一种井下选煤厂设备硐室底板位移动态监测系统的制作方法

文档序号:8923398阅读:516来源:国知局
一种井下选煤厂设备硐室底板位移动态监测系统的制作方法
【技术领域】
[0001]本发明涉及井下选煤厂位移监测技术领域,具体涉及一种井下选煤厂设备硐室底板位移动态监测系统。
【背景技术】
[0002]煤炭是我国最主要的一次能源,伴随着煤矿开采排出的矸石以每年1.5?2.0亿吨的速度增加,井上选煤一方面增加了原煤中矸石的运费以及排矸费用,造成矿井的提升能力紧张和吨煤利润下降;另一方面矸石排放占用土地,造成地面环境的污染,不利于居住环境的改善。2009年2月山东新汶矿业集团协庄矿建成了国内首座洗煤厂,在原煤升井前通过选煤设备将其中的矸石排出,直接用于井下喷浆或采空区回填材料,实现了原煤井下分选和充填一体化,不但减少了地面占地,又降低了对环境的污染,产生巨大的经济效益和社会效益。随着绿色开采理念的不断深入,井下选煤技术具有非常广阔的应用前景。
[0003]随着井下选煤的实现,符合井下选煤厂设备硐室的安全监测和控制系统也有待于进一步的开发和研宄。针对井下选煤厂设备硐室的底板位移监测不同于巷道,这是因为:首先,选煤厂设备硐室内安设有大型选煤设备,占据了硐室内大部分的空间,其重量以及生产运行时的振动都可能会对煤矿井围岩的稳定产生影响,所以根据设备性能以及硐室围岩情况必须浇筑设备基础;其次,选煤厂设备硐室内的电子干扰、电磁干扰现象更加严重,相应的监测设备和系统性能必须符合选煤生产的要求,不仅抗干扰能力要求高,而且不受潮湿、高温环境影响;再者,监测系统的安装不能影响选煤设备的运行和破坏围岩的稳定性;最后,目前对井下底板位移的测量方法极其有限,且局限于机械测量,无法实现动态监测。
[0004]井下选煤厂设备硐室底板岩石在矿山压力作用下产生底臌,导致硐室内大型选煤设备基础局部受力不均而产生倾斜、位移现象,严重影响选煤设备的稳定运行和工作人员的人身安全。因此,很有必要对井下选煤厂设备硐室底板位移进行实时动态监测,保证生产安全。
[0005]无线传感器网络(WSN)是一项新兴的IT热点领域,它综合了微机电系统、传感器技术、嵌入式计算机技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,这些信息通过无线方式被发送出去,并以自组多跳的网络方式传送到用户终端。ZigBee是一种低功耗、低成本的短距离无线通信技术,它在IEEE802.15.4标准的基础上制定了网络层、应用层及安全层,是一个完整的标准协议,已经成为无线传感器网络的国际标准协议,被用于社会生活的各个方面。
[0006]现有的光纤光栅锚杆测力装置及监测锚杆应力变化的方法(专利号CN101358886A)中的锚杆测力装置包括压力表1、T字型油管2,水平管和液压油缸4连接,垂直管与光纤光栅3连接。通过在岩石或土层内安装锚杆,在锚杆的外露端嵌入垫板和液压油缸,并用螺母连接。光纤光栅传感器将锚杆受力变化量通过其纤芯连接到外部的光纤光栅网络分析仪进行数据的处理。该发明存在以下不足: 1、现有技术中没有无线传输器件,不具备数据的无线收发功能,无法实现对选煤厂设备硐室底板位移的动态监测;
2、现有技术体积较大,该技术的安装会影响选煤厂设备硐室内设备的运行和操作人员的正常通行;
3、现有技术不能安装在选煤设备基础上,通过在设备基础上钻孔安装,不仅会破坏设备基础的整体性和稳定性,而且会影响选煤设备运行;
4、现有技术成本较高,采用的光纤光栅网络分析仪价格昂贵,不适合在矿井内推广使用;
5、现有技术传感器监测信号传递依靠有线光纤,需要在井下通道铺设光纤既占据大量的空间,且线路老化较快容易损坏,事故率较大。

【发明内容】

[0007]本发明所要解决的问题是提供一种井下选煤厂设备硐室底板位移动态监测系统,可快速实现数据的传输,能够实时监测大型选煤设备基础是否倾斜,并动态监测选煤厂设备硐室底板的位移情况。
[0008]一种井下选煤厂设备硐室底板位移动态监测系统,包括传感器节点、SINK节点、基站和监测主机,所述传感器节点、SINK节点和基站均设置在井下,所述监测主机设置在井上,所述传感器节点与所述SINK节点之间通过无线连接,所述SINK节点、所述基站和所述监测主机之间通过有线连接。
[0009]进一步的,所述传感器节点包括传感器模块、能量管理模块A、处理器模块A和通信模块A,所述传感器模块包括陀螺仪和加速度计,所述能量管理模块A采用电池供电或外接电源提供所述传感器节点工作的所有电能,所述处理器模块A采用单片机控制所述传感器节点的运行以及处理采集到的数据和所述SINK节点发来的数据,所述通信模块A包括Zigbee模块A,负责与所述SINK节点进行数据的无线收发和交换控制信息。
[0010]进一步的,所述SINK节点包括能量管理模块B、处理器模块B和通信模块B,所述通信模块B包括Zigbee模块B和调制解调器,所述Zigbee模块B负责与传感器节点进行数据的无线收发和交换控制信息,所述调制解调器负责与所述基站进行数据的有线传递和控制信息的收发,所述能量管理模块B提供所述SINK节点工作的所有电能,所述处理器模块B负责收发所述传感器节点和所述基站的数据与命令,并对数据进行存储。
[0011]进一步的,所述基站包括嵌入式计算机,所述基站通过有线光纤与所述SINK节点和所述监测主机连接,所述监测主机包括上位机,所述监测主机对所述基站传来的数据进行接收、存储、显示和分析,实现监测数据的动态显示。
[0012]进一步的,所述处理器模块A包括ARM单片机。
[0013]进一步的,所述陀螺仪采用三轴陀螺仪,所述加速度计采用三轴加速度计,所述陀螺仪和所述加速度计通过卡尔曼滤波器对监测信号进行数据融合。
[0014]进一步的,所述传感器节点设置在硐室设备基础侧面的槽体内,并通过盖板进行掩盖保护。
[0015]进一步的,所述监测主机设置报警模块,所述报警模块包括蜂鸣器与GPRS发射模块。
[0016]传感器节点是对井下选煤厂设备硐室内底板位移情况进行监测,并将监测到的数据发送至SINK节点,因为井下硐室的数量是较多的,而井下的情况也较为复杂,所以采用SINK节点对一定区域内的传感器节点进行数据接收以及命令控制,SINK节点再往上与基站连接,若井下的区域较少则设置一个基站对所有的SINK节点进行监测信息汇总并存储,井下区域较大时设置多个基站,保证对所有的SINK节点进行连接控制,基站与监测主机连接,最终将井下硐室内的监测信息汇总至监测主机,实现对井下硐室内底板位移情况的远程动态监测。
[0017]传感器节点主要采集监测数据,并发送给SINK节点,同时接收来自SINK节点的查询命令。当没有数据的发生和命令的接收时,转入休眠模式,使节点功耗降到最低,为了确保发送的数据包被SINK节点接收到,在数据包的发送中采用APS层确认应答机制,如果发送数据包后在规定的时间内没有接收到应答确认信息,则重新发送,连续三次发送失败,则视此次操作无效。同时,为了保证无线传感器网络的质量,该节点定时向父节点发送Ping命令以监测当前的链路状态,连续五次确实后继续进入睡眠状态。
[0018]传感器节点包括传感器模块、能量管理模块A、处理器模块A和通信模块A,陀螺仪是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,陀螺仪与加速度计进行配合使用实现对硐室内底板的位移、角度和加速度的监测。处理器模块A包括单片机,单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计数器等功能集成到一块硅片上构成的一个小而完善的微型计算机系统,处理器模块A对传感器节点进行控制将监测数据向SINK节点发送,并起到同步定位、功耗管理、任务调度和通信协议等作用,通信模块A采用的是Zigbee模块,ZigBee是一种基于标准的远程监控、控制和传感器网络应用技术,数据传输速率低:10Kb/s~250Kb/s,专注于低速率传输应用;功耗低:在低功耗待机模式下,两节普通5号电池可使用6~24个月;成本低:Zigbee数据传输速率低,协议简单;网络容量大:网络可容纳65,000个设备;延时短:典型搜索设备时延为30ms,休眠激活时延为15ms,活动设备信道接入时延为15ms,网络的自组织、自愈能力强,通信可靠。这里实现传感器节点与SINK节点的无线连接,硐室内设备较大,人员走动较多,采用有线连接占用空间较多,且接线复杂容易出错,工作人员也容易误碰,采用Zigbee模块对设备和人员都起到了保护作用。传感器节点与SINK节点也可采用串口通信作为备用,将通信线路埋入地面,这样在无线通信发生故障时可以紧急采用串口通信进行数据传输。
[0019]SINK节点一方面负责组建无线网络,另一
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1