确定飞机的紧急情况着陆点的制作方法

文档序号:6686902阅读:576来源:国知局
专利名称:确定飞机的紧急情况着陆点的制作方法
技术领域
本公开一般涉及飞机飞行,并且更具体地涉及确定飞机的着陆点的系统和方法。
背景技术
尽管导致机场外着陆的飞行中的紧急情况可能导致人员和财产损失。选择合适的紧急情况着陆点的问题是一个复杂问题,该问题已因为先前不发达、欠发达和/或无人占领区域的持续发展而加剧。在飞行中的紧急情况下,飞行员已受 限于使用其规划、经验、视觉以及对给定区域的熟悉度选择紧急情况着陆点。在紧急情况条件下,飞行员可能仅有一点时间来确定需要执行紧急着陆、寻找或选择合适的着陆点、执行其他飞机紧急程序、使乘客做好准备以及然后驾驶飞机到选定的着陆点。因此,飞行中的紧急情况的管理要求及时和精确的决策进程,从而不仅保护飞机上的生命,而且也保护地面上的生命和财产,并且防止飞机的完全损失。关于这些和其他考虑而展示在此作出的公开。

发明内容
应该明白,提供本发明内容是为了以简化形式介绍下面在具体实施方式
部分进一步描述的概念的选择。本发明内容无意被用于限制所要求保护的主题的范围。根据本公开的实施例,一种确定飞机的着陆点的方法包括接收对应于飞行路径的飞行数据。该方法还可以包括识别邻近该飞行路径的至少一个着陆点;产生至少一个着陆点与飞行路径之间的生成树;以及将该生成树存储在数据存储装置中。根据一些实施例,着陆点是实时确定的。另外,可以在飞机上或在与飞机通信的远程系统或装置中确定着陆点。根据另一实施例,一种确定飞机的着陆点的定航线(routing)工具包括数据库,其被配置为存储对应于飞机的飞行路径的飞行数据;以及定航线模块。该定航线模块被配置为接收飞行数据;识别邻近飞行路径的至少一个着陆点;产生至少一个着陆点与飞行路径之间的生成树;以及将生成树存储在数据存储装置中。根据另一实施例,公开一种计算机可读存储介质。该计算机可读存储介质具有存储在其上的计算机可执行指令,处理器执行该计算机可执行指令使得定航线工具可操作以便接收对应于飞行路径的飞行数据;识别邻近飞行路径的至少一个着陆点;产生至少一个着陆点与飞行路径之间的生成树;将生成树存储在数据存储装置中;探测飞机飞行期间在飞机上的紧急情况;以及响应于探测到该紧急情况,显示生成树以便选择着陆点。在此讨论的特征、功能和优点能够在本公开的各个实施例中独立实现,并且可在其他实施例中组合,其进一步细节能够参考以下描述和附图看出。


图I示意性示出根据示例性实施例的定航线工具的方框图。
图2A示出根据示例性实施例的示例性着陆点显示。图2B示出根据示例性实施例的示例性滑行轮廓图显示。图3A示出用于移动地图显示的示例性实施例的屏幕显示。图3B示出根据示例性实施例的示例性滑行轮廓图显示。图4示出根据示例性实施例由定航线工具产生的地图显示。图5A-5B示出根据示例性实施例的着陆点地图。
图6A-6B示意性示出根据示例性实施例的飞行路径规划方法。图7A-7B示出根据示例性实施例的定航线工具的额外细节。图8示出根据示例性实施例在路径规划算法的升级阶段中的转弯约束的应用。图9示出根据示例性实施例用于确定飞机的着陆点的程序。图10A-10B示出根据示例性实施例由定航线工具的图形用户界面(⑶I)提供的屏
、t Pi /J 人 ο图11示出根据示例性实施例的定航线工具的说明性计算机体系架构。
具体实施例方式以下详细说明针对用于确定飞机的着陆点的系统、方法和计算机可读介质。利用本文所述的概念和技术,可以实施用于识别飞机的螺旋桨停转或滑翔着陆区域(footprint)中的可用/可到达(attainable)的着陆点的定航线技术和定航线工具。所识别的可用着陆点可以包括机场飞机着陆点和机场外着陆点。根据本文描述的实施例,对可用着陆点进行评价,从而允许识别和/或选择推荐的或优选的着陆点。特别地,着陆点的评价可以开始于数据收集操作,其中涉及可用着陆点的着陆点数据和/或涉及飞机位置和性能的飞机数据被收集。着陆点数据可以包括但不限于障碍物数据、地形数据、气象数据、交通数据、人口数据以及其他数据,可以使用所有这些数据来确定针对每个识别的着陆点的安全进入飞行路径。飞机数据可以包括但不限于全球定位系统(GPS)数据、高度、方向和空速(airspeed)数据、滑行轮廓数据、飞机性能数据和其他息。在一些实施例中,为去往所确定的可用着陆点的安全进入飞行路径产生飞行路径生成树(spanning tree)。飞行路径生成树是根据着陆点产生的,并且被反馈到飞行路径中。在一些实施例中,生成树是在飞行之前或飞行过程中产生的,并且能够考虑规划的或当前的飞行路径、飞机的已知或预期滑行着陆区域、倾斜转弯机会以及详细的飞行时间信息。在一些实施例中,对于生成树的每个显示分支,即去往着陆点的每个飞行路径,生成树都能够伴随有任选的倒计时计时器,该倒计时计时器被配置为向用户提供关于相关飞行路径还有多久可用作相关着陆点的安全进入选项的指示。根据不同实施例,可以在飞行规划过程中、飞行中和/或在飞机上或飞机外实时地执行收集数据、分析数据、识别可能的着陆点、产生每个识别的着陆点的生成树以及选择着陆点。因此,在一些实施例中,飞行人员能够使空中交通管制(ATC)、空运操作中心(AOC)和/或航线交通管制中心(ARTCC)包括在合适着陆点的识别、分析和/或选择过程中。根据需要,ATC、AOC和/或ARTCC可以被配置为监控和/或控制处于紧急情况的飞机。通过下文各个实施例的描述这些和其他优点以及特征将变得明显。
贯穿本公开描述了关于有人驾驶飞机和基于地面的着陆点的实施例。虽然有人驾驶飞机和基于地面的着陆点提供了本文描述的实施例的有利示例,但是不应将这些示例理解为以任何方式进行限制。相反,应该理解,在此提出的一些概念和技术也可用在无人飞机以及其他交通工具中,所述其他交通工具包括航天器、直升飞机、滑翔机、舰船和其他交通工具。此外,本文提出的概念和技术可被用于识别非基于地面的着陆点,诸如航空母舰的降落甲板。在下文详细说明中,将参考形成本文一部分的附图,并且其以例证方式示出特定实施例或示例。在参考附图时,相同的附图标记在几幅图中代表相同的元件。图I示意性示出根据示例性实施例的定航线工具100的方框图。该定航线工具100能够被包含在计算机系统中,诸如电子飞行包(EFB);个人计算机(PC);便携式计算装置,诸如记事本、上网本或写字板计算装置;和/或横跨一个或更多个计算装置,例如一个或更多个服务器和/或基于网络的系统。如上所述,可以通过飞机的机载系统或位于飞机外的系统提供定航线工具100的一些或所有功能性和/或组件或者不提供上述功能性和/ 或组件。定航线工具100包括定航线模块102,其被配置为提供本文所述的功能性,包括但不限于识别、分析和选择安全着陆点。应该理解,可以通过代替或附加于定航线模块102的其他硬件和/或软件来提供定航线模块102的功能性。因此,虽然本文所述的功能性主要被描述为由定航线模块102提供,但是应该理解,可以通过不同于或附加于定航线模块102的一个或更多个装置执行本文所述的一些或全部功能性。定航线工具100还包括一个或更多个数据库。虽然数据库104被示出为单一元件,但是应该理解,定航线工具100可以包括许多数据库。类似地,数据库104能够包括与定航线工具100关联或通信的存储器或其他存储装置,并且能够被配置为存储定航线工具100使用的多种数据。在所示实施例中,数据库104存储地形数据106、空域数据108、气象数据110、植被数据112、交通基础设施数据114、居住区数据116、障碍物数据118、公用设施数据120和/或其他数据(未示出)。地形数据106代表着陆点处以及沿着去往着陆点的飞行路径的地形。如本文将更详细所述,在考虑地形例如山脉、丘陵、峡谷、河流等的情况下,能够使用地形数据106来识别去往着陆点的安全进入路径。空域数据108能够指示可用于产生去往着陆点的一个或更多个飞行路径的空域。空域数据108能够指示例如飞机不能在其上方合法飞行的军事设施或其他敏感区域。气象数据110能够包括指示以下内容的数据着陆点处以及沿着去往着陆点的路径的气象信息特别是历史气象信息、趋势等。植被数据112能够包括指示以下内容的数据着陆点处以及沿着去往着陆点的飞行路径的植被的位置、高度、密度和其他方面,并且能够涉及各种自然障碍物,包括但不限于树木、灌木、藤类植物等等,以及没有这些障碍物的情况。例如,大块田地可能看起来是安全的着陆点,但是植被数据112可能指示该田地为果园,这可能就排除了使用该田地进行安全着陆。交通基础设施数据114指示道路、水路、铁路、机场的位置以及其他交通和交通基础设施信息。例如,能够使用交通基础设施数据114识别最近的机场。该示例是说明性的,并且不应理解为任何形式的限制。居住区数据116指示与不同位置例如着陆点和/或沿着去往着陆点的飞行路径的区域关联的人口信息。当考虑着陆点时居住区数据116可能是重要的,因为能够在决策过程中考虑地面上的生命。障碍物数据118能够指出处于或围绕着陆点的障碍物以及沿着去往着陆点的飞行路径的障碍物。在一些实施例中,障碍物数据包括指示人造障碍物的数据,诸如输电线、移动电话塔、电视发射器塔、无线电塔、发电厂、露天大型运动场、建筑物以及其他可能阻碍去往着陆点的飞行路径的障碍物。公用设施数据120能够包括指示着陆点处以及沿着去往着陆点的飞行路径的任何公用设施的数据。公用设施数据120能够指示例如燃气管线、输电线、高压线、发电所等的位置、大小和高度。其他数据能够包括涉及以下内容的数据着陆点处以及沿着去往着陆点的飞行路径的行人、车辆和飞机交通;到着陆点和从着陆点离开的地面通道;离医疗资源的距离以及其组合等。此外,在一些实施例中,其他数据存储飞行员或其他飞行人员提交的飞行计划。应该理解,该飞行计划可被提交至其他实体,并且因此可能存储在代替或附加于数据库104的其他位置。
定航线工具100也能够包括一个或更多个实时数据源122。实时数据源122能够包括由飞机的或与飞机通信的各个传感器和系统实时或接近实时产生的数据。在所示实施例中,实时数据源包括实时气象数据124、GPS数据126、本机数据128以及其他数据130。实时气象数据124包括指示在飞机处、在一个或更多个着陆点处以及沿终止于一个或更多个着陆点的飞行路径的气象条件的实时或接近实时数据。众所周知,GPS数据126提供飞机的实时或接近实时定位信息。本机数据128包括实时航行数据,诸如航向、速度、高度、轨迹线、纵倾/俯仰(pitch)、横倾/偏航(yaw)、翻滚等。本机数据128可以几乎不断地更新,以便在发动机或其他系统失效的情况下,定航线模块102能够确定和/或分析飞机的轨迹线。本机数据128还能够包括从飞机的各种传感器和/或系统收集的实时或接近实时数据,并且能够指示空速、高度、飞机姿势、襟翼和起落架指示、燃料水平和流速、航向、系统状态、警告和指示器等,这些数据中的一些或全部或者没有数据可以涉及如本文所述的识别、分析和/或选择着陆点。其他数据130能够包括例如指示着陆点处或着陆点附近以及沿着去往着陆点的飞行路径的飞机交通情况、实时机场交通信息等的数据。定航线工具100也能够包括性能学习系统132 (PLS)。PLS也可以包括处理器(未示出),其用于执行软件以提供PLS 132的功能性。在操作中,处理器使用飞机性能算法来根据飞行操纵策略产生飞机性能模型134。在一些实施例中,PLS 132被配置为执行模型产生循环,在此期间确定和存储性能模型134。该模型产生循环能够开始于执行一种或更多种操纵策略,在此期间能够记录来自飞机上或与飞机通信的一个或更多个传感器的数据。所记录的数据可以被评估以产生飞机性能模型134,然后该模型可以代表例如特殊环境下的飞机的滑行路径、操纵期间的燃料消耗、操纵期间的速度或高度变化、其他性能特征及其组合等。在一些实施例中,连续地或周期性地升级该性能模型134。如下文更详细解释,性能模型134可以被用于更精确地评估着陆点,因为与基于当前运行参数等的假设相反,该评估能够基于实际飞机性能数据。在飞机运行期间,定航线工具100能够使用从数据库104检索的数据、从实时数据源122检索的数据和/或飞机性能模型134在飞机的飞行中显示器136上提供多层数据。该飞行中显示器138可以包括可由飞行人员使用的任何合适的飞机显示器,诸如EFB显示器、NAV、主飞行显示器(PFD)、平视显示器(HUD)、多功能显示单元(MDU)或飞行中显示器136。附加地或替换地,能够将该数据传递给定航线模块102和/或机外人员和系统,从而识别安全着陆点、分析安全着陆点以及选择安全着陆点和去往安全着陆点的飞行路径。在一些实施例中,能够将着陆点和飞行路径信息传递给飞行中显示器136或另一显示器。如下文所述,飞行中显示器136或另一显示器能够提供绘制着陆点及去往着陆点的飞行路线的移动地图显示,显示滑行轮廓图、气象、障碍物、沿期望的飞行路径剩余的时间和/或其他数据,从而允许由飞行人员做出决定。另外,如上文所述,能够将该数据传输给机外人员和/或系统。现在参考图2A,其提供根据示例性实施例的定航线工具100的额外细节。图2A示出能够由定航线工具100产生的示例性着陆点显示200。着陆点显示200包括着陆点202以及围绕着陆点202的区域。能够基于显示200中包括的数据和/ 或偏好而调整着陆点显示200的尺寸。着陆点202能够包括机场跑道、田地、公路和/或另一合适的机场或机场外地点。在所示实施例中,着陆点202被示出为处于着陆区网格204内,其以图形方式表示飞机在地面上安全着陆所需的距离。所示着陆点202在至少三个边上与防止飞机安全进入的障碍物接壤。特别地,高大植被例如树木区域206在南边或东边与着陆点202接壤,其防止飞机从南边和东边接近着陆点202。另外,建筑物208和输电线210沿西侧和西北侧接壤着陆点202。这些人造的和自然发生的特征限制了飞机的可能接近路径。如图所示,示出一种生成树(spanningtree),其示出允许的进入飞行路径212A-Q。在所示实施例中,飞机仅能够经由飞行路径212A-G接近而在着陆点202着陆,而飞行路径212H-Q受阻碍。下文将更详细地描述生成树诸如图2A所示的生成树的产生和使用。图2B示出根据示例性实施例的示例性滑行轮廓图显示220。在一些实施例中,滑行轮廓图显示220是由定航线工具100产生的,并且由着陆点显示器200显示以指示飞机需要满足或超过的滑行轮廓222,从而成功和安全地在着陆点202着陆。滑行路径222被绘制为沿路径行进的高度相对水平距离的变化曲线。滑行轮廓图显示220包括当前飞机位置的指示224。如图2B中所示,飞机当前已超过达到着陆点262的足够高度。实际上,在所示实施例中,飞机被示出为在最小高度滑行轮廓之上大约九百英尺处。因此,飞机的飞行员将需要相对快地下降以成功地执行着陆。该示例是说明性的,并且被提供用于图示说明本文公开的概念。现在参考图3A-3B,其示出根据示例性实施例的示例性屏幕显示。特别地,图3A示出移动地图显示的示例性实施例的屏幕显示300。该屏幕显示300能够被显示在飞行中显示器136、机载计算机系统的计算机显示器、机外计算机系统的显示器或另外的显示器上。屏幕显示300示出飞机的当前位置302,该飞机准备进行未计划的着陆例如紧急着陆。定航线工具100识别两个候选着陆点304A、304B。另外,定航线工具100基于上述任何数据确定着陆点304A-B的进入路径306A、306B。在所示实施例中,进入路径306A为优选进入路径,因为其通往优选着陆点304A,而进入路径306B为次级进入路径,因为其通往次级着陆点304B。该实施例是示例性的。进入路径306A-306B考虑本文所述的任何数据,包括但不限于存储在数据库104中的数据。另外,定航线工具100被配置为访问实时数据源122,并且能够显示时间指示308A、308B,所述时间指示指示飞机必须被限制在各个进入路径306A、306B中的剩余时间,以便安全地沿建议路径行进。在图3A中,时间指示308A、308B被显示为在各个着陆点之上的数字。在所示实施例中,这些数字对应于飞机被限制于相关着陆点304A、304B和进入路径306A、306B并且仍进行安全着陆的剩余秒数。因此,假设飞机仍处于基本与其当前路线相同的路线上,则这些数字代表进入路径306A-B失效前剩余的秒数。在图3A中,推荐的路径306A剩余85秒可用,而第二路径306B剩余62秒可用,即比推荐的路径306A少23秒。在屏幕显示300上另外显示的是分别对应于着陆点304A、304B处的天气的气象指示310A、310B。气象指示310A-B对应于着陆点304A的天空多云以及着陆点304B处的天空晴朗。这些指示是示例性的,并且不应理解为以任何形式进行限制。预期着陆点304A-B处的天气可能是重要信息,因为在紧急着陆情况下良好的能见度常常生死攸关。类似地,某些天气条件诸如疾风、湍流、雷暴、冰雹等能够对飞机和/或飞行员施加额外压力,由此使可能已经失灵的飞机的着陆复杂化。现在参考图3B,其示出根据示例性实施例的滑行轮廓图显示320。如上文参考图 2B所述,定航线工具100能够被配置为向滑行轮廓图显示320提供移动地图显示300,从而向飞行人员或其他人员提供对可用选项的更好理解。滑行轮廓图显示320包括当前飞机位置指示器322。滑行轮廓图显示320上也示出了成功进入图3A的着陆点304A、304B所需的滑行路径的表征(r印resentation)324A、324B。表征324A、324B (“滑行路径”)分别对应于图3A的进入路径306A、306B,并且分别示出安全抵达着陆点304A、304B所需的高度。如图3B中所示,飞机当前具有足够的高度来接近两个着陆点304A-B。滑行轮廓图显示320允许飞行员即时可视化飞机在垂直(高度)平面中相对于可用着陆点304A-B和/或进入路径306A-B所处的位置。因此,通过连续地显示高于或低于去往每个着陆点的接近路径的飞机垂直位置,定航线模块102允许飞行员更快速地评估潜在的着陆点306A-B。这允许着陆点的可行性和相对优点的一目了然分析。滑行轮廓图显示320可以是主动或动态显示。例如,滑行轮廓图显示320能够被频繁地更新,例如每秒、每5秒、每10秒、每I分钟、每5分钟等更新一次。随着飞机沿其飞行路径继续行进,可以向滑行轮廓图显示320添加和/或从滑行轮廓图显示320中去除给定飞机位置和高度时可用的潜在着陆点304A-B。因此,如果出现紧急情况或需要着陆的其他情况,飞行员能够评估附近的着陆点306A-B,并且从连续计算和更新的当前可用滑行路径324A-B中选择。在一些实施例中,从飞行规划练习期间加载的数据库更新和/或计算下降滑行324A-B。通过使飞机对准位置行进并朝向最佳进入路径306A和306B航行,能够将飞机的当前飞行路径连接至最佳可用进入路径306A-B。在所示实施例中,次级或替换路径306B需要的能量比优选路径306A需要的能量更多。在飞机滑翔滑行的情况下,替换路径306B要求飞机必须起始于比飞机沿优选路径306A滑行所需的高度更高的高度。现在参考图4,其示出根据示例性实施例的定航线工具的细节。图4示出根据示例性实施例的定航线工具100产生的地图显示400。该地图显示400包括可以在紧急情况下选择的三个可能着陆点402A、402B、402C,该紧急情况诸如为飞机起火、发动机故障、关键系统故障、医疗紧急情况、劫机或经批准迅速着陆的任何其他情况。地图显示400以图形示出当考虑在潜在着陆点402A-C处紧急降落时可能重要的障碍物和特征。所示的地图显示400示出高尔夫球场404A、404B、水体406A、406B、田地408A、408B以及其他障碍物410,诸如输电线、桥梁、渡船航线、建筑物、塔、居住中心等。在示出的实施例中,潜在着陆点402A-C为机场。众所周知,机场的着陆区域对如何发生和在何处降落具有限制。特别地,如果飞机在降落后需要距离D来达到完全停止,飞机就需要在飞机跑道上的一点降落,并且使航向沿飞机跑道的方向,以便降落点和跑道末端或另一障碍物之间至少为距离D。因此,飞行员或其他飞行人员可能需要这一信息从而以使得安全降落成为可能的配置抵达着陆点402A-C。然而,飞行员或其他飞行人员通常在紧急情况期间没有时间确定该信息。另外,也可能不能从通常的航空地图中获得确定该信息所需的细节水平。
图5A-5B示出该问题。图5A示出根据示例性实施例的着陆点地图500A。着陆点地图500A包括降落点502。降落点502由半径为D的圆形504包围。半径D对应于从降落到飞机完全停止所需的距离,并且因此代表从降落点502到停止点以便使飞机安全着陆所需的距离。因此,圆形504示出如果飞机在降落点502着陆时飞机能够停止的可能点。如图5A中所示,仅有少量航向506对于在降落点502处执行着陆是安全的。现在参考图5B,其示出根据示例性实施例的另一着陆点地图500B。图5B示出对应于沿圆形504的航向508的两个子弧506A、506B,飞机能够以该航向在所示降落点502安全着陆。所示的子弧506A-B和圆形504是示例性的。根据本文所描述的概念和技术,例如在飞行规划期间或在紧急条件下进入着陆点期间在定航线工具100处确定和存储子弧506A-B的取向。定航线模块102被配置为通过始于降落点502并朝着当前位置反向前行来确定子弧506A-B。基于对着陆区域的限制例如地形、障碍物、输电线、建筑物、植被等的认识,定航线模块102将降落点限制于子弧506A-B。定航线模块102基于已知的飞机性能模型134和/或与在发动机停车条件下的飞机性能相关的参数知识确定这些子弧506A-B。特别地,定航线模块102基于零升力阻力系数和诱导阻力系数执行功能。通过这些系数、飞机重量以及当前高度的知识,定航线模块102能够确定飞机在进入着陆点和/或降落点502时所应飞行的速度。另外,定航线模块102确定飞机需要如何转向以便以进行安全着陆的正确航向抵达着陆点。定航线模块102被配置为使用每秒三度的标准转向率来确定如何使飞机转向并且验证飞机能够以正确的航向、速度并且在时间约束内安全抵达着陆点。应该理解,能够使用包括可变速率的任何转向率,并且能够使用性能模型134来将这些计算调适到飞机的已知数值。定航线模块102输出在座舱中显示的滚转角(bank angle)以指示飞行员如何执行转向,从而安全抵达着陆点。实际上,飞机以最大升阻(L/D :lift over drag)比沿进入路径飞行。同时,定航线模块102向飞行员提供沿着已知子弧506A-B的正确航向接近着陆点所需的滚转角。在座舱中显示该滚转角,以便飞行员能够精确地飞行至着陆点,而不飞过或未达到理想的飞行路径。现在参考图6A-6B,其中将更详细地描述定航线模块102使用的逻辑。一些定航线算法建立植根于路径的原点的生成树(spanning tree)。当算法已知去往空间中的该点的最小成本航线时,将空间中的该位置被添加至生成树。当将目的地添加至生成树时,大多数算法的应用终止。另一方面,定航线工具100的定航线模块102被配置为建立植根于一个或更多个降落点502的生成树。生成树从降落点502向外生长。在图2A上部示出这种生成树的示例。在建立生成树时,在远离降落点502的同时,定航线模块102使高度变化最小化。一旦建立了生成树,定航线工具100或定航线模块102就能够从任何位置查询生成树,并且了解从该位置到达相关降落点502所需的最小高度。另外,通过沿生成树的分支行进,定航线模块102即刻确定将在进入着陆点期间最小化高度损失的航线。在本文所述的定航线工具100和/或定航线模块102的一些实施例中,沿飞行路径的每个着陆点的生成树可能是实时产生的,并且能够在飞行规划阶段预先计算和/或在紧急情况期间实时或接近实时计算。通过生成树,定航线模块102能够确定到原点的最小成本路径,其中成本可能是时间、能量和/或燃料的函数。图6A-6B示意性示出根据示例性实施例的飞行路径规划方法。首先参考图6A,地图600A示意性示出规划飞行路径的第一方法。在地图600A上,本机指示器602A示出飞机的当前位置和航向。地图600A也指出在所示实施例中过高以至于飞机不能飞越的地形 604。为了图示说明的目的,在此假设飞机需要转弯到峡谷606中,其起点由标记/指示608表示。使用标准路径规划算法,根据当前位置和航向602A产生飞行路径610A。该算法本质上搜索到由标记608指出的进入点的最小成本路径。该算法将寻求使飞机的路径从该位置延伸。不利的是,从标记608指出的进入点,飞机将不能够在不撞击地形604的情况下完成转弯。现在参考图6B,地图600B示意性示出规划飞行路径的第二方法。更特别地,地图600B示意性示出根据示例性实施例由定航线模块102使用的方法。图6B中使用的算法始于由标记608所示的进入点,并且反算到由本机指示器602B指出的当前位置和航向。因此,该算法确定为了进入峡谷606,飞机必须沿飞行路径601B飞行。特别地,飞机必须首先花成本进行左转弯612,并且然后进行长距离花成本的右转弯614,从而对准峡谷606。应该理解,图6A-6B中所示的情况是示例性的。现在参考图7A,其中更详细地描述定航线工具160的额外细节。在图7A中,飞机700向南飞并且试图在东-西着陆区域702上着陆。飞机700邻近着陆区域702使得通过在A点的直角90°转弯的安全进入是不安全的和/或不可能的。根据本文公开的概念和技术,定航线模块102始于着陆区域702并且反算到飞机700。在所示实施例中,这样做将使定航线模块能够确定飞机700必须进行开始于点A的270°转弯,并且继续沿飞行路径704行进,从而在正确的方向抵达着陆区域702。因此,飞机可以在逼近期间两次穿过点A,但这仅是示例性的。广为人知的是,标准路径规划算法被设计为仅提供一种路径以及一种仅穿越空间中任何特殊点一次的路径。因此,将不能够使用标准路径规划算法产生飞行路径 704。根据示例性实施例,定航线模块102包括向空间添加角度尺寸的路径规划功能性。因此,代替在两维空间内搜索,该算法在三维空间起作用,其中第三维是飞机的航向。对于图7A中所示的飞行路径704,只要一点上的多个路径处于不同航向,飞行路径764能够在其自身上穿过。在图7B中大致示出三维方法的功能性。现在参考图8,其中详细描述了定航线工具100的额外细节。图8大致示出在路径规划算法的更新阶段中转弯约束的应用。当将空间中的一点添加至生成树时,算法尝试将路径延伸至空间中的邻近点。对于转弯受约束的情况,可到达的邻近点如图8所示受到限制。在图8中示出刚被添加至生成树的点802处的飞机的当前位置和航向800。点808代表当延伸路径时算法将尝试到达的邻近点。转弯约束不限于任何特殊的转弯半径。转弯半径808A可以不同于转弯半径808B。在试图最小化高度损失时,算法能够尝试不同的转弯半径。例如,如果飞机尝试抵达其当前位置后面的一点,它能够使用每一转弯度较少高度损失的受控转弯。它也能够做出具有每一转弯度较多高度损失的更急转弯。受控转弯的更长距离能够导致比更短急转弯更大的总高度损失。如果更急转弯产生更小的总高度损失,该算法将使用更急转弯。虽然相对地计算费用高,但还是能在出发前执行生成树的产生。根植于各种着陆位置且在各种条件下的生成树数据库能够被加载到飞机中以便在飞行期间使用。在飞行期间的任何时刻,可以将当前飞机位置和航向与根植于局部区域的生成树进行比较。由于在生成树中预先计算了沿生成树的点的高度,所以定航线工具100能够立即知道飞机需要处于哪一高度以便使其抵达给定的着陆位置。它也将立即知道具有最小高度损失的路径。如果飞机比生成树的最大高度更高,机载计算机就需要将飞机的当前位置和航向 与生成树连接。从生成树上最靠近飞机位置的点开始,定航线模块102搜索生成树中的点,从而在考虑飞往该点导致的高度损失和相关航向后,寻找仍然可行的第一点。这仅在计算上包括简单的空间分选和两次转弯计算。现在参考图9,其将提供关于本文提出的实施例的额外细节,用于确定飞机的着陆点。应该明白,本文所述的逻辑操作被实施为(I)计算机实施动作的序列或在计算系统上运行的程序模块,和/或(2)计算系统内的互连机器逻辑电路或电路模块。该实施方式是取决于计算系统的性能和其他运行参数的选择问题。因此,将本文所述的逻辑操作在不同的地方称为操作、结构装置、动作或模块。这些操作、结构装置、动作和模块可以在软件、固件、硬件、专用数字逻辑及其任何组合中实施。也应该明白,可以执行比附图中示出及本文所述的操作更多或更少的操作。也可以与本文所述的那些操作并行地或以不同顺序执行这些操作。图9不出根据不例性实施例用于确定飞机的着陆点的程序900。在一个实施例中,通过上文参考图I所述的定航线模块102来执行程序900。应该理解,该实施例是示例性的,并且可以如下执行程序900,即由飞机的航空电子系统的另一模块或组件执行;由机外系统、模块和/或组件执行;和/或由机载和机外模块、系统和组件的组合执行。程序900始于操作902,其中飞行数据被接收。飞行数据能够包括指示计划飞行路径的飞行计划。能够由定航线模块102分析飞行路径以识别着陆点例如机场以及可替换着陆点例如田地、高尔夫球场、道路等。定航线模块102能够访问一个或更多个数据库104,从而搜索、认识和识别预期飞行路径的可能可替换着陆点。程序900继续从操作902进行至操作904,其中能够针对每个识别的着陆点和/或可替换着陆点产生生成树。如上所述,能够从着陆点反推至飞行路径沿其行进的空域而产生生成树。在一些实施例中,对沿飞行路径或处于飞行路径的特定范围内的每个着陆点产生生成树。可以基于有意的巡航高度和/或速度以及因此飞机在紧急情况条件下可具有的预期滑行轮廓来确定该特定范围。应该理解,该实施例是示例性的,并且可以使用其他因素来确定应对其产生生成树的着陆点。
程序900继续从操作904进行至操作906,其中所产生的生成树被加载到数据存储位置。该数据存储位置可以是飞机机上,或者在ATC、ARTCC、A0C或另一位置。在一些时间点上,飞机开始飞行。程序900继续从操作906进行至操作908,其中响应于紧急情况条件,从数据存储装置中检索生成数据库。程序900继续从操作908进行至操作910,其中分析生成树以识别一个或更多个可用着陆点,并且提示检索着陆点信息,诸如离当前位置的距离、着陆点处的天气、可选择去往着陆点的路径的时间等。程序900继续从操作910进行至操作912,其中向飞行人员显示指示着陆点的信息以及关于着陆点的信息,诸如离当前位置的距离、着陆点处的天气、必须选择去往着陆点的路径的时间等。除了显示具有可用着陆点和关于这些着陆点的信息的移动地图显示外,定航线工具100能够获得额外的实时数据,诸如当前位置和着陆点之间的气象数据、着陆点处或着陆点附近的交通数据等,并且能够将这些数据显示给飞行人员。程序900继续从操作910进行至操作912,其中选择着陆点,并且飞机开始飞往所选择的着陆点。在选择着陆点时,可以考虑着陆点处、着陆点附近或在去往着陆点的路径上的天气条件,因为能见度可能是成功和安全进入着陆点的生死攸关的组成部分。程序900继续进行至914,在此处程序900终止。 现在参考图10A-10B,其示出根据示例性实施例由定航线工具100的图形用户界面(⑶I)提供的屏幕显示1000AU000B。如果飞机如此配备,屏幕显示1000A-B能够被显示在飞行员的主飞行显示器(PFD)上,或者根据需要被显示在其他显示器和/或显示装置上。图IOA示出根据示例性实施例由定航线工具100提供的三维屏幕显示1000A。线1002代表安全进入着陆点并且在降落点1004安全降落所需的飞行路径。图IOA中的图是从座舱的视角示出的。通过该说明性视角,如线1002所示,很明显当前飞机高于安全着陆所需的最小高度。因此,飞机具有足够的能量抵达降落点1004。图IOB示出根据另一示例性实施例由定航线工具100提供的另一三维屏幕显示IOOOB0特别地,图IOB示出用于进入着陆点的飞行路径1010。该飞行路径包括目标1012。在接近期间,飞行员试图使飞机穿过目标1012。一旦穿过所有目标1012,飞机就处于在着陆点处着陆的适当位置。因此,由定航线工具100提供的GUI能够被配置为向飞行员提供引导,从而在紧急情况下将飞机导航至着陆点。这些实施例是示例性的,并且不应被理解为以任何形式进行限制。根据不同实施例,定航线工具100与ATC、ARTCC或AOC互相配合,从而随着飞行进行而交换关于潜在着陆点的信息,或者允许ATC或AOC监控或控制危难中的飞机,或者潜在地改变该区域中的其他飞机的航线以提高进入安全性。根据其他实施例,定航线工具100被配置为根据预定调度表或者在发生触发事件的情况下报告飞机状态,该触发事件例如是高度突然变化、解除自动驾驶仪的功能性、抵达期望着陆点的100英里或其他距离内或者其他事件。根据其他实施例,定航线工具100在机外计算机系统诸如与ATC、ARTCC或AOC关联的系统的协助下实时地确定潜在着陆点。定航线模块能够通过当前飞行操作报告(FOB)发消息系统或另一系统传送或接收该信息。随着飞机在其飞行路径上行进,ATC、ARTCC和/或AOC具有向上传输关于潜在紧急情况着陆点的信息的能力。例如,ATC、ARTCC和/或AOC能够使用数据库104中的数据和来自实时数据源122的数据来确定飞机的着陆点。可以通过许多向上传输装置将关于着陆点的信息上传至飞机。当报告紧急情况时和/或当发生来自授权飞形人员的请求时,ATC、ARTCC和/或AOC定期播放该信息。在另一实施例中,随着飞机继续其飞行,飞机向ATC、ARTCC或AOC播送潜在着陆点。作为替换,仅当存在紧急情况时或者仅当ATC、ARTCC或AOC请求该信息时,飞机才进行播报。因此,ATC、ARTCC或AOC能够实时或接近实时地识别紧急情况中的飞机所选择着陆点。根据需要,可以重新确定其他交通的航线以确保安全进入该选择的着陆点。应该理解,飞机和ATC、ARTCC或AOC能够具有关于着陆点选择的连续、自主和即时信息,由此向定航线工具100添加额外的安全性层。图11示出能够执行本文所述的软件组件以便如本文所述确定飞机的着陆点的定航线工具100的说明性计算机体系架构1100。如上所述,定航线工具100可以被包含在单个计算装置中,或者包含在一个或更多个处理单元、存储单元和/ 或在飞机的航空电子系统和/或ATC、A0C的计算系统或其他机外计算系统中实施的其他计算装置的组合中。计算机体系架构1100包括一个或更多个中央处理单元1102(“CPU”)、包含随机存取存储器1114(“RAM”)和只读存储器1118 (“ROM”)的系统存储器1108以及将存储器耦合至CPU 1102的系统总线1104。CPU 1102可以是执行计算机体系架构1100的运行所需的算术和逻辑运算的标准可编程处理器。CPU 1102可以通过将一种离散物理状态转换为下一个状态而执行必要的运算,该转换是通过操纵区分并改变这些状态的开关元件来实现的。开关元件一般可以包括这样两种电子电路,一种电子电路保持两种二进位状态的一种,诸如双稳态多谐振荡器,而另一种电子电路基于一个或更多个开关元件的状态的逻辑组合提供输出状态,诸如逻辑门。这些基本开关元件可以被组合以产生更复杂的逻辑电路,包括寄存器、加法器-减法器、算术逻辑单元、浮点单元等。计算机体系架构1100也包括大容量存储装置1110。该大容量存储装置1110可以通过进一步连接至总线1104的大容量控制器(未示出)连接至CPU 1102。大容量存储装置1110及其关联的计算机可读介质为计算机体系架构1100提供非易失性存储。大容量存储装置1110可以存储各种航空电子系统和控制系统以及专用模块或其他程序模块,诸如上文参考图I所述的定航线模块102和数据库104。大容量存储装置1110也可以存储由各种系统和模块收集或利用的数据。计算机体系架构1100可以通过转换大容量存储装置的物理状态反应所存储的信息而在大容量存储装置1110上存储程序和数据。在本公开的不同实施方式中,物理状态的特殊变换可能取决于各种因素。这些因素的示例可以包括但不限于用于实现大容量存储装置1110的技术、该大容量存储装置是否表征为主存储器或次级存储器等。例如,计算机体系架构1110可以通过以下方式将信息存储到大容量存储装置1110中,即通过存储控制器发出指令,从而改变磁盘驱动器装置内的特殊位置的磁性特性、光存储装置中的特殊位置的反射或折射特性或者固态存储装置中的特殊电容器、晶体管或其他分立组件的电学特性。在不偏离本说明书的范围和精神的情况下,物理介质的其他转换也是可能的,其中提供上述示例仅为了有利于这种描述。计算机体系架构1110可以通过探测大容量存储装置内的一个或更多个特殊位置的物理状态或特性而进一步从大容量存储装置1110中读取信肩、O
虽然本文所包括的计算机可读介质的说明涉及大容量存储装置,诸如硬盘或CD-ROM驱动器,但是本领域技术人员应该明白,计算机可读介质可以是能够由计算机体系架构1110访问的任何可用的计算机存储介质。例如但非限制地,计算机可读介质可以包括在用于存储诸如计算机可读指令、数据结构、程序模块或其他数据的任何方法或技术中实施的易失性和非易失性、可移除和不可移除的介质。例如,计算机可读介质包括但不限于RAM、ROM、EPROM、EEPR0M、闪存或其他固态存储技术、CD-ROM、数字通用盘(“DVD”)、HD-DVD、BLU-RAY或其他光学存储器、磁带盒、磁带、磁盘存储器或其他磁存储装置或者任何其他能够用于存储期望信息且能够由计算机体系架构1100访问的介质。根据不同实施例,计算机体系架构1100可以在使用逻辑连接至可通过网络1120访问的飞机中的其他航空电子装置和/或飞机外的系统的网络化环境中运行。计算机体系架构1100可以通过被连接至总线1104的网络接口单元1106连接至网络1120。应该明白,也可以利用网络接口单元1106来连接至其他类型的网络和远程计算机系统。计算机体系架构1100也可以包括用于接收输入和向飞机终端和显示器诸如上文参考图I所述的飞行中显示器136提供输出的输入-输出控制器1122。该输入-输出控制器1122也可以从其 他装置接收输入,包括PFD、EFB、NAV、HUD、MDU、DSP、键盘、鼠标、电子笔或与飞行中显示器136关联的触摸屏。类似地,输入-输出控制器1122可以向其他显示器、打印机或其他类型的输出装置提供输出。基于上文,应该明白,本文提供了用于确定飞机的着陆点的技术。虽然以专用于计算机结构特征、方法动作和计算机可读介质的语言描述本文提出的主题,但是应该理解,随附权利要求中限定的本发明不必要局限于本文所述的特定特征、动作或介质。相反,特定特征、动作或介质仅以实施权利要求的示例的形式进行公开。仅作为例证提供上述主题,并且不应将其视为限制。在不遵循所示和所述的示例性实施例和应用并且不偏离在权利要求中提出的本发明的真正精神和范围的情况下,可以对本文所述的主题进行各种修改和变化。
权利要求
1.一种确定飞机(900)的着陆点的方法,所述方法包括 接收对应于飞行路径的飞行数据; 识别(902)邻近所述飞行路径的至少一个着陆点; 产生(904)所述至少一个着陆点与所述飞行路径之间的生成树;以及 将所述生成树存储(906)在数据存储装置中。
2.根据权利要求I所述的方法,其中接收所述飞行数据包括在规划飞行期间在与所述飞机关联的定航线工具(100)处接收所述飞行数据。
3.根据权利要求I所述的方法,其中接收所述飞行数据包括在飞行期间在与所述飞机关联的定航线工具(100)处接收所述飞行数据。
4.根据权利要求I所述的方法,其中接收所述飞行数据包括在开始飞行之前在与空中 交通管制系统关联的机外定航线工具处接收所述飞行数据。
5.根据权利要求4所述的方法,还包括 在所述飞机的飞行期间探测紧急情况条件, 响应于探测到所述紧急情况,向所述空中交通管制系统传输指示发生所述紧急情况的数据;以及 从所述空中交通管制系统接收所述生成树。
6.根据权利要求I所述的方法,其中接收所述飞行数据包括在飞行期间在与空中交通管制系统关联的机外定航线工具处接收所述飞行数据。
7.根据权利要求I所述的方法,还包括在所述飞机的飞行期间探测紧急情况条件。
8.根据权利要求7所述的方法,还包括 响应于探测到所述紧急情况,从所述数据存储装置检索(908)所述生成树;以及 将所述生成树传送至所述飞机的显示系统。
9.根据权利要求8所述的方法,还包括 显示所述生成树;以及 接收与所述生成树关联的被显示着陆点(202)的选择。
10.根据权利要求9所述的方法,还包括与所述生成树一起显示倒计时计时器,所述倒计时计时器指示可选择所述着陆点(202)的时间量。
11.根据权利要求9所述的方法,还包括 获得所述着陆点(202)的实时气象数据(124),其中在选择所述着陆点(202)之前评估所述实时气象数据(124)。
12.根据权利要求9所述的方法,还包括显示用于进入所选择的着陆点(202、304A、304B)的滑行路径(324A、324B)的垂直轮廓图(320)。
13.一种确定飞机的着陆点的定航线工具(100),所述定航线工具包括数据库(104)和定航线模块(102),所述数据库被配置为存储对应于所述飞机的飞行路径的飞行数据的,所述定航线模块被配置为 接收所述飞行数据; 识别(902)邻近所述飞行路径的至少一个着陆点; 产生(904)所述至少一个着陆点与所述飞行路径之间的生成树;以及 将所述生成树存储(906)在数据存储装置中。
14.根据权利要求13所述的定航线工具(100),其中所述定航线工具包括所述飞机的组件。
15.根据权利要求13所述的定航线工具(100),其中所述定航线工具包括空中交通管制系统的组件。
16.根据权利要求13所述的定航线工具(100),其中所述生成树是在开始飞行之前产生的。
17.根据权利要求11所述的定航线工具(100),其中所述生成树是响应于在所述飞机的飞行期间探测到紧急情况而实时产生的。
18.根据权利要求13所述的定航线工具(100),还包括用于产生飞机性能模型的性能学习系统,其中所述飞机性能模型被用于产生所述生成树。
19.一种具有在其上存储的计算机可执行指令的计算机可读存储介质,处理器执行所 述计算机可执行指令引起定航线工具 接收对应于飞行路径的飞行数据; 识别(902)邻近所述飞行路径的至少一个着陆点; 产生(904)所述至少一个着陆点与所述飞行路径之间的生成树; 将所述生成树存储(906)在数据存储装置中; 在飞机的飞行期间探测所述飞机上的紧急情况;以及 响应于探测到所述紧急情况,显示所述生成树以便选择着陆点。
20.根据权利要求19所述的计算机可读存储介质,还包括计算机可执行指令,执行所述计算机可执行指令使所述定航线工具进一步可操作以便 发送指示在所述飞机上的所述紧急情况的数据,所述数据被传送到空中交通管制系统;以及 从所述空中交通管制系统接收用于选择所述着陆点的指令。
全文摘要
本发明公开一种定航线工具。所述定航线工具被配置为通过接收飞行数据而确定飞机的着陆点。所述定航线工具识别邻近飞行路径的至少一个着陆点,并且产生着陆点与飞行路径之间的生成树。根据一些实施例,在飞行期间实时确定着陆点。另外,可在飞机上或与飞机通信的远程系统或装置上确定着陆点。在一些实施例中,所述定航线工具在飞行前产生一个或更多个生成树。这些生成树可以基于飞行计划并且可以被存储在数据存储装置中。本发明也公开了方法和计算机可读介质。
文档编号G08G5/00GK102859569SQ201180020276
公开日2013年1月2日 申请日期2011年3月17日 优先权日2010年4月21日
发明者C·B·斯皮内里, B·W·欧菲尔, A·E·布鲁斯, R·鲁萨迪, S·F·卡斯帕德 申请人:波音公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1