一种短程行驶时间预测方法

文档序号:8923427阅读:482来源:国知局
一种短程行驶时间预测方法
【技术领域】
[0001] 本发明属于智能交通系统领域,特别涉及一种短程行驶时间预测方法。
【背景技术】
[0002] 在公交信号优先(TransitSignalPriority,TSP)系统中,往往需要在路口前一 定距离处检测公交车的到达,并预测公交车行至路口的时间,以便给予及时、准确的信号优 先控制。许多研宄者和工程师都认识到,精确的行驶时间预测是成功实施公交信号优先的 关键。
[0003] 现有的车辆行驶时间预测模型主要有四类,分别是朴素模型、基于交通理论的模 型、基于数据的模型和混合模型。朴素模型不需要任何训练和参数估计,只是简单地将最 近发生的行驶时间作为下一预测值,或者对历史行驶时间进行简单的筛选和加权作为预测 值,或者二者的结合;这种方法不能适应复杂多变的交通环境。基于交通理论的模型试图在 每一个时间步里重建交通状态,然后从状态变量推测行驶时间,这类模型通常在各类交通 仿真软件里面实现,例如CORSM、PARAMICS和DynaMIT等,它们可以详尽地描述交通状态 的细节,但是建立这类模型往往需要大量的专业知识。这类模型的预测精度取决于重建的 和实际的交通状态之间的相似性,但是由于现实世界的复杂性,这种相似性往往不能保证。 得益于统计和机器学习方法的发展,涌现出许多基于数据的预测模型并得到广泛应用,这 类模型的目的是找到一种恰当的数据解释函数f?及其参数,以最小的误差将输入映射到输 出,其中人工神经网络(ArtificialNeuralNetwork,ANN)模型具有强大的表述数据中非 线性关系的能力,得到了广泛的研宄,并衍化出多种变体。而混合模型一般将两种或多种不 同类型的模型组合,集取各自的优势以进一步提高预测性能,例如将季节性自回归移动平 均模型和自适应卡尔曼滤波结合构成多步预测器,利用贝叶斯规则解释多个ANN模型输出 的混合ANN模型等。涉及混合模型的研宄相对较少,此类模型的预测性能还有待进一步验 证。
[0004]ANN模型自从被提出以来就在预测领域得到重视和快速发展,因为建立这类模型 不需要太多领域相关专业知识,而且预测性能一直在不断提高。传统的浅层ANN模型需要 大量的训练数据以提高精度,然而数据量过大又容易陷入过拟合。增加网络层次可以解决 这个问题,但是传统的训练方法面对深层网络收敛速度缓慢。最近几年深度学习网络研宄 的突破解决了这一矛盾,它被证明能够有效地解决预测和其它许多问题。

【发明内容】

[0005] 本发明针对短程行驶时间预测的实际应用需求,提出一种短程行驶时间预测方 法,能够深度挖掘输入变量之间的非线性关系和其它内在特征,预测精度高,鲁棒性好。
[0006] 本发明提出的一种短程行驶时间预测方法,包括以下步骤:
[0007] 步骤S1 :利用交通数据采集装置进行数据采集并对采集的数据采用归一化方法 进行预处理;
[0008] 步骤S2 :应用预处理好的数据,训练堆叠自编码器深度网络,得到最优网络结构 和对应参数,生成最优堆叠自编码器深度网络;
[0009] 步骤S3 :调用训练好的最优堆叠自编码器深度网络预测车辆短程行驶时间。
[0010] 优选的,步骤S1所采集的数据包括车辆行驶速度、交通流量、交通流密度或车道 平均车辆数、信号时间以及车辆在预测起止点之间的实际行驶时间。
[0011] 优选的,步骤S1对采集的数据采用归一化方法进行预处理的具体方法为:选取待 归一化变量的最小值vmin和最大值Vmax,对[vmin,vmax]之间的任意值V,其归一化后的值VnS
[0013] 优选的,步骤S2生成最优堆叠自编码器深度网络的步骤包括:
[0014] 步骤S21 :将归一化处理后的数据按比例分为训练集和测试集;
[0015] 步骤S22 :设置堆叠自编码器深度网络的网络结构:包括组成堆叠自编码器的自 编码器个数L,以及每一个自编码器隐藏层节点个数n1;
[0016] 步骤S23 :利用训练数据集,非监督地逐层训练每个自编码器的参数;
[0017] 步骤S24 :将步骤S23中训练好的自编码器堆叠起来,并在顶层加入预测器,再次 利用训练数据,有监督地微调深度网络各层参数;
[0018] 步骤S25 :利用测试数据集,在训练好的深度网络上进行前向计算,得到测试集上 的平均绝对预测误差;
[0019] 步骤S26 :改变自编码器个数L以及每一个自编码器隐藏层节点个数ni的数值,重 复步骤S22~S25 ;选取最小误差对应的网络结构和参数作为堆叠自编码器深度网络的最 优网络结构和参数。
[0020] 优选的,所述步骤S3进一步包括以下步骤:
[0021] 步骤S31 :当新的车辆到达时,采集需要的输入数据并以同样的参数做归一化处 理;
[0022] 步骤S32 :将归一化后的输入数据带入训练好的深度网络进行前向计算,得到对 应的归一化预测值;
[0023] 步骤S33 :将步骤S32得到的归一化预测值反归一化,得到车辆在预测起止点之间 的预测行驶时间。
[0024] 本发明通过构造基于堆叠自编码器的深度网络预测模型,充分利用实际产生的大 量交通数据训练模型,可以自动地深度挖掘输入变量之间的非线性关系和其它内在特征。 本发明具有通用性,能够轻易部署在不同的预测地点,并且具有秒级的预测精度和较高的 鲁棒性。
【附图说明】
[0025] 图1是本发明短程行驶时间预测方法框架示意图;
[0026] 图2是本发明生成最优堆叠自编码器深度网络的流程示意图;
[0027] 图3是单隐藏层自编码器结构示意图;
[0028] 图4是本发明用于预测的深度网络结构示意图。
【具体实施方式】
[0029] 下面将结合附图对本发明加以详细说明,应指出的是,所描述的实施例仅旨在便 于对本发明的理解,而对其不起任何限定作用。
[0030] 如图1所示,本发明的一种短程行驶时间预测方法具体地包括以下步骤:
[0031] 步骤S1 :利用交通数据采集装置进行数据采集并对采集的数据采用归一化方法 进行预处理。
[0032] 本方法训练阶段需要采集的数据包括车辆行驶速度、交通流量、交通流密度或车 道平均车辆数、信号时间以及车辆在预测起止点之间的实际行驶时间。其中车辆行驶速度 和交通流量可以通过环形线圈检测器直接得到。交通流密度或车道平均车辆数可以通过在 预测起止点处分别设置环形线圈检测器,然后统计经过两个检测器的车辆数之差得到(车 道数为已知常量)。信号时间可以通过连接路口信号控制器得到。预测起止点之间的实际 行驶时间可以通过检测器时间戳信息得到。除了环形线圈检测器外,还可以采用更高级的 检测器取得以上数据,例如视频检测器、GPS装置和AVL装置等。
[0033] 接下来对采集的数据进行预处理,采用归一化方法。对于某个待归一化的变量,取 其最小值Vmin和最大值vmax,则对[vmin,vmax]之间的任意值V,其归一化后的值vn如公式(1) 所示。
[0035] 对所有变量(包括输出变量)做以上归一化处理得到归一化后的数据集。
[0036] 步骤S2:应用预处理好的数据,训练堆叠自编码器深度网络,得到最优网络结构 和对应参数,生成最优堆叠自编码器深度网络。该过程流程图如图2所示,其中AE表示自 动编码器(Auto-Encoders),具体包含以下步骤:
[0037] 步骤S21,将归一化处理后的数据分为训练集和测试集。
[0038] 如果数据量足够大,可以取80%的数据为训练集,20%的数据为测试集。这里的 20%、80%划分只是推荐值,实际应用时应该根据具体情况采取合适的划分。如果数据量太 少,可以采用N折交叉验证方法划分训练集和测试集以充分利用数据。
[0039] 步骤S22,设置堆叠自编码器深度网络的网络结构:包括组成堆叠自编码器的自 编码器个数L,以及每一个自编码器隐藏层节点个数ni。
[0040] 步骤S23,利用训练数据集,非监督地逐层训练每个自编码器的参数;"逐层"意味 着将前一个自编码器的编码输出用作后一个自编码器的输入,第一个自编码器的输入来自 训练集数据。
[0041]自编码器是一种输入节点和输出节点个数相同的神经网络,最简单的自编码器只 有一个隐藏层,它的结构如图3所示。第k层的直接输入z(k)(加粗体表示向量或矩阵,下 同)通过函数f(0变换为激活值a(k),k= 1,2,3。其中第一层即输入层不需要激活变换, 且z(1)等于输入X,因此x=z(1)=a(1)。函数f( ?)称为激活函数,取sigmoid函数,如公 式⑵所示。
[0043] -个向量的函数f(z)仍为一个向量,它表示对向量的每
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1