光盘的制作方法

文档序号:6776793阅读:259来源:国知局
专利名称:光盘的制作方法
背景技术
1.发明领域本发明涉及一种包括一光透射层和一数据记录层的光盘,其中光可以通过光透射层被施加到数据记录层上,因此在数据记录层上记录数据和由其复制数据。
2.现有技术的描述光盘已经被广泛应用。每个光盘包括一数据记录层,一被置于另一之上的反射层等。光可以被施加到数据记录层上以记录数据。为了尽可能多的在每张光盘上记录数据,已经做了一种尝试以增加光盘的记录密度。
可以通过两种方式增加在每张光盘上记录的数据的密度。第一种,向置于一记录/复制装置中的光盘施加一具有短波长的激光束。第二种,具有一大的数值孔径(以下称之为“NA”)的物镜被用在记录/复制装置中。特别是,可以使用一半导体激光器由氮化物半导体InGaN制成并发射具有400nm波长的激光束,和可以使用具有0.8或更大的NA的物镜,因此来增加光盘的存储容量。
一次性写入光盘,是通常可写光盘的一种类型,是已知的。如

图1所示,该一次性写入光盘100包括一具有一厚度的透明基底101,例如1.2mm厚。一导向槽102被刻在基底101的一个主面上,以便提供一信号记录区。在信号记录区上有一数据记录层103,一反射膜104被形成在导向槽102上,和一保护膜105被置于反射膜104上。因此,光盘100是一多层制品。
为了在一次性写入光盘100上记录数据信号,一激光束111经过基底101被施加到导向槽102上,该激光束是通过物镜110聚焦用于在一记录/复制装置中(未示出)的光拾取(optical pickup)。用激光束111照射到的数据记录层103的任何部分,被加热和劣化。因此代表一数据信号的一记录凹下(未示出)被制作在数据记录层103上。
为了从数据记录层103上读取数据信号,具有比提供记录数据信号的光束的强度低的一激光束111被施加到信号记录区。从信号记录区的反射束的强度来发现有或没有记录凹下。因此产生了表示有或没有记录凹下的复制信号。
如上所述,一次性写入光盘100具有一1.2mm厚的基底101。激光束111通过基底101被施加到数据记录层103上。通常,使用一具有大的NA的物镜以增加光盘的记录密度。如果如此,一激光束经过的光透射层越厚(如,基底101在一次性写入光盘100的情况下),影响束点形状的光透射层的扭斜角越大。因此应该减少光透射层的厚度以便在光盘上以高的记录密度记录数据。
通过使用一具有大的NA物镜和通过使用具有短波长的一激光束来实现高密度记录,已经建议示于图2中的这种可再写光盘120。该可再写光盘120包括一基底121。一导向槽122被刻在基底121的一主表面上,形成一信号记录区。一数据记录层123被提供在信号记录区上,和一光透射层124被置于数据记录层123上。一具有波长范围是380nm至450nm的蓝激光束125经过光透射层124被施加到数据记录层123上。
该光透射层124可由紫外线固化树脂制成。此外,该层124可以是聚碳酸酯等的透明薄膜,并通过粘合剂被粘合在数据记录层123上。如果所使用的物镜具有0.78或更大的NA的话,优选的该光透射层具有10到177μm的厚度。
当一激光束经过一薄的光透射层124被施加到层123上时,数据能够以高密度被记录在可再写光盘120上。这是因为物镜具有大的NA和施加的激光束具有短的波长。
再写光盘120的数据记录层可以用相变记录材料,如Ge-Sb-Te或Ag-In-Sb-Te制成。
如果由相变材料制成,该数据记录层具有一大的吸光系数。因此,原理上讲,该数据记录层不能获得高的反射比。在数据被记录在其上之前,具有一由相变材料制成的数据层的光盘需要显示出大约15%到25%的反射比。鉴于此,下一代高密度光盘将被标准化以显示出低的反射比。
最近几年,然而,便宜的具有一由有机材料制成的记录层的一次性写入光盘是特别需要的。用于光盘的有机材料已经被发展了,蓝激光束施加到光盘上以记录和复制数据。
如上所述,在数据被记录在其上之前,该可再写光盘120需要显示出大约15%到25%(此后称之为“初始反射比”)的反射比。所希望的是蓝激光束施加到的一次性写入光盘也具有15%到25%的初始反射比。如果它的数据记录层的有机材料具有2.3或更大的折射率n,一光盘可获得一15%到25%的初始反射比,如在日本专利申请No.2000-086687所公开的那样。
然而,少数有机材料是可以利用的,这些材料具有2.3或更大的折射率,并因此它们可以被用作数据记录层的材料。一些有机材料的确具有2.3或更大的折射率。然而,它们不具备足够的耐热或耐候性,没有显示出适于蓝激光束波长的吸收光谱。并且也不是非晶形足以抑制噪音。
鉴于一次性写入光盘的制作成本和批量生产,所希望的是通过施加粘合剂,在由有机材料制成的数据记录层上粘合一光透射层。如果一光透射层被粘合在数据记录层上,但是,该有机材料可能扩散到粘合剂中或与粘合剂发生反应。所以,该数据层将劣化。这是可能的因为有机材料溶解在包含于粘合剂的溶剂中,如乙酸聚合物。因此就需要一在数据记录层上形成的介电部分,以便避免粘合剂扩散到数据记录层中。
该数据记录层可以是由折射率小于2.3的有机材料制成。在此情况下,选择材料的自由度将增加。然而,光盘将不能获得15%到25%的初始反射比。为了将光盘的初始反射比增加到15%到25%,可以在数据记录层上形成一介电部分,产生多重干涉以达到光增强效果。为了获得光增强效果,该介电部分由具有尽可能小的折射率的材料制成。
如上所述,一介电部分必须被形成在数据记录层上并且该数据记录层必须具有尽可能小的折射率和尽可能高的密度。无论数据记录层是由具有折射率至少是2.3的有机材料制成或是由具有折射率小于2.3的有机材料制成的,都是适用的。
具有小的折射率的材料的例子是氟化物,如MgF2和氧化物,如SiO2。这些材料的膜可以用RF-等离子体溅涂来形成。因此,MgF2膜可以用蒸汽沉积形成,和SiO2膜可以用电子束蒸发沉淀形成。如果使用这些方法来形成MgF2和SiO2的介电部分,但是,介电部分不能形成的快。所以,光盘不能以所希望的效率进行批量生产。上述举例说明的这些方法几乎不能提供具有所需组合物的介电部分。即如此形成的介电部分不仅显示出不足的透明性而且具有不适当的表面平滑度。
使用硅靶和氧等离子体的反应溅涂可以用来形成SiO2膜。该方法的确可以以足够的高速来形成SiO2膜。然而,该使用的有机物质由于氧等离子体的作用而劣化,该氧等离子体是在加工形成该SiO2膜时产生的。这就不可避免地使数据记录层3劣化。
基于以上给出的原因,直接在数据层上形成如MgF2的氟化物膜和形成如SiO2的氧化物膜是很难的。
本发明的概述本发明如前所述。本发明的一个目的是提供一种光盘,其中光经过光透射层被施加到数据记录层上,以便在或从数据记录层上记录或复制数据。光盘是在数据记录层不劣化的情况下构成的,通过用粘合剂将光透射层粘合到数据记录层上。
根据本发明的光盘包括一基底,一由有机材料制成的数据记录层,一提供在数据记录层上的介电部分,和一提供在介电部分上的一光透射层。通过施加一经过光透射层到数据记录层上的激光束,能够在或从光盘上记录或复制数据。介电部分包括一与数据记录层接触的氮化物层和一置于氮化物层之上的氧化物层或氟化物层。氮化物层具有最大10nm的厚度。
在本发明的光盘中,介电部分被形成在数据记录层上。因此,数据记录层决不与粘合剂接触,该粘合剂将光透射层与介电部分粘合到一起。这避免了数据记录层的有机材料的劣化。
在根据本发明的光盘中,介电部分包括一氮化物层和一置于氮化物层之上的氧化物层或氟化物层。因此,即使氧化物层是反应溅涂形成的,产生于反应溅涂时的氧等离子体也不会使数据记录层的有机材料劣化。
在本发明的光盘中,氮化物层具有10nm或更小的厚度。因此,尽管它有大的折射率,氮化物膜不会阻碍光的增强效应。光盘在数据被记录在其上之前能够具有足够的反射比。
在根据本发明的光盘中,一氧化物层或一氟化物层,两者都具有一小的折射率,是被形成在氮化物层之上的。因此,由于多重干涉,光盘能够达到光增强效果,并且光盘能够在数据被记录在其上之前显示出具有足够的反射比。另外,介电部分能够具有足够的机械强度。
在根据本发明的光盘中,一介电部分被提供在数据记录层之上和一光透射层用粘合剂被粘合在介电部分上。因此,粘合剂不与数据记录层接触。数据记录层的有机材料将不会扩散到粘合剂中从而使数据记录层劣化。
在根据本发明的光盘中,一氮化物层被形成在数据记录层之上和一氧化物层或一氟化物层被置于氮化物层之。因此,产生于用反应溅涂形成氧化物层的加工时的氧等离子体也不会使数据记录层的有机材料劣化。另外,光盘适于批量生产,因为通过反应溅涂的方式能够形成介电部分。
在本发明的光盘中,提供在氮化物层上的氧化物层具有低的折射率。因此光盘能够获得光增强效果。而且,尽管氮化物层具有大的折射率,但是氮化物膜不会阻碍光增强效果,因为它的厚度仅仅是10nm或更少。光盘在其记录数据后获得的反射比与在其记录数据之前所显示的反射比大大不同。这就赋予光盘好的信号记录/复制特性。
各视图的简要描述图1是一传统的光盘的剖视图;图2是一一次性写入光盘,向其上施加蓝激光束以在或从其上记录和复制数据;图3是一根据本发明的光盘的剖视图;图4是一图表说明当用粘合剂将一光透射层粘合到数据记录层上时,数据记录层的反射比和透射比如何变化;图5是一图表说明当一SiO2膜被提供在数据记录层上时,数据记录层的反射比和透射比如何变化;图6是一图表显示当一Si3N4膜被提供在数据记录层上时,数据记录层的反射比和透射比如何变化;图7是一图表显示当一Si3N4膜和SiO2膜以上述顺序在数据记录层上被形成,和用粘合剂将一光透射层粘合到SiO2膜上时,数据记录层的反射比和透射比如何变化;图8是一图表表明当没有Si3N4膜形成在数据记录层上和用粘合剂将一光透射层粘合到数据记录层上时,数据记录层具有的厚度,折射率和反射比之间的关系;图9是一图表显示当有10nm厚度的Si3N4膜形成在数据记录层上和用粘合剂将一光透射层粘合到Si3N4膜上时,数据记录层具有的厚度,折射率和反射比之间的关系;图10是一图表显示当有20nm厚度的Si3N4膜形成在数据记录层上和用粘合剂将一光透射层粘合到Si3N4膜上时,数据记录层具有的厚度,折射率和反射比之间的关系;和图11是一图表显示当有30nm厚度的Si3N4膜形成在数据记录层上和用粘合剂将一光透射层粘合到Si3N4膜上时,数据记录层具有的厚度,折射率和反射比之间的关系。
本发明的详细描述将参照附图,详细描述本发明的光盘如图3所示,光盘1包括一基底2,一数据记录层3,一介电部分4,和一光透射层5。数据记录层3置于基底2之上。介电部分4置于数据记录层3之上。光透射层5用粘合剂粘合在介电部分4之上。
当具有380nm到450nm波长的激光束6经过光透射层5被施加在数据记录层3上时,数据信号被记录在和从光盘1上复制。在数据被记录在其上之前,光盘具有大约15%到25%的反射比(此后称之为“初始反射比”)。它满足下一代高密度光盘的标准,在数据被记录在其上之后,高密度光盘将显示0%到10%的反射比。
基底2是一具有1.2mm厚度的盘。它是由,例如,聚碳酸酯树脂,无定形的聚烯烃树脂等制成。
数据记录层3被用来记录数据信号。它由有机材料制成。有机材料已经将它的反射比变化为数据信号。通过在基底2上涂布一溶液形成数据记录层3,该溶液是通过在四氟丙烷中溶解一有机染料制备的。有机染料的例子是菁基染料,部花青基染料,卟啉基染料,吡喃鎓基染料,萘酚醌基染料,蒽醌基染料,靛酚基染料等。
光透射层5是由,例如,聚碳酸酯树脂制成。该层5保护数据记录层3和允许从记录/复制装置出来的施加的光通过。经过光透射层5的光被施加到数据记录层3上。
介电部分4包括氮化物层7和氧化物层8,它被一层一层的叠起。该氮化物层7是由,例如,Si3N4,AlN等制成。氧化物层8是由,例如,SiO2等制成。一氟化物层可以替代氧化物层8。氟化物层可以由MgF2等制成。
由于介电部分4被置于数据记录层3之上,粘合利不与数据记录层3接触。数据记录层3的有机材料不会分散到粘合剂中或与粘合剂发生反应,因此根本不会劣化。
所希望的是介电部分4由具有低的折射率的材料制成。其原因将在下面进行描述。
如上所述,光盘1需要具有15%到25%的初始反射比,以便符合下一代的高密度光盘的标准。如果有机材料具有2.3或更大的折射率,就能够获得15%到25%的初始反射比。
如果数据记录层是由具有2.3或更大的折射率的有机材料制成,但是,数据记录层3几乎不具备足够的耐热或耐候性,显示出一种适于吸收蓝激光波长的吸收光谱,或是无定形的足以抑制噪音。介电部分4可以由具有低的折射率的材料制成。如果如此,将发生多重干涉,导致光增强效果。因此,如果数据记录层3是由具有折射率小于2.3的材料制成的,光盘1也能够具有15%到25%的初始反射比。
具有低的折射率的材料的例子是如SiO2的氧化物和如MgF2的氟化物。SiO2和MgF2的膜可以通过蒸汽沉积,电子束蒸汽沉积,RF-等离子体溅涂等方法成型。然而,从批量生产和介电部分所需的透明性看,所希望的是介电部分4是通过反应溅涂来形成。
光盘1的介电部分4包括一氮化物层7和一氧化物层8。氮化物层7是成型在数据记录层3之上的,和氧化物层8是成型在氮化物层7之上的。因此,氧化物层8可以利用氧等离子体通过反应溅涂成型。这是因为在用反应溅涂成型氧化物层8期间产生氧等离子体不会使数据记录层3的有机材料劣化。
如上所述,介电部分4是一由氮化物层7和氧化物层8组成的两层的组件并且用粘合剂将光透射层5粘合到介电部分4之上。这种结构特点避免了数据记录层3的劣化,这将参照附图4到7在下面进行详细说明。图4到6中的箭头表明施加到光盘1上的光的反射和透射。
制备一第一比较盘。如图4所示,该盘包括聚碳酸酯基底10,数据记录层11,粘合剂层12,和聚碳酸酯薄膜13。具有80nm厚的数据记录层11被置于聚碳酸酯基底10之上。粘合剂层12将聚碳酸酯膜14粘合到数据记录层11上。一激光束被施加到第一比较盘上,特别对准聚碳酸酯膜13。根据从盘反射回来的光束的强度测量第一比较盘的反射比和透射比。结果被示于下表1中。
表1
从表1中可以看出,第一比较盘的透射比高于理论值,同时盘的反射比与理论值近似相等。这表明数据记录层11的折射率和吸收系数发生了变化。就是说,这意味着数据记录层11劣化了因为它的材料扩散到粘合层12中。
根据第一比较盘的透射比和反射比来计算数据记录层11的折射率和吸收系数。结果也显示在表1中。可以看出,层11的反射比和吸收系数与它们的理论值不同。这表明数据记录层11没有退化。
制备第二比较盘。如图5所示,该盘包括一聚碳酸酯基底20,一数据记录层21,和一SiO2膜22。具有100nm厚度的数据记录层21,被置于聚碳酸酯基底20之上。具有40nm厚度的SiO2膜22,被置于数据记录层21之上。一激光束被施加到第二比较盘上,特别对准SiO2膜22。根据从盘反射的光束的强度计算第二比较盘的反射比和透射比。结果显示在下表2中。
表2
如表2所示,第二比较盘的反射比和透射比都高于理论值。这表明由于在形成SiO2膜22的过程中产生的氧等离子体使数据记录层21劣化了,或由于层21中的反射比和吸收系数变化了。
根据第二比较盘的透射比和反射比计算数据记录层的折射率和吸收系数。结果也显示在表2中。它清楚的表明层21的折射率和吸收系数不同于它们的理论值。因此,数据记录层21没有退化。
制备根据本发明的第一光盘。如图6所示,光盘包括一聚碳酸酯基底30,一数据记录层31,一Si3N4层32,和一SiO2层33。具有100nm厚度的数据记录层31被置于基底30之上。Si3N4层32具有5nm的厚度并成型在数据记录层31之上。SiO2层33具有35nm的厚度并且置于Si3N4层32之上。一激光束被施加到第一光盘上,特别对准SiO2层33。根据从光盘反射的光束的强度测量第一光盘的反射比和透射比。结果被显示在下表3中。
表3
如表3所示,第一光盘的反射比和透射比几乎等于它们的理论值。因此,数据记录层31完全没有劣化。
从表3可以理解的是,根据本发明的光盘的数据记录层31没有劣化。进而,如图7所示,用粘合剂层34将聚碳酸酯膜35粘合到SiO2层上,这样制备出了根据本发明的第二光盘。一激光束被施加到第二光盘上,特别对准聚碳酸酯膜35。根据从光盘反射回来的光束的强度测量光盘的反射比和透射比。结果被显示在下表4中。
表4
如表4所示,第二光盘的反射比和透射比几乎等于它们的理论值。因此,第二盘的数据记录层31也没有劣化。
从制备的四个盘的透射比和反射比及上述测试看,可以发现如果满足两个条件那么数据记录层3就能够避免劣化。首先,介电部分要包括一氮化物层7和氧化物层8。第二,要用粘合剂将光透射层5粘合到介电部分4上。
在根据本发明的光盘1中,介电部分4被成型在数据记录层3之上和用粘合剂将光透射层5粘合到介电部分4上。因此,数据记录层3和粘合剂层永远不会相互接触。数据记录层3的有机材料不会分散到粘合剂层中。也就不会与粘合剂反应从而导致数据记录层3劣化。
在本发明的光盘1中,氮化物层7被成型在数据记录层3之上和氧化物层8被成型在氮化物层7之上。这避免了由于用溅涂成型氧化物层8时产生的氧等离子体使层3的有机材料劣化。
通常,氮化物具有大的折射率。为了降低介电部分4的折射率,就需要氮化物层7足够薄。更确切地说,氮化物层7应具有10nm或更小的厚度。如果氮化物层7的厚度大于10nm,光盘1就不会获得15%到25%的初始反射比。下面将解释为什么需要氮化物层7的厚度是10nm或更小。
实施模拟以确定包括数据记录层3和介电部分4组成的结构的反射比如何随层3的厚度和折射率的变化而变化,和最后找出氮化物层7的厚度的最佳值。图8到11显示了模拟的结果。图8表示的是当没有在数据记录层3上形成的Si3N4膜时,数据记录层具有的厚度,折射率和反射比之间的关系。图9,10和11显示的是当在数据记录层3上成型有Si3N4膜,其厚度分别是10nm,20nm,和30nm时,数据记录层具有的厚度,折射率和反射比之间的关系。
假设数据记录层3是由这种材料制成的,该材料在数据被记录在其上之前具有2.2的折射率和在数据被记录在其上之后具有1.7的折射率。那么,折射率的变化越大,光盘1所显示的信号复制特性越好。
如图9所示,如果Si3N4膜是10nm厚,两层结构的折射率变化到几乎与没有Si3N4膜成型在数据记录层3上的情况的范围相同。如果数据记录层3是,例如,40nm厚,如果它具有2.2的折射率的话它的反射比是10%到15%,如果它具有1.7的折射率的话它的反射比是0%到5%。
如图10所示,如果Si3N4膜是20nm厚,两层结构的折射率变化小于没有Si3N4膜成型在数据记录层3上的情况。如果数据记录层3是,例如,40nm厚,如果它具有2.2的折射率的话它的反射比是5%到10%,如果它具有1.7的折射率的话它的反射比是0%到5%。
如图11所示,如果Si3N4膜是30nm厚,两层结构的折射率变化也小于没有Si3N4膜成型在数据记录层3上的情况。如果数据记录层3是,例如,40nm厚,如果它具有2.2的折射率的话它的反射比是5%到10%,如果它具有1.7的折射率的话它的反射比是0%到5%。
如上所述,如果氮化物层具有10nm或更小的厚度,虽然由于成型氧化物层8的加工产生了氧等离子体,但是仍能够避免数据记录层3劣化。在此情况下,光盘1能够获得10%到15%的初始反射比。
如果仅由氮化物层7组成的介电部分4的厚度是10nm或更小,它将具有但是并不充分的机械强度。事实上,介电部分4不仅包括氮化物层7而且包括成型于其上的氧化物层8。介电部分4因此具有足够的机械强度。
如上所述,在根据本发明的光盘1中,成型于数据记录层3之上的介电部分4和用粘合剂粘合在介电部分4之上的光透射层5。因此,数据记录层3永远不会与粘合剂接触。层3的有机材料不会分散到粘合剂中或与之反应。数据记录层3不会劣化。
在根据本发明的光盘1中,氧化物层8被成型在氮化物层7之上和光透射层5被成型在氧化物层8之上。因此,用反应溅涂的方法形成氧化物层8的过程中产生的氧等离子体不会使数据记录层3的有机材料劣化。另外,由于介电部分4能够通过反应溅涂的方法成型所以光盘1可以进行批量生产。
如上所述,置于氮化物层7之上的氧化物层8具有低的折射率。尽管数据记录层3是由具有折射率是2.3或更小的有机材料制成的,本发明的光盘1依靠由多重干涉产生的光增强效果,仍能够获得15%到25%的初始反射比。进一步,不管它具有大的折射率,但是氮化物层7不会阻碍光增强效果,因为它的厚度仅是10nm或更小。光盘1在其记录数据后获得的反射比与其在记录数据之前显示的反射比大大不同。这将增加C/N(信号比噪音)比。这样,光盘1能够具有所希望的信号复制特性。
如上所述,在本发明的光盘1中用粘合剂将光透射层5粘合到介电部分4上。鉴于此,光盘1适于批量生产。光盘1因此能够以较低成本制造。
根据本发明,氮化物层7和氧化物层8分别可以由Si3N4和SiO2制成。即,层7和层8都可以由相对较为便宜的硅基底料制成。这将减少光盘1的制作成本。
层7和层8最好分别由相同元素的氧化物和氮化物制成,例如分别由Si3N4和SiO2制成。如果这样,氮化物层7和氧化物层8能够以上述所言及的顺序连续地形成,只要在氮化物层7形成完成之后马上用氧气来置换氮气就可以。
实施例下面将描述一根据本发明制作的光盘,和它的初始反射比和信号复制特性的测定。
首先,用注塑的方法制造一具有1.2mm厚度的聚碳酸酯基底。
然后,用旋涂的方法在聚碳酸酯基底上涂布溶液,该溶液是通过将菁基感光有机染料溶解在四氟丙烷中制备的。因此大约40nm厚的涂层被形成在聚碳酸酯基底上。
在所获得的结构上完成射频(RF)溅涂,通过使用硅靶,氩气和氮气,形成5nm厚的透明的Si3N4膜。氩气和氮气的使用量分别是32sccm和8sccm。总的气体压力是3mTorr,和RF功率60mW。
然后,用氧气置换氮气和实施反应溅涂。一具有25nm厚度的透明SiO2膜因此被形成。在加工时,氩气和氧气的使用量分别是16sccm和4sccm,总的气体压力是1.5mTorr,和RF功率50mW。
最后,在一大约100μm厚的聚碳酸酯片材上涂布粘合剂并且通过压力消泡方法压接到SiO2膜上。
由此制得的光盘,通过使用一包括一发出405nm激光束的激光器和一具有0.85NA的物镜的装置被测试其信号复制特性。当数据以0.4μm的标记被记录在光盘上时,光盘显示出15%的初始反射比,5m/s的线速度和50dB或更大的C/N。
从上述测试结果看,根据本发明的光盘能够具有15%到25%的初始反射比,能够以大于50dB的C/N记录信号和因此显示好的信号复制特性。
本发明不限于上面描述的实施例。当然,在不违反本发明的精神和范围内能够进行各种变化和改进。
权利要求
1.一种光盘包括一基底;由有机材料制成的数据记录层;一介电部分;和一光透射层,其中经过光透射层向数据记录层施加一激光束来记录数据,该介电部分包括一与数据记录层接触的氮化物层和一置于氮化物层之上的氧化物层或氟化物层,和氮化物层具有最大10nm的厚度。
2.一种根据权利要求1的光盘,其中数据信号是通过向数据记录层施加一具有380nm到450nm波长的激光束被记录和复制的,在数据被记录之前,对具有该波长的光束的反射比是15%到25%,和在数据被记录之后反射比是0%到10%。
全文摘要
一介电部分4包括一个置于另一个之上的氮化物层7和一氧化物层8,被形成在数据记录层3之上。用粘合剂将一光透射层5粘合在介电部分4之上。由于介电部分4被插入在数据记录层3和光透射层5之间,数据记录层3的有机材料不会扩散到将光发射层粘合到介电部分4的粘合剂中。因此,数据记录层3不会因为由于在加工形成氧化物层8期间产生的氧等离子体而变劣,因为氧化物层8被置于氮化物层之上。由于氮化物层具有10nm或更小的厚度,它不会影响光增强效果。
文档编号G11B7/00GK1371097SQ0113817
公开日2002年9月25日 申请日期2001年12月6日 优先权日2000年12月6日
发明者玉田作哉, 渡边英俊 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1