧视图6A是根据本公开的实施例配置的网络或系统的示意图;图6B和6C是根据本公开的额外实施例配置的方法的流程图;图7A是根据本公开的实施例配置的配接组件的侧视图;图7B是基本上沿着图7A的线7B-7B截取的截面侧视图;图7C是图7A的配接组件的等轴视图;图8A是根据本公开的另一种实施例配置的配接组件的侧视图;图8B是基本上沿着图8A的线8B-8B截取的截面侧视图; 图8C是图8B的一部分的放大详图;图8D是图8A的配接组件的等轴视图;图9A是根据本公开的另一种实施例配置的组件的侧视截面图;图9B和9C是图9A的一部分的放大详图;图9D是图9A的组件的分解视图;图9E是根据本公开的实施例配置的系统的侧视局部截面图;图9F是根据本公开的实施例配置的检测器的应用环境的示意图;图10是根据本公开的实施例配置的流体导管系统的示意图;图11是根据本公开的实施例配置的发电装置的示意图;图12示出了包含根据本公开的另一种实施例的传感器的另一种环境;图13示出了包含根据本公开的另一种实施例的传感器的电解池。
具体实施例方式本申请通过全文引用而包含2004年11月9日提交的、题为“MULTIFUEL STORAGE,METERING AND IGNITION SYSTEM”(代理人文档 No. 69545-8302US)的美国临时专利申请No. 60/626,021的主题内容。本申请通过全文引用而包含以下2010年8月16日提交的每一份美国专利申请的主题内容题为“COMPREHENSIVE COST MODELING OF AUTOGENOUSSYSTEMS AND PROCESSES FOR THE PRODUCTION OF ENERGY, MATERIAL RESOURCES ANDNUTRIENT REGMES”(代理人文档 No. 69M5-85O6US );题为 “ELECTROLYTIC CELL ANDMETHOD OF USE THEREOF”(代理人文档 No. 69545-8106US);题为 “SUSTAINABLE ECONOMICDEVELOPMENT THROUGH INTEGRATED PRODUCTION OF RENEWABLE ENERGY, MATERIALSRESOURCES, AND NUTRIENT REGMES”(代理人文档 No. 69545-8501US);题为 “SYSTEMSAND METHODS FOR SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULLSPECTRUM PRODUCTION OF RENEWABLE ENERGY”(代理人文档 No. 69545-8502US);题为“SUSTAINABLE ECONOMIC DEVEL0PMENTTHR0UGH INTEGRATED FULL SPECTRUM PRODUCTIONOF RENEWABLE MATERIAL RESOURCES”(代理人文档 No. 69545-8503US);题为 “METHODAND SYSTEM FOR INCREASING THE EFFICIENCY OF SUPPLEMENTED OCEAN THERMALENERGY CONVERSION (SOTEC) ”(代理人文档 No. 69545-9601US);题为 “GAS HYDRATECONVERSION SYSTEM FOR HARVESTING HYDROCARBON HYDRATE DEPOSITS”(代理人文档No. 69545-9701US);题为 “APPARATUSES AND METHODS FOR STORING AND/OR FILTERINGA SUBSTANCE”(代理人文档 No. 69545-8046US);题为 “ENERGY SYSTEM FOR DWELLINGSUPPORT”(代理人文档 No. 69545-8504US);题为 “ENERGY CONVERSION ASSEMBLIES ANDASSOCIATED METHODS OF USE AND MANUFACTURE”(代理人文档 No. 69545-9401US);以及题为 “ INTERNALLY REINFORCED STRUCTURAL COMPOSITES AND ASSOCIATED METHODS OFMANUFACTURING”(69545-9201US)。A.指导用于收集、感测、报告和/或清除部分的目标样本的方法和系统的实施例雛本文描述了用于提供涉及目标样本特定属性和/或存在性的信息的方法、设备、装置、系统以及相关部件。在一些实施例中,这些方法和系统提供了涉及目标样本属性、目标样本状态、目标样本存在性和/或与目标样本相关的其他任何适当属性或特征的“告密者”或者其他类型的反馈指示。正如文中所用,术语目标样本可以包括希望或者意欲检测和/或分析的任何材料,包括材料的微观、分子级或者原子级的部分。此外,如文中所用,术语流体意欲描述任何类型的可流动材料,包括例如液体、气体、等离子体等。在一些实施例中,文中公开的方法、系统和相关部件提供了目标存在性和/或关于目标的特定属性的指示。在一种实施例中,例如,文中公开的系统和方法可以检测和提供目标样本诸如流体从输送该流体的系统泄漏的指示。更具体地说,所述方法和系统可以包括判断泄漏发生时间以及提供流体泄漏指示诸如信号或警报的传感器或者指示器。此外,正如以下详细描述的,泄漏指示(或者检测到目标样本存在或者其他属性)可以在非常早的阶段提供或者在泄漏初期(例如、分子级的或原子级)水平提供。此外,文中描述的方法和系统可以响应指向传感器或指示器的查询信号而检测泄漏。以此方式,文中描述的实施例可以针对不希望的泄漏或者与目标样本相关的任何其他属性或者状态提供早期检测。因此,取代在没有疑心的人醒来、碰巧没有鼻伤风而且偶然问到“臭鸡蛋”味道并且头脑清醒地获得警报之前,天然气或者丙烷中的加味剂渗入住所空气中,本公开内容通过在初期泄漏或者其他检测阶段提供指示或者警报来防止这种延误。在一些实施例中,所述方法和系统可以利用已经收集或者以其他方式诸如例如经过密封件而积累的目标样本的相对少量的分子来判断初期检测,并且因此导致立即警报和/或要求维护。此外,根据由收集率分析以及所涉及的具体化学性的比较评估所指示的趋势,可以调节紧急程度以及相应的适当响应。如果系统检测到幅度足够大的收集率,例如,系统可以提供要求立即维护或者其他行动的指示。但是,如果系统检测到低于预定幅度的收集率,则系统系统可以提供目标样本存在性或者其他属性存在的指示,但是可能不需要立即维护。另外,正如以下参照本公开的实施例详细解释的,系统可以检测、分析或者以其他方式测量目标样本的一些属性,从而判断用于目标样本流(例如,流体流)的控制事件。例如,如果系统检测到燃料中的杂质,或者系统检测到错误的流体类型,则系统可以停止燃料流动或者改变流体流量。图I是根据本公开的实施例配置的系统100的示意图。正如以下详细解释的,系统100可以是孤立的传感器或者检测器,所述传感器或者检测器包括配置用于感测一种或多种目标样本的存在性和/或属性并提供目标样本感测指示的多个部件或者部分。更具体地说,系统100包括收集器部分102和感测部分104。在一些实施例中,感测部分106可以包括检测器部分106以及分析部分108。系统100进一步包括通信或控制部分110和清除器部分112。在一些实施例中,通信或控制部分109可以包括报告器部分110和/或控制器部分111。系统100的这些部分或者部件在图I中示意性地示出。虽然这些部分示意性地显示为单独的部分,但是这些部分中的一些或者全部可以合并成单一部件。例如,虽然清除器部分112示意性地图示为与收集器部分102分开的单独部件,但是在一些实施例中,收集器部分102可以配置成执行清除器部分112的功能,或者以其他方式与清除器部分112集成,和/或与系统100的其他部分集成。这样,虽然示意性地显示为单独的部件或者部分,对于文中描述的任何收集器部分102、感测部分104、通信或控制部分109和/或清除器部分112的引述,也可以包括对系统100的任何其他相应部分和部件的引述。此外,这些部分每一个可以与系统100的其他相应部分中的一些或者全部进行通信,正如图I中示意性地显示。系统100的这些部分的功能的若干特征将在下面参照图2A和2B进行描述。此外,图I所示的系统100也可以在文中称为传感器或者告密传感器。同样正如以下详细描述,系统100的部件(例如收集器部分102、传感器部分104、通信或控制部分109和/或清除器部分112)配置成收集、分析和以其他方式使用感兴趣的目标样本的少量部分。例如,收集器部分102可以有选择地收集或积累目标样本的微观、少量、分子尺度或甚至原子尺度的部分。此外,微观部分的目标样本是目标样本本身相对细微的部分。因此,不需要大量的目标样本来判断目标样本的存在性或者其属性。此外,传感器部分104可以检测目标样本的存在性,或者以其他方式自动分析目标样本的分子部分(即,一旦收集器部分102积累了所述部分,则传感器部分104可以立即响应该部分的存在而感 测到该部分的存在性或属性)。因此,除了具有收集和分析少量样本的能力之外,系统100本身可以作为显微系统或者其他相对小型的系统。此外,通信或控制部分109可以提供实时、即刻或者其他形式的瞬时指示,或者样本收集和分析报告。例如,报告器部分110可以有选择地发送信号或者提供有关目标样本收集、检测和/或分析的其他适当指示。此外,控制器部分111可以对样本收集、分析、报告和/或清除提供适应性控制,以及根据这些行动提供其他信息,诸如收集或分析的趋势的指示。例如,控制器部分111可以根据被收集和分析的目标样本部分的细微存量处理或以其他方式提供收集量的指示或者收集率。在一些实施例中,控制器111可以包括处理器和/或存储器,所述存储器用于存储计算机可读的指令以及用于存储有关收集和分析的信息(例如,样本收集的趋势、速率和/或数量;样本类型;样本收集位置等)。通信部分109可以向遥控器发送信息和从其接收信息,包括例如响应于遥控器而采取具体的行动。此外,通信部分109可以包括内部时钟或者外部时钟,用于指示目标样本采样速率(例如,收集和/或清除)。此外,正如以下详细描述的,系统100可以用于或者布置于类似系统的网络或者矩阵中,所述类似系统可以彼此通信以及与中央控制器通信。图2A是根据本公开的实施例配置的过程或方法200的流程图。方法200可以由以上参照图I所述的一个或多个系统100实施、控制或者以其他方式实现。参照图2A,方法200包括收集部分的目标样本(方块222)。正如以下详细描述的,收集所述部分的目标样本可以包括收集或积累目标样本的微观部分,诸如例如目标样本的分子尺寸的部分。正如以下进一步描述的,图I的收集器部分102可以利用多种技术,包括例如任意以下技术和/或应用,来收集目标样本用于分子过滤的专门设计的表面;利用折射系数进行光学分析、毛细作用、热学分析、吸附作用、吸收作用、粘附收集、疏水和亲水属性分析、纳米无线频率调制等等。可以应用于图I的收集器部分102的这些技术中的若干种,以及若干代表性的环境,将在下面参照剩余附图进行详细描述。如图2A所示,在收集了所述部分的目标样本之后,方法200进一步包括感测目标样本的一种或多种属性(方块224)。方法220的感测可以由图I的系统100的感测部分104来实施,该感测部分包括检测器部分106和分析器部分108。例如,并且正如示出了图2A所示方法200的一部分的图2B所示,方法220的感测步骤(方块224)可以可选地包括检测目标样本的一种或多种属性(方块225)以及分析目标样本的一种或多种属性(方块227)的子步骤或子流程。在一些实施例中,检测被收集的样本的存在性或者检测积累体积足够多的目标样本,足够满足感测目标样本的目的。但是,在其他一些实施例中,可能希望或者具有优势的是,针对具体属性或者指示器而分析所述部分的目标样本。此外,感测样本的一种或多种属性的步骤可能仅需要少量或者分子尺寸的部分的目标样本。在另一些实施例中,方法220的感测步骤(方块224)可能取决于收集所述部分的目标样本(例如,在方块222)所用的机制或方法。此外,感测可以包括分析由目标样本收集率所指示的趋势或者目标样本的特定化学性的比较评估。以下详细描述用于感测(例如,检测和/或分析)目标样本的适当部件和配置的若干实施例。方法220进一步包括报告所述部分的目标样本的检测和/或分析的指示(方块226)。方法220的报告步骤可以由图I的系统的报告器部分110来实施。在一些实施例中, 报告可以包括向控制器或另一个类似系统发送或发射信号(例如,经由有线或无线媒体),指示被检测的目标样本的存在性或者目标样本的一种或多种属性的分析结果。在其他一些实施例中,信号可以包括响应于感测到目标样本的适当行动的指示。例如,信号可以包括关于涉及目标样本的预防性维护或安全性的信息,以及涉及目标样本的位置、数量、浓度或者其他属性的信息。此外,报告信号可以随着感测目标样本而立即发送或者以其他方式实时发送,或者报告信号可以存储起来并且随后发射。下面将详细描述用于报告目标样本的检测或分析的指示的适当部件和配置的若干实施例。方法220可以进一步可选地包括清除至少一部分被收集的目标样本(方块228)。清除可以由图I的系统100的清除器部分112来实施。在一些实施例中,被收集的目标样本部分可以被清除或消除,以允许另外收集新的目标样本部分。但是,在另一些实施例中,目标样本可以不清除。下面将详细描述用于清除目标样本的适当部件和机构的若干实施例。此外,根据本公开的实施例,图2A和2B所示的方法220的全部或者部分步骤可以循环重复,如箭头229所示,用于连续或自动收集、分析、报告和/或清除。正如下述,本公开的实施例包括允许收集和分析微观目标样本用于实时报告和适应性控制的独特特征。B.可以用于系统的收集器、传感器、报告器和/或清除器的结构构造的实施例和特征正如以上参照图I至2B所述,收集器部分102配置成采集、积累、吸引或者以其他方式收集部分的目标样本。根据本公开的一些实施例,收集器部分102可以至少部分地利用同时提交的、题为 “ARCHITECTURAL CONSTRUCT HAVING FOR EXAMPLE A PLURALITY OFARCHITECTURAL CRYSTALS” (代理人文档No. 69545. 8701. USOO)的美国专利申请中公开的结构构造来实现。例如,结构构造可以由晶体的合成矩阵表征构成,该矩阵表征可以专门设计用于实现希望的(I)热学属性、(2)电磁、光学和声学属性、(3)催化属性、(4)毛细属性、和(5)吸附属性。结构构造可以设计成针对特定的应用诸如收集预定的目标样本而采用一些或者全部这些属性。该结构构造的行为取决于其成分、位于其料层上的表面结构、其表面取向、其掺杂剂以及施加在其表面上的涂层(包括催化剂)。当其配置成料层时,其行为还取决于其料层厚度、其料层之间的间隔件、分隔其料层的距离以及用来支撑其料层和/或分隔其料层的装置。结构构造是设计成便于纳米级微观处理的宏观结构。从宏观的角度来看,它可以配置成具有特定的密度、弹性模量和/或截面模量。并且它可以设计成从微观的角度来看,它可以用作分子处理器、电荷处理器和/或生物处理器。至少部分地由用于收集一部分目标样本的结构构造构成的收集器部分102可以以多种方式进行配置。例如,设计者可以将其布置成实体块(例如,布置成彼此叠置的多个单原子厚度的料层),布置成多个间隔开的料层,这些料层分别像一个原子那样薄,或者布置成能通过其展现期望的属性的其他结构。设计者也可以利用物质掺杂所述结构构造或者涂覆其表面,掺杂和涂覆分别导致其行为方式不同于原本应有的方式。示意性地,图3A是结构构造的晶体矩阵表征的料层330a的分子示意图。料层330a可以包括碳、氮化硼或者另一种适当物质。例如,晶体矩阵表征100可以是石墨烯层。类似于图IA所示的晶体矩阵表征料层可以通过定制所述料层而配置成结构构造,诸如掺杂所述料层或者将该料层与其他料层布置成特定的结构以便产生的构造展现特定的属性。形成结构构造的晶体矩阵表征的料层330a可以配置成叠置在一起形成比I个原子更厚的料层(例如,石墨烯叠置形成石墨)和/或彼此间隔开特定的距离。此外,结构构造的料层可以采用不同方式相对于彼此 取向。图3B是包括叠置在图3A的晶体矩阵表征的第一料层330a上的晶体矩阵表征的第二料层330b的结构构造的示意性分子图(第一料层330a在图3B中以虚线示出)。联合参照图3A和3B,料层由石墨烯构成,石墨烯是原子厚度的平坦碳片。在一些实施方案中,除了碳之外,单原子厚度的晶体矩阵表征的片材还由另一种物质构成,比如氮化硼。在进一步的实施例中,结构构造可以配置成实体块。实体块结构构造可以由例如石墨或氮化硼构成。配置成实体块的结构构造包括叠置在一起的多个单原子厚度的料层。配置成实体块的结构构造被专门定制,意即它被改变而具有特定的行为方式或者发挥预定的功能。在一些实施方案中,通过掺杂或者通过将其单原子厚度的料层相对于彼此以特定方式取向来定制实体块。在一些实施方案中,结构构造的第一和第二料层配置成从上方观察的时候,第一料层的原子和第二料层的原子垂直对齐。例如,由以此方式对齐的两个料层构成的结构构造的分子,在从上方观察时,将看起来像图3A的结构构造的第一料层330a。在另一些实施例中,第一料层可以相对于第二料层旋转30度。在一些实施方案中,结构构造的第一料层包括第一物质,诸如碳,而结构构造的第二料层包括第二物质,诸如氮化硼。由不同物质构成或掺杂的料层可能看起来不平坦,因为较大的分子使得平坦表面翘曲。正如以下进一步详述,结构构造的一些属性受到其料层相对于彼此的取向的影响。例如,设计者可以相对于构造的第二料层旋转或偏移构造的第一料层,以使该构造展现特定的光学属性,包括特定的光栅。此外,通过将分子移动到特定取向的热处理,或者通过剥落过程中的晶体扭矩,在料层沉积时施加跟踪晶体改性剂,诸如氖、氩或氦,结构构造的料层可以相对于彼此取向在某位置(即,如以上参照图IA-C讨论的偏移和/或旋转)。根据本公开的实施例配置的结构构造可以由单一物质(例如,石墨烯、氮化硼等)构成,或者它可以通过掺杂其他物质或者与其他物质反应而定制。例如,由石墨烯构成的结构构造可以具有与硼反应的区域,从而形成化学计量的和非化学计量的子集。石墨烯可以利用氮进行定制,并且可以由具有氮界面的石墨烯和氮化硼石墨烯两者构成。在一些实施例中,可以在该结构构造的基础上构造化合物。例如,从氮化硼界面,设计者可以构造镁铝硼化合物。通过以这些方式定制结构构造,较之仅由一种物质构成的构造,设计者可以创建一种展现不同属性的构造。包括彼此间隔开的平行料层的结构构造能产生广泛的属性和实现许多效果。例如,图3C是配置为平行间隔开的料层331的结构构造330c的截面侧视图,该构造可以由任意数量的物质构成,诸如石墨烯、石墨或氮化硼。平行料层331可以是矩形、圆形或者其他适当形状。在图3C中,料层331包括开口或孔,通过所述开口或孔,支撑管332支撑结构构造330c。料层331分别隔开距离D,在料层331之间产生区域333。结构构造330c的单个料层331可以制作成具有任意适当厚度。在图3C中,例如,每个平行料层331可以是单原子厚度。例如,每个料层可以是石墨烯片材。在一些实施方案中,结构构造的料层比一个原子更厚。在另一些实施方案中,料层331可以具有不同厚度,以及间隔开不同的距离。例如,图3D是具有厚度或宽度不同的多个料层331的结构构造330d的截面侧视 图。在一些实施例中,料层331分别比一个原子更厚。但是,在另一些实施例中,一些料层331可以仅有若干个原子的厚度,而另一些料层331可以更厚,诸如20个原子以上。更具体地说,料层331可以包括相对较薄料层331的第一组332a,和相对较厚料层331的第二组332b。根据图示实施例的额外特征,第一组332a的料层331可以包括相邻料层331之间的第一距离D1,第一距离D1大于第二组332b的相邻料层331之间的第二距离D2。这些间隔距离相应地在相邻料层331之间产生区域333。图3E是具有厚度大致相同但彼此间隔开不同距离的多个料层331的结构构造330e的截面侧视图。例如,第一组332a的料层331可以彼此间隔开第一距离D1,第一距离Dl小于间隔开第二组332b的对应料层331的第二距离D2。图3E还示出了相邻料层331之间的区域333。区域333根据料层331之间的间隔距离确定尺寸,因此例如在第二组332b中产生了比在第一组332a中更大的区域222。图3F由晶体矩阵表征的同心管状料层331构成的结构构造的截面等轴局部视图。例如,结构构造330f的第一料层331a为管状,并且具有大于相邻第二料层331b的直径。结构构造350f可以包括以此方式间隔开的多个同心料层。接下来转到图3G,图3G是示出相邻料层331之间的若干间隔件334的结构构造330g的侧截面局部侧视图。在一些实施例中,间隔件可以由钛(例如,形成带有石墨烯料层的碳化钛)、铁(例如,形成带有石墨烯料层的碳化铁)、硼、氮等构成。为了形成图3G所不的结构,在一些实施方案中,在每个料层331的表面上对气体进行脱氢,从而产生间隔件334,其中每个分子被脱氢。例如,在结构构造330g的料层331剥落之后,可以在料层331的表面上加热甲烷,这将导致甲烷分子分裂并在料层331的表面上沉积碳原子。被脱氢的分子越大,则产生的间隔或者间隔件334越大。例如,每个分子具有3个碳原子的丙烷,将比每个分子具有I个碳原子的甲烷产生更大的间隔件334。在一些实施方案中,间隔件334是表面结构,比如纳米管和纳米卷,这种表面结构传递热量并且有利于将物质加载到结构构造330g中。包括这种类型的表面结构的结构构造在美国专利申请No. 12/857,515中描述,该专利申请通过全文引用而包含在本文中。包括上述任意结构的结构构造可以采用各种方式形式,正如在同时提交的、题为“ARCHITECTURAL CONSTRUCT HAVING FOR EXAMPLE A PLURALITY OF ARCHITECTURALCRYSTALS”(代理人文档No. 69545. 8701. US00)的美国专利申请以及美国专利No. 6,503, 584以及待决美国专利申请No. 12/857,515中详细描述,这些专利文件通过全文引用而包含在本文中。这些方法可以包括例如通过在框架内对气体(例如,烃)脱氢形成第一料层,并且在间隔件或表面结构上将气体脱氢形成第二料层之前,对物质(例如,碳化钛)脱氢而在该料层的内侧表面上形成间隔件,由此形成料层或者结构构造。然后以类似方式沉积后续料层。其他方法可以包括将单晶体加工成期望形状并将单晶体剥落成料层。其他方案可以包括将流体(例如氢)扩散到晶体内并从该晶体剥落料层。这些料层可以从相邻料层离开预定距离进行剥落。此外,间隔件或表面结构也可以沉积在料层之间。文中公开的以及同时提 交并通过全文弓I用包含在本文中的、题为“ARCHITECTURALCONSTRUCT HAVING FOR EXAMPLE A PLURALITY OF ARCHITECTURAL CRYSTALS”(代理人文档No. 69545. 8701. USOO)美国专利申请中公开的结构构造的若干特征可以具体地设计,以实现如上参照图I所述的系统100的收集、感测、报告和/或清除特征。例如,结构构造可以设计成使其具有特定的密度、弹性模量和截面模量。这些宏观特征影响结构构造在微观层面展现出的属性。更具体地说,结构构造的密度定义为每单位体积的质量,密度可能受到许多不同的参数的影响。一个参数是晶体矩阵表征的成分。例如,氮化硼晶体一般密度高于石墨晶体。另一个参数是分隔结构构造的料层的距离。增大或减小料层之间的间隔将相应地增大或减小结构构造的密度。在其料层被间隔件隔开的实施例中,结构构造的密度也将大于料层被类似地隔开但是不使用间隔件的实施例。添加到结构构造中的掺杂剂也将影响密度(例如,掺杂剂含量越高,则相应的密度越大)。可以具体设计的结构构造的另一种属性是弹性模量,弹性模量是在其受到作用力时发生弹性变形的趋势(例如,定义为其弹性变形区域中的应力-应变曲线的斜率)。类似于其密度,结构构造的弹性模量部分地取决于其料层厚度、它们的间隔以及它们的成分。它的弹性模量也将取决于料层如何相对于彼此固定。例如,如果料层被中心管或者支撑件所支撑,则单个料层一般弹性变形的量大于它们相对于彼此利用间隔件固定的情况。当间隔件将两个料层相对于彼此固定时,在压力施加在任一料层时,每个料层将增强另一个相应的料层,从而衰减由给定作用力所导致的偏转。每个料层彼此增强的量部分地取决于料层之间间隔件的密集度以及间隔件将料层保持在一起的刚性有多大。可以具体设计的结构构造的额外属性是截面模量,截面模量是结构构造的强度或者截面的第二面积矩相对于极限压缩纤维距离中性轴线的距离的比率。结构构造的截面模量将取决于结构构造的每个料层的尺寸和形状。结构构造的密度、弹性模量和截面模量,以及其他宏观属性,可以在整个结构构造上保持恒定,或者它们可以按照区段或者周期性地变化。正如结构构造的密度、弹性模量或者截面模量可以影响结构构造所展现的属性,按照区段或者周期性地改变这些宏观特征可以导致结构构造在构造的不同部分或者区段表现不同。例如,通过让结构构造的料层分隔量在第一区段大于在第二区段(从而赋予其在第二区段比在第一区段更大的密度),结构构造可以制作地倾向于在第一区段加载、收集或者以其他方式积累第一物质,而在第二区段加载、收集或者以其他方式积累第二物质。C.系统的收集器部分的实施例和特征正如以上参照图I所述,系统100的收集器部分102配置成加载、积累或者以其他方式收集部分的目标样本(例如,微观或分子部分)。收集器部分102可以至少部分地由以上详细描述的结构构造构成。正如以下进一步详细描述,收集器部分102可以通过各种机制和/或方法收集标部分靶样本。I.有关加载和卸载收集器部分的特征在一些实施例中,收集器部分102可以配置为选择性表面,该选择性表面可以有选择地加载或积累部分的预定目标样本。更具体地说,在一些实施例中,其中收集器部分是带有多个间隔开的料层的结构构造,则这些料层可以配置成将目标物质加载到料层之间的区域中。当目标物质吸收到料层的表面上或者吸收到料层之间的区域中的时候,目标物质的分子加载到到平行的料层之间。例如,回头参照图3C,结构构造300c可以将存在的物质分子通过支撑管332加载到料层331的内周边,进入区域333。例如,支撑管332可以将目标物质通过支撑管332中的孔眼供应到区域333。在一些实施例中,结构构造配置成有选择地加载特定的分子或多种分子,并且避免其他非目标物质分子(例如,加载第一目标分子而抑制加载第二非目标分子)。例如, 第一组料层可以配置成让它们离开特定的距离,有利于选择性地加载第一分子而非第二分子。类似地,第二组料层可以配置成让它们离开特定的距离,有利于加载第三分子而非第二分子。料层边缘处的表面张力也影响分子是否加载到结构构造中。例如,如果第一组料层已经加载了第一物质的分子,则加载了物质分子的第一组的内侧边缘处的表面张力可能阻止第一组料层加载第二物质的分子,但是允许第一组料层继续加载第一物质的分子。在一些实施方案中,结构构造配置成非牺牲性的。例如,非牺牲性构造可以加载和卸载物质,或者执行其他任务而不会牺牲其任何结构。在另一些实施方案中,结构构造配置成从其晶体结构牺牲原子以有利于特定的结果。例如,由氮化硼构成的结构构造可以配置成加载期望的目标样本,并且氮化硼可以与该目标样本反应。因此,来自该构造的原子将在氮化硼与目标样本的反应中牺牲掉,并且当从该构造卸载产物时,该结构构造将损失被牺牲掉的氮化硼分子。在一些实施方案中,牺牲了其结构的构造可以至少部分地被恢复。例如,由氮化硼构成的结构构造可以通过为该构造提供新的氮化硼分子并施加热量而恢复。新的氮化硼分子可以自组织成该结构构造的原始形状。因此,本文公开的实施例可以有选择地收集目标样本的特定成分,以利用色谱原理分析被收集或分开的目标样本成分。2.有关影响收集器部分的热学属性的特征影响配置为结构构造的收集器部分是否或者如何加载部分的目标物质的其中一个因素包括收集器部分的热学属性。在一些实施方案中,结构构造配置成从加载有分子的区域将热量传走。当结构构造被冷却时,它可以更快地加载分子,或者它可以比高热时加载更多的分子。类似地,可以通过向结构构造传输热量来卸载结构构造。在进一步的实施例中,被吸收、反射或隔离的热量多少可以是从目标样本“收集”的属性并且用于进一步分析。配置为结构构造的系统的收集器部分的热学属性和能力的进一步细节在下面针对收集热能和/或辐射能进行了详细描述。在一些实施例中,结构构造可以配置成收集热量或能量,热量或能量以后可以用于判断目标样本的一种或多种属性。例如,结构构造可以配置成具有影响热传导和吸收的特定热学属性。即使当其晶体料层容易传导热量时,结构构造也可以配置成具有用于传导地传输热量的或高或低的可用性。它也可以配置地让辐射热量通过构造中的通道或者其他地方传递,从该构造反射走,或者被该构造吸收。这一段描述了设计成具有特定热学行为的结构构造的各种实现方案。一些晶体物质,比如石墨烯、石墨和氮化硼,容易传导热量。在一些应用中,由这些物质之一构成的结构构造配置成在两个位置之间传输热量,或者从/向特定位置传输热量。在另一些应用中,结构构造配置成让热量可以根据需要有效地传输到该构造中或者离开该构造。由类似石墨烯的物质构成的结构构造可以快速加热或冷却。即使具有远低于金属的密度,结构构造也能比固态银、生石墨、铜或者铝传输更大量的每单位面积热量。一个原子厚度的石墨烯料层在限定碳原子之间似乎具有更多的开放空间。但是,石墨烯在原子平面内的方向上具有极高的导热性和导电性,但是照射它的白光中仅有大约
2.3%被吸收。类似地,在原子位置正交辐射的热能谱中大约2%到5%被吸收,而平行于分开的结构构造料层的辐射热射线可以被投射,且衰减甚至更少。结构构造吸收的净光量部分地取决于连续料层相对于彼此的取向。结构构造的料层取向的变化,如上所述,可以让各种新的应用成为可能。例如,辐射能可以经由更具吸收性的取向,诸如图3B所示的取向,而输送到表面以下的位置。作为另一种示例,辐射可以经由其他适当取向而被极化,并且可以通过在料层平面的方向上将该料层偏移一定的量来进一步改变这些取向,诸如针对图3A·和3B所述。在一些实施例中,通过配置结构构造,使其具有通过该构造的特定截面的高密度导热路径,结构构造可以布置成具有用于传导地传输热量的高可用性。通过配置构造,使其具有通过该构造的给定截面的低密度导热路径,结构构造可以布置成具有用于传导地传输热量的低可用性。例如,在这样的实施例中,即结构构造的第一组料层为原子厚度并且彼此隔开第一距离,而第二组料层为原子厚度并且彼此隔开比第一距离大的第二距离,第一组料层具有比第二组料层的跨度上更高密度的热通道(假设料层组跨越大约相同的距离)。因此,第一组料层可以比第二组料层具有用于传导地传输热量的更高可用性。还可以得出,在对被定位的物体或目标样本绝热方面,第二组比第一组做得更好。此外,在一些实施方案中,结构构造可以配置为平行料层,这些平行料层布置成将不与其正交的表面绝热。例如,通过将连续料层的边缘偏移特定的量,以使所述料层在抵靠平坦表面放置时与该表面形成45度角,从而结构构造可以配置成使其料层以45度接触平坦表面。在一些实施方案中,通过配置成具有较厚的料层,结构构造布置成具有用于传导地传输热量的更高可用性。结构构造可以进一步配置成收集或积累辐射能。根据本公开的实施例配置的结构构造可以布置成反射、折射或者以其他方式转化辐射能。因此,结构构造可以配置成以特定的方式与辐射热量相互作用。在一些实施方案中,结构构造配置成通过该构造中的通道传递辐射热量。辐射热量的传输可以以光速进行。例如,料层之间的间隔可以是特定距离,并且单个料层可以配置成特定厚度,以使平行于料层入射的红外能量进入并且通过料层之间的区域透射。更具体地说,这些距离和厚度可以配置成收集或者透射特定波长的辐射能。例如,为了透射特定频率的辐射能,结构构造可以由根据量子力学关系间隔开的氮化硼料层构成。类似地,如前所述,结构构造也可以配置成具体地吸收辐射能。例如,第一组料层中的料层可以间隔开特定距离,由特定的物质构成,并且具有特定的厚度,以使至少一部分入射的红外能量被该料层吸收。如量子电动力学所确定,每个单个料层或者悬浮料层的阻光度为正交辐射的2.3%。一组料层的阻光度取决于它们的间隔、结构构造的料层的取向以及料层中相对论性电子的相互作用以及间隔件的选择,诸如表面结构。由结构构造构成的收集部分也可以布置成将物体针对辐射能包括辐射热屏蔽或者绝热。在一些实施方案中,通过反射辐射能或者通过物体周围的通道透射辐射能或者将辐射能传递离开物体,结构构造将物体针对辐射热绝热。此外,结构构造的热学属性可以通过向该构造的表面增加涂层或者掺杂该构造来改变。例如,结构构造400可以在其自组织的时候进行掺杂、或者通过扩散或者离子植入而普遍增大其导热性或者在特定的区域或方向增大导热性。它可以利用金属诸如铝、银、金或铜进行涂覆,从而比原本的情况反射更多的辐射热。3.有关影响收集器部分的声学、电磁和光学属性的特征影响配置为结构构造的收集器部分是否和如何收集部分的目标物质的额外因素包括收集器部分的声学、电磁和光学属性。在一些实施例中,例如,结构构造可以制作成响应声能而展现特定的属性。例如,它们可以配置成在特定的频率发生声学和/或电磁谐振。它们还可以构造成具有特定的折射系数,并且它们可以设计成偏移入射电磁波的频率。通 过将构造布置成具有特定的结构,包括特定的密度、弹性模量和截面模量,可以控制这些属性。如上所述,这些参数可以通过改变结构构造的成分、其处理方式以及其设计方案来调节。此外,结构构造的料层可以由石墨构成,从而具有通过料层之间的间隔和/或通过间隔内增加被吸附和/或吸收的物质进行调节的折射系数。此外,在一些实施方案中,掺杂剂添加到结构构造,以改变其折射系数。例如,由氮化硼构成的结构构造可以利用氮掺杂来增大其折射系数。结构构造的声学谐振频率随着多个因素而变化。致密的结构构造较之不太致密而其他情况相同的结构构造,在更低的频率发生谐振。因此,当结构构造配置成平行料层时,较薄的料层将比较厚的料层具有更高的谐振频率。此外,堆叠地不太致密的料层(例如,料层之间距离更大)也将比堆叠地更为致密的料层具有更高的谐振频率。在边缘牢固支撑的结构构造较之在中心支撑的结构构造,将在更低的频率发生谐振。此外,弹性模量高的结构构造将比弹性模量低的结构构造在更高的频率谐振,并且截面模量高的结构构造将比截面模量低的结构构造在更低的频率谐振。此外,任意料层的谐振频率可以通过将料层直径制作地更大来降低。在一些实施例中,结构构造的全部料层设计成在相同的频率谐振,然而在另一些实施例中,部分结构构造将在不同的频率谐振。结构构造的谐振频率还取决于其成分。此外,在一些实施例中,掺杂剂和/或涂层可以添加到结构构造上,以提高或降低其声学谐振频率。结构构造的谐振频率也可以通过在料层之间增加间隔件而降低。在一些实施例中,结构构造还可以配置成在特定的频率发生电磁谐振。例如,可以对每一料层选择其密度、弹性模量和截面模量,以使该构造或者每个料层响应施加的电磁力而具有特定的谐振频率。结构构造还可以配置成吸收特定波长的辐射能。在一些实施例中,当电荷施加到结构构造时,结构构造配置成以更快的速率或者以更高的密度加载分子。例如,石墨烯、石墨和氮化硼是导电的。当电荷施加到其料层时,由这些材料构成的结构构造可以配置成以更高的速率加载分子。用于加热或冷却结构构造并用于施加电荷的实施方案在美国专利申请No. 12/857,515中公开,该专利申请通过全文引用而包含在本文中。在一些实施例中,结构构造配置成当辐射能导向该构造时,加载载或卸载物质。例如,每个平行料层之间的距离可以选择地让结构构造吸收红外波,导致料层被加热并且卸载其加载的物质。此外,在一些实施例中,催化剂可以施加在料层的外侧边缘,以有利于将物质加载到料层之间的区域中。此外,在一些实施例中,结构构造的料层间隔开,以使入射电磁波极化。而且,如上所述,结构构造可以配置成将物体针对辐射绝热。在一些实施例中,结构构造通过反射辐射能而将物体针对辐射绝热。例如,结构构造可以配置成将放置在结构构造右侧的物体针对该构造左侧的辐射绝热。例如,每个料层可以由氮化硼构成,并且间隔开以反射指定波长内的电磁辐射。4.有关影响收集器部分的选择性表面和波长偏移属性的特征影响配置成结构构造的收集器部分是否和如何收集部分的目标物质的额外因素包括收集器部分的选择性表面和波长偏移属性。在一些实施例中,例如,配置成结构构造的收集器部分可以包括这样的表面,所述表面通过(I)让具有选定取向和/或波长的一部分辐射通过和(2)再次辐射处于不同波长的一部分能量,从而定位成和/或配置成改善辐射进入收集器部分或者其他期望区域。许多因素影响结构构造是否吸收处于特定波长的辐射·能。例如,结构构造吸收处于特定波长的辐射能的能力取决于料层厚度、它们的间隔、它们的成分、它们的掺杂剂、它们的涂层和/或定位在料层之间的间隔件。在一些实施例中,结构构造配置成透射处于第一波长的辐射能而吸收并再次辐射波长不同于被接收的辐射能的能量。例如,结构构造可以配置成让料层平行于一些但不是全部入射辐射能。平行料层可以配置成通过该构造透射平行于料层的辐射能,而吸收非平行的辐射。在一些实施例中,再次辐射物质(例如,碳化硅、硼化硅、硼化碳等)涂覆在结构构造的表面上,诸如通过以所述物质喷射所述结构构造。然后,当非平行辐射接触结构构造时,再次辐射物质吸收非平行辐射并且再次辐射波长不同于接收的能量的能量。结构构造还可以配置成具有特定的折射系数(即,处于特定范围或具有精确值的折射系数)。在众多变量中,结构构造的折射系数是料层成分(例如,氮化硼、石墨等)、料层厚度、掺杂剂、间隔件以及分隔料层的距离的函数。例如,平行料层之间的距离和料层厚度,可以进行选择,以使平行料层具有特定的折射系数。此外,在一些实施例中,掺杂剂添加到结构构造以改变其折射系数。例如,由氮化硼构成的结构构造可以利用氮掺杂,以增大其折射系数。当物质加载到结构构造时,结构构造的折射系数可能变化。例如,存在于真空中的结构构造较之当氢加载到该构造并且表示为外延层和/或外延层之间的毛细管时,可以具有不同的折射系数。在一些实施例中,结构构造的第一部分的折射系数不同于该结构构造的第二部分的折射系数。例如,第一组平行料层可以具有不同于第二组料层的折射系数,因为第一组料层较薄,并且较之第二组料层中的料层以更大的距离间隔开。图4A-4C示出了配置为结构构造以有选择地透射、吸收和/或再次辐射不同波长的能量的收集器部分的若干属性。图4A例如是系统440a的一部分的示意图,系统440a包括具有主体442的收集器部分,所述主体配置为具有辐射能透射区段444的结构构造。透射区段444包括多个间隔开的料层446,所述料层可以包括文中参照结构构造的平行间隔开的料层所公开的任意属性。在图示实施例中,由箭头448指示的、一般平行于料层446透射的辐射能可以被透射或者以其他方式被允许经过主体442。经过料层446的辐射能由箭头450所指示。主体442可以吸收未通过料层446透射的辐射能(例如,相对于料层446非平行的辐射能448)。
根据图示实施例的额外特征,单个料层446可以包括涂层447 (例如,碳化硅、硼化硅、硼化碳、磷光质、荧光质等)用于再次辐射经过透射区段444的能量。例如,进入透射区段并从涂层447反射的辐射能448可以被反射或者偏移到不同于进入的辐射能的波长。例如,经过透射区段且具有不同或被改变的波长的辐射能由箭头452所指示。因此,通过(I)让具有选定取向(例如,由离开主体442的箭头450所表示)的一部分辐射448通过和(2)再次辐射处于不同波长的第二部分辐射(例如,由离开主体442的箭头452所表示),图4A所示并如上所述的实施例改善了经过主体442的辐射。图4B是系统440b的一部分的示意图,所述系统包括具有主体442的收集器部分,所述主体配置成具有辐射能反射和吸收表面449的结构构造。表面449可以配置成吸收处于特定取向(例如,大致横穿表面449)和/或波长的辐射能448,以及反射以箭 头452处的反射能所指示的辐射能448。在一些实施例中,表面449可以包括涂层(例如,碳化硅、硼化硅、硼化碳、磷光质、荧光质等)用于再次辐射能量452。例如,涂层447可以配置成再次辐射波长不同于入射到表面449上的波长的能量452。因此,图4B所示实施例能(I)吸收辐射(例如,处于预定取向和/或波长的辐射),和(2)再次辐射不同波长的第二部分辐射(例如,如离开主体442的箭头452所表示)。图4C是系统440c的一部分的示意图,该系统包括具有主体442的收集器部分,所述主体配置成具有传导和再次辐射属性的结构构造。例如,主体444可以用至少部分传导材料(例如,铜、氧化铍等)制成并包括与第二表面449相对的第一表面453。第一表面453面对由箭头448表示的辐射能。主体444配置地使其能传导辐射能448。当能量448到达第二侧449时,第二侧449可以背离第二侧449再次发射辐射。在一些实施例中,第二表面449可以包括再次辐射不同波长的能量的涂层447。例如,由箭头452表示的再次辐射的能量可以被以不同于辐射能448的波长的第二波长再次发射或者再次辐射。以上参照图4A-4C所述的波长偏移和吸收、透射、反射和/或再次辐射特征可以包括同时提交并且通过全文引用而包含在本文中的、题为“CHEMICAL REACTORSWITH RE-RADIATING SURFACES AND ASSOCIATED SYSTEMS AND METHODS”(代理人文档No. 69545. 8603. US00)的美国专利申请中描述的任何特征和部件。正如下面详细描述的,被吸收、被透射、被反射、被传导和/或被再次辐射的能量可以用于判断目标样本(即,辐射能源)的存在性和/或有关目标样本(即,辐射能)的一种或多种属性或特征。例如,在一些实施例中,辐射能可以是从目标样本发射的第一颜色的可见光,并且再次辐射的能量可以是表示目标样本存在性和/或属性的不同于第一颜色的第二颜色的可见光。此外,被透射、被吸收、被反射和/或被再次辐射的部分辐射能可以是被消除或者以其他方式从目标样本分开的成分。5.有关影响收集器部分的催化属性的特征影响配置成结构构造的收集器部分是否和如何收集或加载部分目标物质的额外属性包括收集器部分的催化属性。例如,结构构造可以配置成以能改善收集或加载部分的目标样本的各种方式催化一反应。更具体地说,由平行料层构成的结构构造可以通过控制反应温度、通过具有催化该反应的料层的特定结构,或者通过提供催化该反应的物质而在其料层边缘催化化学反应或生物反应。结构构造还可以通过提高反应速率、延长反应、允许反应或者通过其他有利于反应的方式,催化一反应。可以改变许多变量来催化特定的反应。在一些实施例中,例如,结构构造的单个料层的厚度选择为催化一反应。此外,料层之间的距离和/或料层成分(例如,氮化硼、碳等)可以选择为催化一反应。在额外的实施例中,掺杂剂可以添加到结构构造,或者具有特定化学性的间隔件可以添加在料层之间,以催化特定的反应。平行料层可以通过将热量传递到发生反应的区域而催化一反应。在另一些实现方案中,平行料层通过将热量从发生反应的区域带走而催化一反应。例如,热量可以传导地传递到平行料层中(例如全文包含在本文中的美国专利申请No. 12/857,515中所讨论)以便向料层的支撑管内的吸热反应提供热量。在一些实现方案中,平行料层通过从发生反应的区域消除反应产物来催化一反应。例如,平行料层可以从中央支撑管内吸收来自生化反应的醇类,在中央支撑管内,醇类为副产物,由此将醇类排出到平行料层的外边缘,并且延长生化反应中涉及的微生物的生命。在一些实施方案中,第一组平行料层可以配置成催化一反应,而第二组平行料层配置成吸收和/或吸附反应产物。例如,第一组料层可以配置成通过允许两个分子之间的反应而催化化学反应,而具有不同间隔和/或厚度的第二组料层可以配置成吸附反应产 物,因此延长化学反应的长度。在进一步的实施方案中,结构构造可以被电气充电(例如,如美国专利申请No. 12/857,515中所讨论)以催化接近结构构造的反应。例如,结构构造可以配置成在特定的频率发生声学谐振,导致分子本身以催化一反应的方式取向。此外,分子可以取向为允许化学反应或者它们吸收到料层上。在一些实施方案中,结构构造配置成发射或吸收辐射能以催化一反应。例如,第一组料层可以配置成吸收辐射能并将辐射能转化为热量,具有不同间隔和/或厚度的第二组料层利用所述热量以有利于吸热反应。在另一些实施方案中,催化剂添加到结构构造以催化接近该构造的反应。催化剂可以施加在该构造的料层边缘或者该构造的表面上。例如,氧化铬可以施加在结构构造的边缘,并且氧化铬可以催化甲烷与臭氧之间的化学反应,其中臭氧利用离子化紫外辐射或者感应火花从空气中产生。6.有关影响收集器部分的毛细属性的特征影响配置成结构构造的收集器部分是否和如何收集或加载部分的目标介质的额外因素包括收集器部分的毛细属性。例如,带有平行料层的结构构造可以布置成或配置成让液体在其料层之间经由毛细作用而移动。可以改变许多变量中的任意变量以使平行料层可以相对于特定物质产生毛细作用。在一些实施方案中,料层成分、掺杂剂、间隔和/或厚度经过选择,以使结构构造相对于特定的目标物质产生毛细作用。例如,单个料层之间的距离经过选择,以使结构构造相对于特定物质产生毛细作用。在特定实施例中,结构构造的每个同心料层可以彼此间隔开用于水的毛细距离,并且结构构造可以迫使水经由毛细作用爬上所述构造。结构构造可以由具有用于第一分子的第一毛细距离或间隔的一些料层和具有用于第二分子的第二毛细距离或间隔的另一些料层所构成。例如,第一组料层可以相对于第一分子诸如丙烷具有毛细距离,而具有间隔和/或厚度不同的单个料层的第二组料层可以相对于第二分子诸如氢产生毛细作用。此外,在一些实施例中,结构构造配置地让热量可以传入或传出所述构造,以有利于毛细作用。在另一些实施例中,可以向结构构造的料层施加电荷,以有利于毛细作用。
图5A是根据本公开的实施例配置的系统560a的示意侧视图。系统560a包括配置成具有相对于第二输出端部分562b的第一输入端部分562a的热管561。第一和第二端部分562可以分别包括结构构造的多个间隔开的平行的第一料层564。在图示实施例中,位于端部分562的第一料层564取向方向与热管561的纵轴线对准或者与其大致平行。热管561进一步包括横向背离热管560a的中间部分延伸的多个间隔开的平行的第二料层566。第二料层566从热管561以大致横穿热管561纵轴线的角度延伸。第一料层564和第二料层566可以从外部通入所述系统,并且配置成有选择地吸引预定的材料或部分的样本进入或离开热管560a。这些料层也可以将热量传入和传出热管561。例如,在操作中,热量可以在第一端部分562a处引入所述热管561。处于第一端部分562a的热量导致工作流体至少部分地蒸发。产生的蒸汽从第一端部分562a到达第二端部分562b并且在第二端部分562b处冷凝。冷凝的部分工作流体从第二端部分562b返回第一端部分562a。作为工作流体在第二端部分562b处冷凝的结果,热量被传出热管560a的第二端部分562b。根据图示实施例的一些特征,当热量离开热管560a时,至少部分的目标样本或者预定成分也可以经由第一料层564在第二端部分562b从溶液中消除(例如,蒸汽),因为它被带到热管560a的顶端或者第二端部分562b。此外,随着冷凝物从第二端部分562b到达第一端部分562a,第二料层566除了可以将来自冷凝物液体的部分的目标样本或预定成·分转移之外,还可以传递热量。例如,在一些实施例中,热管561内的工作流体可以是水,并且第一料层564和/或第二料层566可以从水中去除甲烷或者其他可溶物(例如,二氧化碳)。在另一些实施例中,第一料层564和/或第二料层566可以以预定的掺杂剂或材料预加载,以调节沿着这些表面吸附的表面张力。图5B是根据本公开另一种实施例配置的系统560b的示意侧视图。系统560b包括热管561,该热管在结构和功能方面类似于以上参照图5A所述的热管。例如,如图5B所示,热管561包括封闭在第一端部分562a和相对的第二端部分562b之间的工作流体。第一和第二端部分562包括结构构造的第一料层,它们取向方向大致平行于热管561的纵轴线。该热管进一步包括沿着大致横穿热管纵轴线的方向径向延伸到热管561中的第二料层566。第二料层566相应地设置成至少部分位于热管内,并且可以配置成加载或者以其他方式从工作流体中去除或者收集样本部分。文中公开的方法和系统的毛细吸附属性可以包括同时提交并通过全文引用而包含在本文中的、题为 “THERMAL TRANSFER DEVICE AND ASSOCIATED SYSTEMS ANDMETHODS” (代理人文档No. 69545. 8604. US00)的美国专利申请中描述的系统的任何特征。7.有关影响收集器部分的表面结构的特征在进一步的实施例中,结构构造可以在其表面上包括一种或多种表面结构,以有利于向结构构造加载目标样本物质或者从结构构造卸载目标样本物质的数量和速率。正如共同待决的美国专利申请No. 12/857,515所述,表面结构可以是由它们所施加的料层的晶格结构所外延取向的。如上所述,在一些实施例中,它们通过在料层表面上对气体脱氢而形成。在另一些实施例中,在相邻的料层配置到构造上之前,它们涂覆在在料层上。表面结构可以包括纳米管、纳米卷、纳米花和其他结构。更具体地说,纳米花结构可以将物质分子吸收到该结构内的区域中,并且将目标样本分子吸附到其表面上。在一些实施例中,表面结构允许结构构造加载物质的特定化合物。在一些实施例中,表面结构允许结构构造更快速地加载和/或卸载物质分子。在一些实施例中,特定类型的表面结构优先于另一种表面结构。例如,在一些实施例中,纳米卷可以优先于纳米管。纳米卷可以比纳米管更快速地加载和卸载物质分子,因为纳米卷同时加载和卸载多个物质分子,而纳米管同时仅加载或卸载一个分子。在一些实施例中,第一类型的表面结构加载第一化合物,而第二类型的表面结构加载第二化合物。在一些实施例中,表面结构由导电材料构成和/或具有用于热传递的高可用性。在一些实施例中,表面结构由碳构成。在一些实施例中,表面结构可以取向为大致垂直于结构构造的料层表面。在另一些实施例中,至少一些表面结构的取向不垂直于它们所施加的表面。例如,至少一些表面结构可以相对于结构构造的相应表面,取向为不同的角度(例如,除了 90度角之外)。表面结构可以取向为特定的角度,以增大表面结构的表面积,增大被该表面结构收集或加载分子的速率,增大该表面结构的加载和收集密度,和/或倾向于收集或加载特定化合物的分子,或者用于其他原因。在一些实施例中,表面结构可以配置在结构构造上,并且由不同于结构构造的材料构成。更具体地说,结构构造的料层可以由石墨烯构成,而表面结构可以由氮化硼构成。 表面结构可以由其他材料构成,诸如氢化硼、乙硼烷(B2H6)、氢化铝钠、MgH2、LiH、氢化钛和/或其他金属氢化物或者其他适当的化合物。
_4] P.系统的感测部分的实施例和特征如上参照图I所述,系统100的传感器部分104配置成检测和/或分析一个或多个部分的目标样本(例如,微观部分或分子部分)的存在性,以及检测和/或分析部分的目标样本的一种或多种属性或特征。传感器部分104可以与系统100的其他部分包括例如收集器部分102整体形成。正如以下进一步详细描述,传感器部分104,更具体地说,检测器部分106和分析器部分108,可以通过不同的机制或方法检测和/或分析目标样本的属性。例如,用于检测和分析目标样本的属性的方法和结构可以涉及用于收集或者以其他方式积累样本的方法和结构。在样本(例如,极少或分子)部分加载到结构构造的料层之间的一些实施方案中,检测和/或分析可以包括样本加载到料层之间的速率。检测和/或分析可以进一步包括样本进入到结构构造的料层之间的深度或长度。更具体地说,样本、加载速率和/或深度可以作为特定目标样本的指示,或者目标样本特定属性的指示。在进一步的实施例中,感测可以包括从目标样本有选择地去除具体成分或其他部分之后,检查剩余的目标样本的产物。在另一些实施例中,收集的光学属性可以为感测判断提供有用信息。例如,并参照以上详细描述的选择性表面,透射、反射和/或折射可以作为目标样本存在性的指示或者目标样本的属性的指示。在指导波长偏移的一些实施例中,目标样本可以在与第一颜色关联的第一波长发射能量,根据文中描述的实施例,第一波长不同于与被透射、吸收、反射和/或折射的能量的第二颜色相关的第二波长。这种波长变化或者颜色变化可以相应地提供有关目标样本的有用信息,包括例如目标样本的存在性和/或目标样本以什么制成。类似地,入射波长和发射波长的角度偏转差异可以提供帮助。例如,光电检测的材料诸如硅、镓、砷化物等,可以在结构构造中沉积成图案,以有利于被收集的辐射能的光学感测。此外,目标样本的相变温度也可以用于检测有关目标样本的信息,并且特别是参照向目标样本快速热输入。用于感测(例如,检测和/或分析)被收集的目标样本的进一步的有用技术包括感应地产生磁场或电场以观察对于目标样本的影响。例如,改变电场的频率并监测针对变化的频率的行为,可以额外地证明目标样本存在性和/或类型的判断。在另一些实施例中,以上参照图I描述的系统100的感测部分104可以包括一个或多个微处理器。例如,文中讨论的结构构造可以设计成利用以上讨论的一种或多种属性来在微观层面得出特定结果或者结论。采用结构构造的众多应用包括电荷处理器、分子处理器和/或生物处理器。配置成电荷处理器的结构构造可以用于构造微电路,检测环境中特定原子或分子的存在性,或者得出其他结果。在一些实施方案中,配置成电荷处理器的结构构造形成电路。例如,石墨烯的平行料层可以被介电材料间隔开,以使结构构造存储电荷并发挥类似电容器的作用。在一些实施方案中,结构构造可以通过以陶瓷隔离该构造的平行料层而配置成高温电容器。在其他一些实施方案中,结构构造可以通过以聚合物隔离平行料层而配置成低温电容器。在另一些实施例方案中,结构构造可以配置成处理离子。例如,结构构造可以配置有覆盖该构造的料层之间的区域的半渗透膜。该半渗透膜允许特定的离子穿过该膜并且进入该结构构造,在这里它们被检测以用于特定目的。在一些实施方案中,结构构造配置成固态转换器。
此外,在一些实施方案中,结构构造可以转换分子级的电磁波。例如,结构构造可以配置成将100BTU的白光转换成75BTU的红和蓝光。通过化学谐振白光从而将其转换成蓝光和红光,白光被波移。此外,结构构造可以由碳构成,并且选定的区域利用反应物诸如硼、钛、铁、铬、钥、钨和/或硅转化成固溶体或者化合物诸如碳化物,并且结构构造可以配置地让料层取向为将白光偏移到期望的波长诸如红光和/或蓝光和/或红外频率。配置成生物处理器的结构构造可以用于产生酶类、碳水化合物、脂类、或者其他物质。在一些实施方案中,结构构造配置成平行料层,并且它从反应区域消除生化反应产物,以使生化反应得以继续。例如,结构构造可以配置成从支撑料层的相应支撑管内的反应区域加载有毒物质,比如醇类。通过消除有毒物质,生化反应中涉及的微生物不会被杀死,并且生化反应可以不中止地继续下去。在另一些实施方案中,结构构造可以配置成从反应位置去除生化反应的有用产物,而不会中断该反应。例如,结构构造内的支撑管可以容纳产生有用脂类的生化反应,所述有用脂类被加载到该构造的料层之间的区域中并且在该区域的外边缘被卸载。因此,根据这些实施例,生化反应可以继续,而有用产物被去除。E.系统的通信和控制器部分的实施例和特征正如以上参照图I所述,系统100的包括报告器部分110和/或控制器部分111的通信和控制器部分109配置成提供有关目标样本收集、检测和/或分析的实时或自动信号或其他适当的指示。报告器部分110可以至少部分地由以上详细描述的结构构造构成。在一些实施例中,报告可以包括向控制器或者另一个类似系统发送或发射信号(例如,经由有线或无线媒体),指示被检测的目标样本的存在性或者目标样本的一种或多种属性的分析结果。在另一些实施例中,该信号可以包括响应于感测到目标样本而采取适当行动的指示。例如,该信号可以包括有关目标样本的针对预防性维护或安全性的信息,以及有关目标样本的位置、数量、浓度或其他属性的信息。此外,报告信号可以与感测目标样本同时发送或者以其他方式实时发送,或者报告信号可以存储起来并在以后发射。用于报告目标样本检测或分析的指示的适当部件和配置的若干实施例以下将会详细描述。此外,结果报告可以针对被获取的具体目标样本进行定制。例如,报告信号可以包括有关目标样本的诊断或预防信息。传达目标样本分析结果可以提供若干优势。例如,通信可以是实时的,并且建立在微观部分的目标样本之上。这显著区别于传统检测技术,在传统检测技术中,可能需要获取相对较大部分的样本,将样本送到实验室,并且等待分析结果,始终存在污染样本的威胁。根据一些实施例,结构构造可以包括如上详细描述的微处理器。在一些实例中,来自一个或多个光学传感器的电流可以与微处理器通信,以发射信号或提供另一种适当的结果指示。此外,结构构造可以包括用于发射结果信号的一种或多种纳米无线电。所述系统可以相应地在本地提供结果信号或者从所述目标样本源远程提供结果信号。F.系统的清除器部分的实施例和特征如上参照图I所述,系统100的清除器部分112配置成清除、卸载或者以其他方式消除被收集的部分(例如,微观或分子部分)目标样本。清除器部分112可以至少部分地由如上详细描述的结构构造构成。此外,清除器部分112可以与文中所述该系统的任何 其他部分集成,包括例如收集器部分102、传感器部分104和/或报告器部分110。在一些实施方案中,清除器部分112用来消除被收集的目标样本的机制或方法可以涉及或者取决于用于收集或加载目标样本的机制或方法。用于清除目标样本的适当方法包括例如向保持目标样本的结构构造部分施加压力梯度。这种压力梯度可以包括例如释放压力或者增加压力,例如来自电解作用、机械泵等。在进一步的实施例中,可以利用含水和不含水介质实施微电解,以清除或以其他方式抽出目标样本。例如,电解介质可以根据目标样本的成分进行选取。根据本公开的额外实施例,预定气体或流体可以被图I所示清除器部分112用来从收集器部分102清除或冲洗积累的目标样本。在一种实施例中,例如,氢可以用于清除结构构造的间隔开的料层之间的收集区域。此外,当氢冲洗或清除收集区域时,至少一部分氢可以保留在这些区域中。保留的或被加载的氢可以具有第一亲和能,以保留在这些料层之间,但是保留的氢可以被具有大于第一亲和能的第二亲和能的另一种被收集的目标样本所取代,从而加载到结构构造的料层之间的收集区域中。在另一些实施例中,从收集器部分102清除积累的目标样本可以通过等离子、电容、氢、氧和/或蒸汽冲洗收集器部分102来实现,或者以此提供协助。G.用于收集、感测、报告和或清除部分目标样本的系统、部件和方法的额外实施例根据本公开的额外实施例,文中公开的系统和方法可以用在多种环境中。例如,用于收集微观部分的目标样本、感测(例如,检测样本存在性和/或分析样本属性)、报告感测的指示和/或清除目标样本的系统,可以在各种环境中且针对不同的目的来实施。文中公开的实施例可以使用一个或多个传感器,包括例如带有如上参照图I所述的收集器、传感器(例如检测和分析)、报告器/控制器、和/或清除器部分的传感器。例如,文中所述系统、传感器以及相关报告,可以是互联系统或者网络的一部分。例如,图6A是根据本公开的实施例配置的网络或系统630的示意图。在图示实施例中,系统630包括具备文中所述特征的多组收集器/传感器/报告器/清除器(“传感器”),例如包括以上参照图1-2B所述的系统100。参照图6A,例如,系统630包括第一节点或组631a的第一传感器600a,第二节点或组631b的第二传感器600b,和第三节点或组631c的第三传感器600c。其中一些传感器600可以彼此连接,或者以其他方式配置成经由有线连接633而彼此通信。但是,另一些传感器诸如以第三传感器600c示意性地表示,其中任何传感器可以无线通信。根据图示实施例的额外特征,第一组631a包括耦接(例如,有线地、无线地等)到一个或多个第一传感器600a的第一控制器632a。此外,第三组632c包括无线地耦接到一个或多个第三传感器600c的第三控制器632c。此外,任意这些控制器和传感器可以耦接(例如,有线地、无线地等)到另一组中的其他传感器和/或控制器。此外,若干传感器600可以定位在相同的结构部件上或其附近,目的在于收集和分析相同的目标样本。但是,在另一些实施例中,不同的传感器600可以定位在不同的位置或者不同的结构上,目的在于收集和分析有关不同目标样本的数据。在另一些实施例中,其中一个控制器632可以作为用于整个系统全部组631或者全部传感器600的控制器来操作。此外,一个或多个控制器632可以作为中继来操作,以便传达信息和/或从遥控器接收指令或 信息。根据本公开的额外实施例,系统600可以缩放而在任意尺度的环境中收集、分析和传输数据,包括例如在国际或全球环境中。图6A所不的系统630相应地不出了互联的传感器600和控制器632的网络或系统,所述传感器和控制器可以配置成彼此通信和/或为不同的环境提供反馈。例如,图6A所示传感器600可以用在不同的系统、应用和/或环境中,诸如学校、医院、公共交通工具(飞机、公共汽车、火车、地铁等)中。系统630可以额外地用于这样的应用,诸如质量保证、预防性维护、安全性(包括趋势分析)、危险警告(包括关闭程序)、化学鉴定和监管、环境监测、国土安全、危险材料运输和监测、污染检测系统等。此外,图6A所示系统630相应地示出了互联传感器600和控制器632的广域网,该广域网可以配置成允许区域、国家、国际全球网络的缩放性,用于微观化学采样的数据获取、信息处理、趋势分析,和/或涉及地球学、环境保护、公共健康和经济的预测。任意传感器600可以是地理传感器,这种传感器可以定义为接收和测量可以用作地理参考的环境刺激的任意设备。这种地理传感器包括惯性或加速度传感器,以提供设备或系统运动的记录,包括例如地震和更长期运动。更具体地说,文中公开的一个或多个传感器或者地理传感器可以由行经不同位置的设备所携带。所述传感器和/或地理传感器相应地允许针对每次行程的时间和每次事件的位置查询和验证设备行程,从而利用例如地震数据提供设备位置和/或行程的区别标识或特征标记。虽然在几十年内在这种例子中已经尝试了大规模传感器网络,正如世界气象组织用于测量天气和气候模式,以及Argos浮标网络用于测量世界海洋的温度和盐度,但是这些网络尚未实现实时化学监测并且局限于它们所能识别和报告的化学信息。但是,根据本公开的实施例,一个或多个网络化的传感器600和控制器632系统适用于气象船或飞机部署的传感器、海洋数据浮标传感器、地表气象站传感器、上层大气站和气象气球部署的传感器等。针对环境和/或地理空间监测来说,本公开的一项优势是允许获取可以用作地理参考的化学信息,然后以连续实时流的方式报告,或者在大范围分散的区域上对化学信息实施经过编程的时间序列批量报告,或者甚至触发式报告(诸如危险警告)。这种广泛阵列的传感器数据可以配置成通过协同工作的布局诸如互联网来传输和交换信息,从而(a)获取先前通过常规方法无法获得或者耗巨资获取的可以用作地理参考的化学信息,和(b)获取必须的数据源数量和分布,以允许将数据转化为可用于公共政策决策的信息。例如,地球观察小组(GEO)预见了全球地球观察超系统(GEOSS),GEO是由73个国家、欧盟和52个国际组织构成的政府间组织,其目标是促进构成超系统的观察系统之间的科学联系。使用文中公开的传感器网络,革新了获取地理空间数据的方式。在文中公开的实施例的另一项特别有用的应用的示例中,在2000年,联合国环境规划署(UNEP)倡导了“数字地球”项目(首先由美国副总统Al Gore在1998年提出,描述了虚拟表示地球,以便进行空间参照并且与世界数字知识库互联),以改善决策者针对经济和社会政策问题获取全球环境信息。在另一种示例中,温室气体排放控制的经济问题已经导致用于碳信用经济刺激的各种项目,以促进企业使用减少或消除有害排放的工业过程。更具体地说,对这一国际努力的广泛批评在于缺乏针对欺诈或广泛的“耍弄系统”的足够的防范,没有测量每次行程的实际时间、与地震事件的关联,并且其他环境数据经验地关联到具体的工业行为和具体的政府政策。但是,本公开的实施例通过允许微观的化学采样广泛分散,从而至少提高以下跟踪和评估的测量利益能源(生物能、生物质、风、水电、地热、太阳能等);气候(陆地、海洋和大气变化、温室气体排放、水和能量交换等);水(来源、质量和陆地水使用模式);天气(风、温度、云量、湿度、气压等的大气变化对于陆地、海洋和植物的影响等);生态系统(影响宏观和微观系统的健康和紧张性刺激,生命系统的相关需求);农业(种植模式、森林和陆地退化等);生物多样性(表示它们存活性的生态系统特征,包括生境破碎、动物和植物品种灭绝速率和因素等);灾难响应和减灾(火灾监测、陆地-海洋-大气退化、火灾早期预警、洪水、地震、滑坡、泥石流、飓风、龙卷风等);和/或公共健康(陆地、植物和动物变化、疾病媒介物、边 界条件等)。图6B是用于国土安全应用或环境以检测潜在威胁的过程或方法650的流程图,或者所述方法用于其他适合广域网监测的位置或环境,包括例如化学监管。例如,方法650包括监测环境中构成威胁的目标样本的存在性和/或属性(方块652)。被监测的环境可以包括公共环境诸如机场、火车站、公共汽车站、其他公共交通场所、购物中心、体育馆或体育场、政府建筑等。此外,参照图6A所示的网络阵列所述的多个传感器的网络可以布置在整个环境中,以监测目标样本。此外,单个传感器可以包括控制器和/或该网络可以包括与单个控制器通信的中央控制器。所述传感器可以放置在整个环境中的网络中,以有效监测目标样本。例如,参照机场环境,一个或多个传感器可以定位在行李提取处、筛查或安全检查点、步道、登机口、飞机等。威胁可能包括环境中任何不想要或不希望的目标样本,包括例如有毒或危险的目标样本。在决策方块654处,所述方法包括判断是否检测到威胁,例如通过目标样本的存在性、目标样本的一种或多种属性、目标样本的积累率或数量等来判断。在一些实施例中,单个传感器可以局部地或者独立地判断目标样本是否构成威胁。然而,在另一些实施例中,单个传感器可以向中央控制发送有关被收集和/或被分析的目标样本的数据,以使中央控制器可以判断目标样本是否构成威胁。如果没有检测到威胁(例如,由中央控制器或者一个或多个单独的网络传感器检测),则方法650包括保存有关目标样本收集和/或分析的趋势(方块656)。所述趋势可以包括目标样本积累量、积累率、积累位置、目标样本类型等。此夕卜,所述趋势可以本地保存在收集该部分的单个传感器中,以及保存在接收来自该传感器的该信息的指示的中央控制器中。保存所述趋势后,所述方法可以进一步包括从传感器清楚至少部分目标样本(方块658),并且继续监测环境(返回方块652)。在一些实施例中,为了从传感器清除被收集的部分,中央控制器可以向传感器发送信号,以指令传感器清除样本。
如果检测到威胁,则方法650包括向中央控制器报告来自传感器的威胁或趋势,和/或在本地传感器或者中央控制器处保存所述趋势(方块660)。方法650还可以包括在传感器662处保存至少一部分的被收集的部分目标样本。此外,方法650可以进一步包括清除至少一部分目标样本,以便继续或循环监测环境(方块664)。虽然上述方法650适用于国土安全环境,但是本领域技术人员应该理解,方法650可以用于其他应用或者其他环境,包括例如监测不构成威胁的物质。图6C是用于质量保证应用或环境以检测可接受等级的质量或者目标部分或产品(例如,杂质或者化学品或成分的存在性等)的另一种过程或方法670的流程图。例如,方法670可以用于这样的多种过程或子流程,其中在开始下一过程或子流程之前,发生收集、感测、报告和/或清除事件。更具体地说,方法670在过程(例如,“过程I”)中的第一过程或子流程中包括收集样本、感测样本存在性和/或属性、和报告感测结果(方块672a)。方法670还包括判断第一过程是否导致可接受等级的质量保证(决策方块674)。如果质量保证不可接受,则方法670包括发送不可接受的质量的报告、保存被收集样本的趋势(例如,积累率、数量、类型等)、清除至少一部分样本,和/或停止第一过程(方块676)。·
如果质量保证可接受,则方法670包括允许第二过程或子流程在第二过程中前进(例如,“过程2”)并且收集样本、感测样本存在性和/或属性、并报告感测结果(方块672b)。参照第二过程,方法670包括如上在674、676和/或678处所示的相同步骤。如果在第二过程中质量保证可接受,则方法670包括在另一过程(例如,“过程η”)中允许另一过程或子流程前进并收集样本、感测样本存在性和/或属性,和报告感测结果(方块672η)。第η个过程目的在于指示像设计者所希望的那样多的过程包括在方法670中。参照第η个过程,方法670包括以上在方块674、676、和/或678处所示的相同步骤。方法670可以包括循环返回第一过程或者继续执行预定数量的其他过程。在另一些实施例中,用于收集微观部分的目标样本、感测(例如,检测样本存在性和/或分析样本属性)、报告感测的指示,和/或清除目标样本的系统,可以用于各种其他应用,包括例如,包括趋势分析的安全性、包括关闭程序的危险警告、预防性维护、无尘室监测和无尘室标准维护、与现有的或外部计算机网络包括RFID系统通信、包括威胁检测、攻击源预测和识别的国土安全、贩毒、贩卖人口、恐怖分子监测、军火、醇类、和禁毒执法,以及包括容器运动、食物链运输、制造过程的运输工业、化学工业过程、医疗输送过程、药物制造过程、燃料管理和安全、天然气管线安全和质量、碳信用记录和报告、和/或嗅觉医疗诊断。针对碳信用来说,例如,文中公开的所述方法和系统提供可靠且便利地跟踪和报告碳信用的方法。在另一些实施例中,文中公开的系统和方法可以包括惯性传感器以跟踪有关传感器的位置和/或地理数据。在另一些实施例中,文中公开的系统和传感器可以用于至少以下环境中航运工业(包括,例如通过卡车、铁路和/或船舶的容器运动);天然气管线质量和安全;国土安全办公室(包括,例如恐怖分子监测、威胁检测、攻击源预测和识别、公共交通系统安全诸如机场、公共汽车、小艇、轮船、卡车、铁路、禁止贩卖人口等);军火、醇类和禁毒执法(包括,例如禁止贩卖毒品);流体供应或分布系统(包括,例如水供应和配给);食品生产、包装和运输系统;制造过程(包括,例如化学工业制造过程、药品制造过程等);医疗输送过程(包括,例如保证正确的医疗输送、嗅觉医疗诊断等);燃料管理和安全;温室气体的碳信用记录和报告;环保机构有毒排放监测;和/或无尘室监测和无尘室标准维护。在另一些实施例中,所述系统和传感器可以用于具体的医疗应用。更具体地说,在一种实施例中,例如,文中公开的传感器可以提供针对人体T细胞响应的指示,以提供身体免疫系统或免疫活动的指示。例如,医疗专业人员可以活体检查来自患者的未确诊的肿瘤,并且提供一部分肿瘤作为根据文中公开的实施例配置的传感器的输入。该传感器从微观或分子样本相应地判断是否存在与该肿瘤有关的来自患者的T细胞响应。因此,该传感器可以提供有关患者免疫系统活动和/或该肿瘤的快速和早期信息。此外,患者的T细胞响应仅仅是根据本公开的系统和方法所能实现的适当判断的一个例子。例如,在另一些实施例中,这些系统可以配置成检测身体的其他医疗情况或反应(例如,作为具体医疗状态的结果而培养具体的蛋白质等)。根据本公开的额外特征,文中公开的方法和系统包括用于配接组件中的指示器或传感器,诸如连接到一个或多个导管的配接组件。图7A例如是包括根据本公开的实施例配置的指示器的配接组件700的侧视图。虽然本公开的若干特征在以下参照配接组件700进 行描述,但是这些特征也用于任何类型的流体传送系统,包括例如挠性导管、刚性导管、软管、插头、喷嘴、喷洒器、过滤器、导液管、静脉导管、注射器、针管、内胎、内管和/或与流体传送系统或设备相关的任何类型的部件。返回到附图,图7B是基本上沿着图7A的线7B-7B截取的组件700的截面侧视图,而图7C是配接组件700的等轴视图。联合参照图7A-7C,在图示实施例中,组件700包括凸连接件708,该凸连接件与凹连接件702配合或连接到凹连接件702,以提供到导管706的连接。组件700进一步包括“告密”元件,诸如传感器或指示器,用于提供有关流经组件700的流体的警报或者其他类型的指示。在图示实施例中,例如,指示器由组件700携带在由凸连接件708与凹连接件702形成的连接部的附近。更具体地说,一个或多个指示器可以由组件携带在如图7A所示的凸连接件708和凹连接件702上的710、712、714和/或716处。此外,凸连接件708和凹连接件702可以包括配置成连接到异径管螺纹、外展口或压缩接头或其他类型的导管或者与之适应的特征。例如,第一部件或者凸连接件708可以包括一个或多个螺纹端部分,该螺纹端部分围绕组件700的纵向中轴线轴向对准。第二部件或凹连接件702可以具有凹螺纹区段710,该区段也可以围绕纵向中轴线轴向对准。此外,在图示实施例中,组件700连接到具有外展端部分的导管706,该外展端部分抵靠凸连接件708的相应表面配合。组件700还包括定位在凹连接件702和导管706之间的压缩密封件704。组装时,凹连接件702促动压缩密封件704和导管706的外展部分紧紧抵靠凸连接件708。在一些实施例中,告密元件或指示器可以包括任何类型的检测器或传感器,以便检测是否和/或何时配接组件700和导管706之间的密封件失效且流体开始发生泄漏。所述指示器可以提供视觉泄漏指示,例如以允许使用者视觉检查组件700的泄漏。例如,所述指示器可以提供染色的泄漏指示。更具体地说,所述指示器可以在被泄漏的流体激活(例如,与泄漏的流体接触)或者与添加到流经组件700的流体的活性剂接触时,释放彩色染料。在一些实施例中,例如,卤素诸如处于水中的碘、氯和/或氟可以作为活性剂,它们与指示器反应并导致从告密元件指示器704释放液体(或者其他指示)。在这种实施例中,在收集或接触相对少量的泄漏流体分子之后,指示器可以提供放大的信号。所述信号可以包括,例如,容易检测的颜色、荧光、磷光等。此外,其他警报或者告密触发事件可以包括其他信号,诸如因为流体接触或泄漏而由指示器704在指示器中感生出电容、电阻和/或磁场变化所导致的由指示器发射的无线电信号。在另一种示例中,指示器可以响应向指示器704发射的查询信号而提供初期泄漏的指示。在这些实施例中,告密元件指示器感测化学、物理、光学、无线电或热学信息,以检测初期泄漏并发射泄漏指示。此外,检测器可以发射用于预防性维护的请求信号,或者以其他方式利用用于预防性维护的回复请求与查询信号交互。这种向指示器发送的数据或从指示器发送的数据,可以包括信息,诸如配接位置、身份、流体类型、泄漏率或泄漏量、应用历史等。在一些应用中,指示器包括小型、微型或者纳米级感测电路,例如位于位置712和/或710处。所述电路可以被组件700携带在指示器附近的光电材料激活,光电材料例如携带在位置714和/或716处。因此,如果检测器利用位置710和/或712处的传感器电路检测到初期泄漏,则环境光或者查询光源可以向位置714和/或716处的光电材料提供光电功率,以激活710和/或712处的电路。以此方式,指示器可以提供无线电信号或者服务于用作环形振荡器的电路,从而产生初期泄漏信号,该信号被广播或被非接触方式查 询,非接触方式包括例如无线电波或红外线。以下引述涉及微电子学,它们通过全文引用而包含在本文中http://news. bbc. co. uk/go/pr/fr/-/2/hi/science/nature/4839088 http://www. bio-medicine. org/biology-technology-l/Toward-worlds-smallest-ra dio-3A-nano-sized-detector-turns-radio-waves-into-music-1330-l/ Universityof California at Berkeley Physics Department-Nanotube Radio !SupplementalMaterials ScienceDaily. com-" First Fully-functional RadioFrom A Single CarbonNanotube Created" Physics0rg. com-" Make Way for the Real Nanopod ResearchersCreate First Fully Functional Nanotube Radio " and http://www.nanowerk.com/spotlight/spotid = 3080. php。图8A是根据本公开的实施例配置的另一种组件800的侧视图。图8B是基本上沿着图8A的线8B-8B截取的侧视截面图,图8C是图8B中的细节8C的放大详细图,而图8D是组件800的等轴视图。联合参照图8A-8D,图示组件800配置成将管806压缩密封到接头808。例如,通过拧紧螺母802来实现对环形密封件804的压缩,以迫使密封元件804轴向运动到位于接头808的端部的锥形接收器中,并且至少部分下沉,以便抵靠管806形成至少接触密封线,和抵靠接头808形成对应的接触密封线。组件800还包括可以定位在密封元件804附近或其上的告密传感器或指示器810。指示器810用作初期泄漏的早期告密指示器,以描述和/或广播适当的维护请求信号或者以其他方式提供组件800内发生泄漏的指
/Jn ο在一些实施例中,组件800还包括位于由812、814和/或816所示位置的一个或多个检测器,如图8B所示。结合检测器812和/或814,部件816在被查询时可以响应可见光、UV和/或微波辐射,以便转发和/或以其他方式参与预防性维护信号或请求。这样允许从一个或多个检测器利用照明和/或检测任何识别信号的激活光源进行快速检查。如图8C所示,组件800还包括在一个或多个小型电路801附近带有一个或多个泄漏收集器803的检测器。电路801可以利用从本文教导的技术中选择的方式提供信号。小型、微型或纳米级电路可以类似地定位在组件800内的其他适当位置上或位置内,包括例如,根据需要位于螺母802上,以便在最早发生或指示泄漏时提供泄漏检测和信号描述的冗余保证。图9A是包括根据本公开的另一种实施例配置的一个或多个检测器、指示器、传感器等的组件950的侧视截面图。图9B是图9A的细节D的放大视图,而图9C是图9A的细节C的放大视图。图9D是图9A的组件950的分解视图。联合参照图9A-9D,组件950包括多功能弹性变形密封件和状态指示器964,弹性体环形密封件960、环形密封件支撑件958和锁止环956。说明性地,如图9A和9D所示,环形密封件964可以由相对较软的闭孔海绵聚合物制成,在变成如图9A所示的另一种截面之前,大致成卵形截面形状。环形凹槽设置在管952中,以接收锁止环956,锁止环如图所示被螺母954的环形压盖约束而不能膨胀。密封件支撑件958抵靠螺母954,以制成并促动密封件960以抵靠接头962的环形压盖和管952变形和密封,以提供保证无泄漏的密封,这种密封即使在支撑件956如图所示移动相当的轴向距离的情况下,仍然继续发挥作用。状态指示器964提供用于一种或多种预防性维护信号的方式,接头962从端盖954轴向位移,从而也导致密封环960、支撑件958和/或管952轴向位移。用于提供预防性维 护信号的例述方式包括在状态指示器964的不同区域使用至少一种不同的纹理或颜色。例如,第一区域970和/或第二区域972可以具有不同颜色,诸如白色用于区域970,而红色用于区域972。因此,如果视觉检查在状态指示器964上检测到红色挨着白色,则状态指示器964正在提供泄漏或者其他需要预防性维护的信号或指示。用于指示预防性维护信号的其他适当方式包括在如图9B所示的位置982和984放置小型、微型或纳米电路。一个或多个泄漏积累器或集中器988、990对维护请求或警报信号的早期检测和激活提供信号放大。984处的电路可以被光电供电的电路激活。因此,如果传感器电路或者检测器在位置982或986检测到初期泄漏,则环境光或查询光源提供光电功率,以激活无线电信号或者服务于用作环形振荡器的电路,以产生初期泄漏信号,该信号被广播或从检测器被非接触方式诸如无线电波或红外线刺激所查询。根据本公开的进一步实施例,用于放置小型、微型或纳米电路的额外或后备位置在位置966和/或968处示出,所述电路可以被光电电路激活。因此,如果传感器电路或者检测器在位置966和/或968处感测到初期泄漏,则检测器可以发出无线电信号或者触发参与作为环形振荡器的电路以产生初期泄漏信号,该信号被广播或者被非接触方式诸如无线电波或者红外线磁极所查询。本公开的额外实施例指导利用表面活性物质检测初期泄漏,以提高或抑制希望检测泄漏或其他流体属性的面积或区域的浸湿性。在图9D中,例如,向状态指示器964(例如,O型环)施加疏水物质和/或亲水物质,可以在状态指示器964上的不同位置提供流体浓度。根据这些实施例配置的指示器可以利用这些不同的浓度来发射或者以其他方式产生警告信号。更具体地说,参照图9D的状态指示器964,疏水物质可以施加在状态指示器964的外部赤道带区域或者绑带970处,从而至少部分地防止初期泄漏分子粘附到绑带970 (例如,绑带被初期泄漏分子“浸湿”)。此外,疏水物质可以施加到包围绑带970的状态指示器964的内部部分972的剩余部分,从而促使内部部分972浸湿,以允许许多泄漏浓度和信号发生位置。在一种实施例中,例如,响应亲水浸湿,外部绑带970和内部部分972可以提供颜色变化,释放臭味或香味分子,所述臭味分子或香味分子更容易被传感器电路982或986中的气味检测器响应亲水检测表面上的十亿分率或百万分率浓度而检测到,和/或提供从状态指示器产生的电或电光信号。正如相关领域普通技术人员所理解,具有不同浸湿性特征的状态指示器964 (或者文中公开的任何其他指示器)部分并不限于图9D所示的配置。本公开的另一种实施例提供类似于覆盖桃子的细绒毛(或者其他类型的表面纹理)的疏水浸湿能力,促使浸湿一些区域而防止或禁止浸湿其他区域。更具体地说,指示器可以包括具有纹理或经过处理的表面,导致流体(例如水)在一些区域结珠或浸湿,而防止浸湿其他区域,从而聚集被抛弃的流体来浸湿相邻区域。以此方式,指示器可以使用聚集的流体利用低浓度的初期泄漏分子产生维护信号。在附图中,例如,在966、968处检测器的表面处理,或者在970和/或972处的状态指示器964上的表面处理,可以包括具有不同浸湿特征的区域。在一些实施例中,例如,在这些位置的检测器或传感器可以包括邻近亲水点的疏水点。在一些实施例中,例如,这些区域可以包括薄的透明二氧化钛膜,该膜暴露或者以其他方式接受紫外线查询光。在一些实施例中,利用紫外光激活通过醇类、水和油料提供了浸湿性。适当地激活二氧化钛薄膜,因此可以产生纳米级场畴,其中烃类分子被吸附,以便提供针对水和水溶液的浸湿性,而相邻区域提供针对油料或油料溶液的浸湿性。根据这些实施例的二氧化钛膜可以改变,以便对具体的刺激产生反应。例如,二氧化钛膜可以利用氮、银、硅或者其他半导体增强剂掺杂,从而降低带隙,并将查询光激活定制在更长的波长,·从而提供初期泄漏的指示和/或关于所述涉及的分子类型的信息或者流体的其他属性。根据文中公开的传感器或检测器的另一种实施例,检测器可以利用毛细管芯吸来聚集部分感兴趣的流体。例如,根据本公开的实施例配置的检测器或传感器可以包括纳米芯吸结构,该结构在诸如二氧化硅、二氧化钛和碳的基材上具有紧密间隔的孔。毛细芯吸流体的泄漏分子,将积累或聚集它们,用于生成更强烈的信号。例如,聚集的流体分子可以提供对于光反射性、透射性或吸收性的增强,作为特征类型的信号区别,或者替代地增强抗反射性,作为用于实现信号发生的区别方式。聚集或者放大可检测的分子的存在性,提供初期泄漏的非常早期的指示。此外,智能查询程序将泄漏速率趋势和环境条件纳入考虑,使得安全性更高并且保证了对系统的信任,所述系统存储和/或传输高价值、危险、令人反感或令人讨厌的流体。本文中公开的用于预防性维护措施的“监测器”或“交通警”指示器和传感器的另一种应用是在检测到流体的具体成分或组分后,提供识别、验证和适当的行动或警报程序。例如,文中公开的传感器和检测器可以检测流体中的具体成分,诸如审定的药物配方中的关键成分,或者相反,潜在有害物质,诸如流体介质中的黄曲霉毒素、毒枝菌素或者赭曲霉素。在这种情况下,通过比较发射器974处产生的UV、可见光和/或IR信号来监测导管592传输的流体,并且该信号被发射到读取器980,读取器包括小型、微型或纳米无线电收发器,以提供适当的功能指令或警报。发射器978和发射机980可以由组件950携带。在一些实施例中,一个或多个光纤部件或光导管974、976、977可以在发射器978和收发器980之间发射查询频率。光导管974、976、977可以包含选定的表面材料,所述材料具有已知折射系数和/或其他光学属性,通过粘附或吸附流体中被监测的特定分子而产生信号。光学属性变化速率的比较分析,针对接受监视的流体介质中的被监测的分子浓度,提供了分析或推断。许多不同的选择性表面可以设置在不同位置处或者单独的光纤部件974、976、977上。在一些实例中,导管952输送的流体可以被阀诸如951 (图9F)减缓或停止,以提供时间用于被监测物质的信号增强。在光导管974、976、977中用作查询信号的选定辐射频率的扩散模式、衰减、增强或加强的比较,允许提供识别、验证和适当的行动或警告程序。图9C是由图9A所示组件950携带的管状系统971的放大截面侧视图,图9E是管状系统971的侧视截面图,而图9F是根据本公开的实施例配置的检测器950使用环境的示意图。联合参照图9C、9E和9F,在另一种实施例中,导管952中的流体样本引入管状系统971中,该系统包括选择的毛细管971、973、975、989、979、981等,具有各种表面处理、几何机构、形状和尺度,如图9C详细显示。从流体诸如水、牛奶或豆浆在这些毛细管971、973、975、989、979、981隔离之后,通过适当方法有选择地识别具体感兴趣的分子,诸如有利的或不利的试剂,包括例如毒物分析物族,所述适当方法诸如美国专利4,859,611,4, 181,853、5,178,832或者美国专利申请No. 10/245, 758中公开的方法,这些专利文件每一份都通过全文引用而包含在本文中。在循环隔离和指示被监测的物质或分子之间,可以通过引入适当的洗涤剂和/或利用氢和/或氧驱逐,清除毛细管971、973、975、989、979、981。例如,根据关于被监测的物质的倾向,所述氢和/或氧可以由小型电解池961产生或者由大型电解池产生或者由另一个存储设备提供,所述存储设备向毛细管971、973、975、989、979、981提供加压氢气和/或氧气。
图9C示出了管状系统971的放大截面,其中示出了各种尺寸和形状的毛细管971、973、975、989、979、981。图9E示出了系统971的管状封装结构的纵向截面,并且包括光电半导体957或者一些其他适当的电源来为系统971实施的测试程序供电。在系统971中,流体样本在毛细管971、973、975、989、979、981中根据所选材料、尺寸、几何结构和可能施加在毛细管971、973、975、989、979、981上的涂层所产生的粘性、表面张力和浸湿性而行进不同的距离。一个或多个检测器967诸如光电光读取器和/或传感器,可以接触样本流体以识别和通过无线通信向控制器953 (图9F)报告,所述控制器包括无线中继或转发器,用于产生适当的警报、自动防故障装置活动或者验证信息。在加速清除971、973、975、989、979、981具有优势的实例中,例如,作为自动防故障监测快速循环的一部分,可以由电解池961产生氢气和氧气的混合物,通过在963处施加火花等离子而点燃,并且燃烧以提供快速的压力升高并且冲洗毛细管971、973、975、989、979、981。这种混合物可以通过混合电解池961的阳极和阴极输出物来提供,或者通过反转施加给电解池961电极的电压以交替产生氢气和氧气来提供。在这种电压反转过程中,控制事件和电流幅度,提供了对形成的混合物中氧气和氢气比例的控制。此外,在毛细管971、973、975、989、979、981清洗操作中,利用隔离膜959隔离其中一个电极在清洗操作中析出,允许这种偶发反转的电压和电流施加到另一个电极965,以便提供氢气或氧气化学计量的或富集的混合物,目的是诸如降低峰值燃烧温度、提供中性流、氧气富集的氧化流或者氢气富集的还原流,用于具体的清洁性能。如果氢气和氧气的化学计量的混合物或多或少的燃烧,则可以形成少量的水并且被排出且大部分在导管952内的流体中冷凝,而且由于相变收缩在清除后的毛细管971、973、975、989、979、981中产生并导致体积收缩的真空,则提供快速重新加载被监测的物质样本。在氧气保留在毛细管中的实例中,可以产生氢气并与这些氧气混合以形成气流。如果氢气保留在毛细管中,则可以产生氧气并且与这些氢气混合以便在程序中形成气流以使测试循环标准化或正常化。
参照图9F,该附图示出了压缩器或泵971、导管952、告密配接指示器950、控制器953、阀951以及向收集器969输送。在图示实施例中,如果检测器或传感器950指示流经导管952的泄漏峰值浓度、不希望的物质或者流体的任何其他属性,则检测器950可以产生警报,以使流经导管952的流动可以被阀951停止或者分流到收集导管中,如图9F所示。在一些实施例中,指示器950可以向控制器无线地发射信号或警报。这样为不同的目的,包括消除、后期参考和/或有效性测试,提供了保护和/或样本收集。图10是根据本公开的实施例配置的流体导管系统1094的示意图。在图示实施例中,系统1094包括利用相应的接头组件1096彼此接合的多条流体传送导管1098。接头组件1096也可以端接在导管1098的端部。图示系统1094中的配接组件1096可以大致类似于以上参照图7A-9F所述的配接组件和相关部件,和/或包括文中所述的告密件实施例的任何特征。例如,配接组件1096可以包括具有保持特征的凸连接件,所述保持特征旋转地接合凹连接件的对应接合特征。根据图示系统1094的另一项特征,导管1098可以大致为平直或弯曲导管。例如,大致平直的导管1098可以包括硬的拉制管或管道,而弯曲导管1098
可以包括退火的或软的管或管道,或者其他挠曲型导管。图示实施例的导管1098可以配置成适合传送或运输各种类型的流体(例如,液体、气体等),用于传送电缆或线路,或者用于通常使用导管的任何其他应用。此外,导管1098可以用金属、塑料或者其他任何适当材料制成。图11是根据本公开的实施例配置的发电装置1100的示意图。如图11示例性显示,该装置包括根据本公开的实施例配置的各种传感器(即,配置成收集目标样本、检测或分析目标样本属性、报告分析或检测指示、和/或清除目标样本的传感器),并且所述传感器可以组合以提供总体系统的质量控制和成分保证。例如,传感器A-H可以在全频谱能源系统中的各个位置被扰动,所述全频谱能源系统例如2009年8月27日提交的、题为“FullSpectrum Energy”的美国临时专利申请No. 61/237,479所公开,该专利申请通过全文引用而包含在本文中。如图11所示,传感器A-H可以被中央控制单元1101远程监测和控制。根据一种实施例,传感器A-H可以监测以下系统特征传感器A监测向供氢体增加太阳能热量的太阳能热学设备的位置的工作流体特征(温度、气体/液体状态、流体成分等);传感器B监测流入流出地热存储器的工作流体的工作流体特征(温度、气体/液体状态、化学含量等);传感器C监测进入系统的工作流体特征(温度、湿度等);传感器D监测热交换器处的工作流体特征(温度/能量等);传感器E监测绝缘尾气管处的内燃机尾气流中的工作流体特征;传感器F包括位于电解池内的多个传感器,监测工作流体特征(温度、气体/液体状态、流体成分、化学含量等);传感器G监测涡轮机位置的向上排气导管中的工作流体特征(温度/能量、湿度等);而传感器H监测农业微气候中的工作流体特征(温度、湿度、气体含量等)。图12示出了包含本文公开的传感器的另一种环境或网络系统1200。如图12所示,传感器可以涉及用于卡车、铁路、船舶运输等的运输容器1202的化学监测和安全跟踪。例如,传感器可以监测用于毒品、危险材料的运输交通方式,和/或被运输材料的其他属性。此外,传感器可以全面地定位在各种国际运输容器和/或运输工具上,包括例如陆基(例如,卡车、铁路等)、海洋和/或航空运输工具。根据一种实施例,系统100可以包括传感器A,传感器A可以可见地或不可见地定位在运输容器的壁1201中。如果被篡改或者如果其状态完整,则传感器A可以发信号。传感器A也可以区别性地保持门多长时间打开一次和何时打开的记录,以及如果目标内容物被取走,则提供指示。目标内容物可以打上化学标签,以使仅传感器A可以检测到对应的化学标签。根据一个方面,传感器A也可以识别是否发生人口走私。作为替代,传感器A可以识别是否运输毒品。传感器B示出了在门1204处于闭合位置时定位接近门1204的传感器,并且在门被打开且破坏封印时,相应地用作实时防篡改报告。传感器C不出了位于门1204的封印处的传感器,并且例如在门被打开且破坏封印时,用作实时防篡改报告。传感器D示出了定位在运输卡车1206 (铁路车厢、海上或船载运送等)和容器1200的交界处的传感器。如果封印被破坏,则传感器D可以相应地实时报告,以及如果容器1202暴露于任何外部危险,进行化学感测和实时报告。图13示出了根据公开的且通过上面引用而包含在本文中的共同待决申请的电解池,具有至少一个根据本公开的传感器。在图示实施例中,例如,电解池1300可以包括传感器A,传感器A定位在容器1302外,监测第一流体连接件1304 ;传感器B,传感器B定位在容器1302内侧,用于监测进入容器的上部分的电解液流;传感器C,传感器C定位在容器1302 外侧,用于监测第二连接件1306 ;和传感器D,传感器D定位在容器1302内侧,用于监测在容器下部分从容器流走的电解液流。在操作中,传感器A和C是连接件传感器,留意高压下的流体泄漏,以提供初期泄漏的早期警告。因此,传感器A和C可以用于监测高压系统的完整性。传感器B和D可以是流体传感器(例如,用于液体和/或气体的传感器),该传感器区别地监测电解容器中各个位置的化学含量并且提供反馈。虽然在图13中仅示意性地示出了 4个传感器,但是在进一步的实施例中,电解池1300可以包括位于容器1302内侧和外侧上的各个位置的4个以上的传感器。类似于以上参照图13所述的实施例,在额外的实施例中,传感器可以网络化或者以其他方式全面地定位在加工线或制造线上,以监测线路或系统的完整性。例如,网络化的传感器可以全面地定位在各个适当的处理线路上,包括例如化学处理线路、药品处理线路、气体处理线路或管线、水或其他流体处理线路。此外,在这些和其他系统中的化学监管和/或识别,可以结合无线射频标识(RFID)系统、全球定位系统(GPS)、和/或惯性跟踪系统,以提供可靠和被强化的安全和跟踪系统。根据本公开的实施例配置的额外系统、组件、方法、部件和其他特征可以包括任意以下示例。一个示例指导一种用于连接到导管端部部分的配接组件,所述配接组件包括配置成接收所述导管的所述端部部分的第一部件;可操作地耦接到所述第一部件的第二部件,其中所述第二部件接合所述第一部件从而将所述导管的所述端部部分保持在所述第一部件中;和由所述第一和第二部件至少其中之一携带的指示器,其中所述指示器提供有关流经所述配接组件的流体的信息的外部可获取的指示。在所述配接组件中,所述指示器可以是第一泄漏指示器,并且所述配接组件可以进一步包括位于所述配接组件上不同位置的多个泄漏指示器。而且,所述第一泄漏指示器可以提供第一种类型的指示,所述第一种类型的指示不同于由第二泄漏指示器提供的第二种类型的指示。此外,当所述第一部件接收所述导管的所述端部部分时,所述指示器可以定位成接触所述导管的所述端部部分的外部表面。此外,所述指示器可以配置成在流体接触所述指示器时,与流经所述配接组件的流体发生化学反应。在一些实施例中,所述信息的指示可以包括流体泄漏的视觉指示,从所述指示器释放液体。所述液体可以具有第一颜色,所述第一颜色不同于流经所述配接组件的流体的第二颜色。此外,所述指示器可以与流经所述配接组件的流体发生反应,以提供所述视觉指示。此外,所述信息的指示可以包括由所述指示器释放的视觉指示、由所述指示器发出的气味和由所述指示器发射的无线电信号至少其中一种。所述信息的指示还可以响应指向所述配接组件的可见光辐射、紫外线辐射和微波辐射至少其中一种,和/或包括由所述指示器发出的无线电信号。所述无线电信号可以响应由流经所述配接组件的流体导致的泄漏检测器的电容、电阻和磁场至少其中一种的变化来提供。此外,所述指示器可以包括配置成感测流体泄漏的电路,并且其中所述流体泄漏的指示包括由所述指示器的所述电路发出的无线电信号。而且,所述配接组件可以进一步包括可操作地耦接到所述检测器的电源。所述电源可以是响应指向所述配接组件的外部激励的光电电源。此外,所述信息的指示可以包括由所述指示器发出的信号,其 中所述信号包括有关流体泄漏量、配接组件位置、流体泄漏事件至少其中一项的信息。所述指示器可以进一步包括疏水部分和亲水部分,并且所述导管可以配置成传输水,并且所述泄漏检测器的所述亲水部分可以聚集接触所述指示器的部分水,以放大所述泄漏检测器上水的存在性。此外,所述检测器的至少一部分包括二氧化钛,以及配置成聚集至少一部分流体的毛细管组件。在另一些实施例中,配接组件可以包括配置成接收流体传送导管的一部分的第一构件;配置成接合所述第一部件以使所述导管的所述部分固紧在所述第一构件内的第二构件,其中所述第二构件与所述第一构件轴线对准;和与所述第一和第二构件接合的密封件,其中所述密封件提供所述第一构件相对于所述第二构件的轴向位置的视觉指示。所述密封件可以包括定位在所述第一和第二构件之间的环圈,并且所述环圈可以包括带有第一颜色的第一部分和带有不同于第一颜色的第二颜色的第二部分。此外,所述第一部分可以定位在围绕所述环圈圆周延伸的外部狭带区域,而所述第二部分可以大致包围所述第一部分。而且,在所述第一构件相对于所述第二构件处于第一轴向位置时,只有所述第一颜色可见,并且当所述第一构件背离所述第二构件从所述第一轴向位置隔开时,第一和第二颜色两者皆可见。此外,当所述第一构件相对于所述第二构件处于流体密封的连接位置时,只有第一颜色可见,而当所述第一构件相对于所述第二构件定位在非流体密封的连接位置时,第一和第二颜色皆可见。此外,所述配接组件可以进一步包括由所述第一和第二部件至少其中之一携带的泄漏检测器,其中如果所述泄漏检测器接触流经所述配接组件的流体,则所述泄漏检测器提供从所述配接组件泄漏的指示。所述泄漏指示可以包括响应与流经所述配接组件的流体接触而从所述配接组件释放的染色液体。此外,所述泄漏检测器可以与流经所述组件的流体发生反应,并且改变与所述泄漏检测器接触的流体的颜色。所述泄漏指示还可以包括从所述泄漏检测器发射的无线电信号。所述泄漏指示器还可以响应指向所述泄漏检测器的刺激。所述刺激可以包括可见光辐射、紫外线辐射和微波辐射至少其中一种。此外,所述密封件可以包括第一密封件,并且所述配接组件可以进一步包括从所述第一密封件轴向隔开的第二密封件;定位成靠近并接触所述第二密封件的密封件支撑构件;和由所述第一和第二构件至少其中之一携带的泄漏检测器,其中所述泄漏指示器配置成提供从配接组件经过所述第二密封件的流体泄漏的指示。判断配接组件中泄漏的早期阶段的方法可以包括提供用于传送流体的导管;将配接组件连接到所述导管,其中所述配接组件包括耦接到所述导管的第一部件,配置成接合所述第一部件从而将所述导管保持在所述第一部件内的第二部件,和由所述第一和第二部件至少其中之一携带的泄漏检测器;和让流体流经所述导管和所述配接组件,其中如果所述流体接触所述泄漏指示器,则所述泄漏检测器响应来自所述配接组件的流体泄漏而提供警告。所述方法还可以包括在让流体流经所述导管的同时,向所述泄漏检测器提供刺激。提供刺激可以包括向所述泄漏指示器发出可见光辐射、紫外线辐射和微波辐射至少其中一种,并且其中所述刺激放大所述警告。此外,所述警告可以包括流体泄漏的视觉指示。将所述配接组件与所述流体检测器连接可以进一步包括提供由所述配接组件携带的传感器电路,并且其中所述警告包括由所述传感器电路发射的无线电信号。流体导管系统的另一种实施例可以包括配置成传送流体的第一导管;配置成用于传送该流体的第二导管;和配置成将所述第一导管耦接到所述第二导管用于在它们之间传送流体的配接组件,其中所述配接组件包括配置成连接到所述第一和第二导管至少其中之一的第一部件;由所述第一部件携带的第二部件,其中所述第二部件接合所述第一部件从而保持至少第一和第二导管;和由所述第一和第二部件至少其中之一携带的泄漏指示器,其中如果流体从所述第一和第二导管之间的所述配接组件泄漏,则所述泄漏指示器提 供警告。所述第一部件可以是具有相对着第二端部部分的第一端部部分的主体,所述第一端部部分耦接到所述第一导管,而所述第二端部部分耦接到所述第二导管;并且所述第二部件可以是套管,所述套管与所述主体对准并设置在所述第一和第二端部部分其中之一的至少一个区域上。所述泄漏指示器可以定位成接触所述第一和第二导管至少其中之一。此外,所述警告可以包括从所述配接组件外部可获取的视觉指示。在额外的实施例中,所述警告包括从所述配接组件发射的无线电信号,从而对所述流体泄漏发出警报。而且,所述警告可以响应指向所述流体导管组件的查询刺激而被接收。所述查询刺激可以包括可见光辐射、紫外线辐射、微波辐射、红外线辐射和无线电信号至少其中一种。此外,所述第一和第二导管可以是第一组导管,并且所述配接组件可以是与对应的第一组导管关联的第一配接组件,并且所述流体导管系统可以进一步包括大致类似于所述第一组导管的多组导管;和多个配接组件,其中每个配接组件大致类似于所述第一配接组件,并且其中各个配接组件与对应的一组导管关联。从前述内容中,应该理解本发明的具体实施例已经为了例述的目的进行了描述,但是在不偏离本发明的精神和范围的前提下,可以制作各种改动。因此,除了被附带的权利要求书限定外,本发明并不受到限制。在先前未曾通过引用而包含在本文中的情况下,本申请通过全文引用而包含以下材料每一份的主题内容2011年2月14体提交的、题为“CHEMICAL PROCESSES ANDREACTORS FOR EFFICIENTLY PRODUCING HYDROGEN FUELS AND STRUCTURAL MATERIALS,AND ASSOCIATED SYSTEMS AND METHODS” 的代理人文档 No. 69545-8601. US00 ;2011 年 2月 14 日提交的、题为 “REACTOR VESSELS WITH TRANSMISSIVE SURFACES FOR PRODUCINGHYDROGEN-BASED FUELS AND STRUCTURAL ELEMENTS, AND ASSOCIATED SYSTEMS ANDMETHODS” 的代理人文档 No. 69545-8602. US00 ;2011 年 2 月 14 日提交的、题为 “CHEMICALREACTORS WITH RE-RADI ATING SURFACES AND ASSOCIATED SYSTEMS AND METHODS,,的代理人文档 No. 69545-8603. US00 ;2011 年 2 月 14 日提交的、题为 “THERMAL TRANSFER DEVICEAND ASSOCIATED SYSTEMS AND METHODS” 的代理人文档 No. 69545-8604. USOO ;2011 年 2月 14 日提交的、题为 “CHEMICAL REACTORS WITH ANNULARLY POSITIONED DELIVERY ANDREMOVAL DEVICES, AND ASSOCIATED SYSTEMS AND METHODS”的代理人文档 No. 69545-8605.USOO ;2011 年 2 月 14 日提交的、题为“REACTORS FOR CONDUCTING THERMOCHEMICAL PROCESSES WITH SOLAR HEAT INPUT, AND ASSOCIATED SYSTEMS AND METHODS” 的代理人文档No. 69545-8606. USOO ;2011 年 2 月 14 日提交的、题为 “INDUCTION FORTHERMOCHEMICALPROCESS, AND ASSOCIATED SYSTEMS ANDMETHODS” 的代理人文档 No. 69545-8608. USOO ;2011 年 2 月 14 日提交的、题为 “COUPLED THERMOCHEMICAL REACTORS AND ENGINES, ANDASSOCIATED SYSTEMS AND METHODS” 的代理人文档 No. 69545-8611. USOO ;2010 年 9 月22 日提交的、题为 “REDUCING AND HARVESTING DRAG ENERGY ON MOBILE ENGINES USINGTHERMAL CHEMICAL REGENERATION” 的美国专利申请 No. 61/385,508 ;2011 年 2 月 14 日提交的、题为 “REACTOR VESSELS WITH PRESSURE AND HEAT TRANSFER FEATURES FORPRODUCINGHYDROGEN-BASED FUELS AND STRUCTURAL ELEMENTS, AND ASSOCIATED SYSTEMSAND METHODS”的代理人文档No. 69545-8616. USOO ;和2011年2月14日提交的、题为“ARCHITECTURAL CONSTRUCT HAVING FOR EXAMPLE A PLURALITY OF ARCHITECTURAL·CRYSTALS” 的代理人文档 No. 69545-8701. USOO。
权利要求
1.一种用于检测目标样本存在性和/或属性的方法,所述方法包括 利用样本收集器有选择地收集微观部分的目标样本; 利用所述样本收集器检测以下至少一项 所述微观部分的目标样本在所述样本收集器内的存在性;和 所述微观部分的目标样本的一种或多种属性; 从所述样本收集器报告所述微观部分的目标样本的所述一种或多种属性的检测的指示;和 从所述样本收集器至少部分地去除所述微观部分的目标样本。
2.如权利要求I所述的方法,其中所述样本收集器由结构构造构成,所述结构构造包括间隔开的晶体矩阵表征料层。
3.如权利要求2所述的方法,其中有选择地收集所述微观部分的目标样本包括以下至少一项 通过所述结构构造的相应料层过滤所述目标样本的单个分子; 在所述结构构造的相应料层之间吸收所述目标样本的单个分子; 在所述结构构造的相应料层之间反射所述微观部分的目标样本; 在所述结构构造的相应料层之间利用毛细作用抽取所述微观部分的目标样本;和感生压力梯度,所述压力梯度至少部分地在所述结构构造的相应料层之间促动所述微观部分的目标样本。
4.如权利要求2所述的方法,其中利用所述样本收集器检测包括以下至少一项 感测所述结构构造的相应料层之间所述部分的目标样本的加载速率; 感测所述结构构造的相应料层之间所述部分的目标样本的加载深度; 感测所述结构构造的相应料层之间所述部分的目标样本的透射性、反射性和折射性至少其中一项;和 感测所述结构构造的相应料层之间所述部分的目标样本的波长偏移。
5.如权利要求I所述的方法,其中报告所述部分的目标样本的一种或多种属性的检测的指示包括 利用纳米无线电发射无线电信号; 产生电流; 针对查询信号提供响应;和 向收集器部分的网络中的单独收集器部分提供信号
6.如权利要求2所述的方法,其中至少部分地去除所述部分的目标样本包括利用与有选择地收集所述部分的目标样本同样的方法至少部分地去除所述部分的目标样本。
7.如权利要求I所述的方法,其中所述样本收集器是多个样本收集器的网络中的第一样本收集器,并且其中所述方法进一步包括利用多个单个样本收集器实施收集、检测、报告和去除步骤。
8.如权利要求I所述的方法,进一步包括分析所述微观部分的一种或多种属性以确定所述目标样本的一种或多种相应特征。
9.一种方法,包括 利用独立的感测部件收集微观部分的目标样本;利用所述感测部件自动地感测被收集的微观部分的目标样本的至少一种属性;和 从所述感测部件提供所述至少一种属性的实时的外部可获取的指示。
10.如权利要求9所述的方法,其中感测所述微观部分的至少一种属性,包括 检测所述部分的目标样本的存在性;和 分析所述目标样本的一种或多种材料属性。
11.如权利要求9所述的方法,进一步包括从所述感测部件清除至少一部分所述目标样本和循环地重复所述收集、感测、和提供外部可获取的指示。
12.如权利要求9所述的方法,其中收集微观部分包括收集分子尺寸的部分的所述目标样本,并且其中感测至少一种属性包括从所述分子尺寸的部分的所述目标样本感测至少一种属性。
13.如权利要求9所述的方法,其中收集微观部分包括积累足够感测所述目标样本的所述至少一种属性的预定量的所述目标样本。
14.如权利要求9所述的方法,其中收集微观部分的样本包括在以下环境或系统中的至少一者内收集微观部分的样本质量保证、预防性维护、安全和危险警告、国土安全和化学监管。
15.—种系统,包括 用于有选择地收集部分的目标样本的装置,其中所述部分是相对于所述目标样本的尺寸而言的微观部分; 用于自动检测被收集的部分的目标样本的一种或多种属性的存在性的装置; 用于自动分析所述微观部分的目标样本的所述一种或多种属性的装置;和 用于报告所述目标样本的所述一种或多种属性的分析的瞬时指示的装置。
16.如权利要求15所述的系统,进一步包括用于从所述用于有选择地收集所述部分的目标样本的装置去除所述部分的目标样本的装置。
17.如权利要求15所述的系统,其中所述用于有选择地收集的装置、用于自动检测的装置、用于自动分析的装置和用于报告的装置中的每一个是第一传感器的一部分,并且其中所述系统进一步包括 多个传感器,每一个传感器具有与所述第一传感器相同的特征;和 配置成与所述传感器中的至少一个传感器通信的控制器。
18.如权利要求17所述的系统,其中所述多个传感器全面地分布在至少一种以下环境中公共交通系统;供水或配水系统;食品生产、包装或运输系统;天然气管线分布系统;医疗输送系统;和/或化学或药品制造系统。
19.如权利要求15所述的系统,其中所述用于有选择地收集所述部分的目标样本的装置包括结构构造,所述结构构造包括配置成装载单个部分的所述目标样本的间隔开的晶体矩阵表征料层。
20.如权利要求15所述的系统,其中所述用于有选择地收集部分的目标样本的装置包括用于积累一个或多个单独的分子尺寸的部分的所述目标样本的装置。
全文摘要
本文公开了用于收集部分的目标样本的系统和方法。用于检测目标样本的存在性和/或属性的方法可以包括利用样本收集器有选择地收集部分的目标样本和利用所述样本收集器检测所述微观部分的目标样本的一种或多种属性的存在性。所述方法还包括利用样本收集器分析所述微观部分的目标样本的一种或多种属性。根据所述分析,所述方法进一步包括从所述样本收集器报告目标样本的一种或多种属性的分析的实时指示。所述方法还可以包括从所述样本收集器至少部分地去除所述微观部分的目标样本。文中公开的所述方法和系统例如可以用在这样的系统或环境中和/或其他适当环境中,所述系统或环境指向质量保证、预防性维护、安全、危险警告、国土安全、化学鉴定和监管。
文档编号G08B21/00GK102906555SQ201180009296
公开日2013年1月30日 申请日期2011年2月14日 优先权日2010年2月13日
发明者罗伊·E·麦卡利斯特 申请人:麦卡利斯特技术有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1