全息激光单元和光学拾取装置的制作方法

文档序号:6758325阅读:183来源:国知局
专利名称:全息激光单元和光学拾取装置的制作方法
技术领域
本发明涉及一种全息激光单元和一种光学拾取装置,它们优选是在读取光学记录介质,如CD(致密盘)和DVD(数字通用盘)上的信息和将信息记录在光学记录介质上时而使用。
背景技术
光学拾取装置用于从光学盘形记录介质(下面简称为‘光学记录介质’)读取信息和将信息记录在其上面。由于此前,人们已经使用了仅通过使用光从其上读取信息且将信息写入其上的的称为CD(致密盘)家族的光学记录介质,因此,在光学记录介质上读取和记录信息时,就使用半导体激光元件,它能够发出振荡波长为780nm的红外波长的激光束。
近些年来,通过使用光学读取和写入信息的、并允许比CD家族记录更多信息的称为DVD(数字通用盘)的光学记录介质也开始被大量使用,在光学记录介质上读取和记录信息时,使用半导体激光元件,它能够发出振荡波长,例如为大于630nm和小于690nm的红外波长的激光束。因此,就需要和正在开发一种光学拾取装置,它能够在CD家族和DVD家族的光学记录介质上读取和记录信息。
在第一相关领域中,一种光学拾取装置设有两个光源,两个光源发出不同振荡波长的激光束;一个全息元件,全息元件为短振荡波长的激光束的光使用效率变高,并且构造为能够精巧地播放通过使用较短波长的激光束播放的相对较高记录密度的光学记录介质,如DVD,和通过使用较长波长的激光束播放的相对较低记录密度的光学记录介质,如CD(例如,参见日本未经审查的专利申请JP-A 9-73017(1997))。
在第二相关领域中,在单个主体中集成了激光器模块和光学元件,其中在激光器模块中两个半导体激光二极管的振荡波长相互是不同的,光学元件将半导体激光二极管发射出的激光束聚集在光学记录介质的信息记录表面上,以此能够在多个标准的光学记录介质上记录和重放信息(例如,参见日本未经审查的专利申请JP-A 9-120568(1997))。
在第三相关领域中,在单个封装中安装了第一半导体激光元件、第二半导体激光元件和光接收元件,第一半导体激光元件发射振荡波长为650nm的激光束,第二半导体激光元件发射振荡波长为780nm的激光束。第一光透射基板安装在该封装上面,在第一光透射基板上形成三光束衍射光栅和仅衍射第一半导体激光元件发出的激光束的全息元件。而且,第二光透射基板安装在第一光透射基板上面,在第二光透射基板上形成仅衍射第二半导体激光元件发出的激光束的全息元件。在从第一半导体激光元件发出的激光束通过光学记录介质反射时获得的光经过衍射,并通过第二光透射基板上的全息元件被导引到光接收元件,在从第二半导体激光元件发出的激光束通过光学记录介质反射时获得的光经过衍射,并通过第一光透射基板上的全息元件被导引到光接收元件(例如,参见日本未经审查的专利申请JP-A 2000-76689)。
在第四相关领域中,一种光学拾取装置设有第一全息图和第二全息图,第一全息图具有形成在其表面上的第一全息衍射光栅,第二全息图具有形成在其表面上的第二全息衍射光栅,并安装在第一全息图上以能覆盖第一全息衍射光栅。在第二全息图侧面上的第一全息图的表面积大于第一全息图侧面上的第二全息图的表面积。
在第二全息图安装在第一全息图上时,首先,在第一全息图的表面上的、与第一全息图侧上的第二全息图的每个顶点相对应的位置,第二全息图在紫外线固化树脂(缩写为UV树脂)脱落后放置,并通过用光学调节后的紫外射线照射UV树脂进行暂时固定。第二,UV树脂施加到没有与第一全息图表面上的第二全息图相接触的部分和第二全息图侧表面的下部,UV树脂用紫外线进行照射,以此第二全息图固定在第一全息图上(例如,参见日本未经审查的专利申请JP-A 2002-72143)。
在第五相关领域中,第一全息基板和第二全息基板设置在单个主体中。第一和第二全息基板具有聚焦检测全息部和跟踪检测条全息部。在第二全息基板安装在第一全息基板上,且光轴调节和偏移调节执行后,第一全息基板和第二全息基板使用粘合剂进行粘合和固定而变成单个主体。此时,粘合剂施加到从光源发出的激光束没有通过的第一和第二全息基板的部分和第二全息基板的侧表面上,以此第一全息基板和第二全息基板经过粘合而变为单个主体(例如,参见日本未经审查的专利申请JP-A 2002-279683)。
在上述的第三至第五相关领域中,两个半导体激光元件相邻设置在某个位置以便从相应的半导体激光元件发射出的激光束的光轴几乎重合,从而从两个半导体激光元件发射出的不同振荡波长的激光束分别进入第一和第二全息元件。因此,由于从相应半导体激光元件发射出、由光学记录介质反射以便被第一全息元件衍射的激光束入射到第二全息图元件的部分或全部上,产生不必要的光。而且,还会产生一个问题,应该被聚集到光学记录介质上的激光束的量会下降,以此光的使用效率降低且可靠性下降。为了解决上述这些问题,就需要间隔开两个全息元件以使第一全息元件衍射的激光束不会在第二全息元件中产生干涉。为了如上所述设置两个全息元件,存在一个问题,光学拾取装置的体积就变得较大,因为它需要加大相应全息元件形成在其上的基板的厚度方向上的尺寸。
为了解决上述光使用效率降低的问题,需要使在三光束衍射光栅和第二全息元件上形成的衍射光栅槽的厚度方向上的尺寸为只有从第二半导体激光元件发射出的激光束被衍射的尺寸,和使在第一全息元件上形成的衍射光栅槽的厚度方向上的尺寸为只有从半导体激光元件发射出的激光束被衍射的尺寸。但是,由于第一和第二全息元件的衍射光栅的间距与三光束衍射光栅的相比而显得较小,因此就会存在一个问题,它难于提供具有衍射光栅槽的第一和第二全息元件,所述衍射光栅槽的尺寸为只有从两个半导体激光元件发射出的激光束其中之一被衍射。

发明内容
本发明的一个目的是提供一种全息激光单元和一种光学拾取装置,它们能够减小其体积和重量,并提高可靠性。
本发明提供一种全息激光单元,包括光源,用于发出第一波长和第二波长的光束;
光接收元件,用于接收从光源发出并由光学记录介质的信息记录表面反射的光束;全息耦合件,具有第一光学元件和第二光学元件,第一光学元件将在第一偏振方向上被偏振的第一波长的入射光衍射到向着光接收元件的方向,并透射在垂直于第一偏振方向的第二偏振方向上被偏振的入射光,第二光学元件将在第二偏振方向上被偏振的第二波长的入射光衍射到向着光接收元件的方向,并透射在第一偏振方向上被偏振的入射光。
而且,在本发明中,优选的方案是全息耦合件被构造成为第一基板和第二基板的叠层,第一光学元件形成在第一基板上,第二光学元件形成在第二基板上,第一和第二基板的彼此面对的表面是平面。
而且,在本发明中,优选的方案是光源是集成的半导体激光单元,其中用于发射第一波长的光束的第一半导体激光元件和发射第二波长的光束的第二半导体激光元件集成在该半导体激光单元内。
而且,在本发明中,优选的方案是第一波长是780nm,第二波长是650nm。
而且,在本发明中,优选的方案是第一和第二光学元件形成为第一波长的光束穿过第一和第二光学元件且第二波长的光束穿过第一和第二光学元件。
而且,在本发明中,优选的方案是第一和第二光学元件的尺寸是根据透镜的数值孔径确定的,透镜将光学记录介质反射的光束导引到全息耦合件。
而且,在本发明中,优选的方案是在第一基板上形成分束衍射光栅,该分束衍射光栅将入射光分为一个主光束和两个副光束。
而且,在本发明中,优选的方案是光接收元件在共用光接收区接收第一和第二波长的光束。
本发明提供一种光学拾取装置,包括上述的全息激光单元,其中光源发射在第一偏振方向上被偏振的光束;光学系统,用于将从全息激光单元的光源发射出的光束聚集在光学记录介质的信息记录表面上,并将反射光导引到全息激光单元;
偏振元件,用于将由光学记录介质的信息记录表面反射的、并由光学系统导引的全息激光单元的第二波长的光束的偏振方向改变为第二偏振方向。
而且,在本发明中,优选的方案是偏振元件与第二基板构成在单个主体内。
根据本发明,在考虑装设有全息激光单元和偏振元件的光学单元的情况下,其中该全息激光单元包括光源,用于接收从光源发出并由光学记录介质反射的光束的光接收元件,和具有第一光学元件和第二光学元件的全息耦合件,以及偏振元件用于将从光源发射出、并由光学记录介质的信息记录表面反射的第二波长的光束的偏振方向从第一偏振方向改变为第二偏振方向,从光源发射出、由光学记录介质的信息记录表面经由全息激光单元和偏振元件反射,且在第一偏振方向被偏振的第一波长的光束由第二光学元件透射,并进入第一光学元件,因为偏振方向仍为第一偏振方向,即使在光束再次进入偏振元件。然后,已经进入第一光学元件、且在第一偏振方向上被偏振的第一波长的光束在向着光接收元件的方向上被衍射。
而且,在该光学单元中,从光源发射出、经由全息激光单元和偏振单元由光学记录介质的信息记录表面反射、且在第一偏振方向上被偏振的的光束,一旦再次进入偏振元件,就具有从第一偏振方向改变为第二偏振方向的偏振方向,因此,正在第二偏振方向上被偏振的第二波长的光束一旦进入第二光学元件就会在向着光接收元件的方向上被衍射。
如上所述,从光源发射出的、已经穿过全息激光单元和偏振元件且然后由光学记录介质的信息记录表面反射的第一和第二波长的光束,在可靠向着光接收元件的方向上被衍射,并分别被光接收元件接收。而且,即使在光学记录介质的信息记录表面反射的、且在第二偏振方向上正被偏振的第二波长的光束,在由第二光学元件衍射后在向着光接收元件的途中进入第一光学元件时,第一光学元件也具有透射在第二偏振方向上被偏振的光束且不会衍射该光束的特性,因此不会产生由于由第二光学元件衍射的光束入射到第一光学元件中而造成的不必要的光。综上所述,应该被光接收元件接收的光束量不会减少,这与相关领域内的不一样,因此与现有技术相比,能够提高光的使用效率。这可增强可靠性。
而且,根据本发明,全息耦合件的结构是第一基板和第二基板的叠层,第一光学元件形成在第一基板上,第二光学元件形成在第二基板上,第一和第二基板的彼此面对的表面是平面。因此,在第二基板叠压在第一基板上,然后执行诸如对第二光学元件执行的光轴调节的光学调节的情况下,能够容易地在第一基板的、面对第二基板的表面上执行操作以使第二基板会在水平方向上移动且使第二基板转动。这就能够简单地对第二光学元件执行光学调节。
而且,根据本发明,用于发射出第一波长的光束的第一半导体激光元件和用于发射出第二波长的光束的第二半导体激光元件被集成为集成半导体激光单元。这样,与第一激光器元件和第二激光器元件单独设置而没有集成的情况相比,在制造全息激光单元时,就能够减少全息激光单元中部件的数量,而且,还减少组装过程中的步骤。
而且,根据本发明,第一波长是780nm。从光源发射出并由光学记录介质的信息记录表面反射的780nm的第一波长的光束由第二光学元件透射,并由第一光学元件衍射,然后导引到光接收元件。这就能够检测在CD上记录信息和播放记录在CD上信息所需的信号。而且,第二波长是650nm。从光源发射出并由光学记录介质的信息记录表面反射的650nm的第二波长的光束由第二光学元件衍射,然后导引到光接收元件。这就能够检测在DVD上记录信息和播放记录在的DVD上信息所需的信号。
而且,根据本发明,第一和第二光学元件形成为第一波长的光束穿过第一和第二光学元件,第二波长的光束穿过第一和第二光学元件。例如,第一和第二光学元件形成为具有这样的尺寸,即大于由于用作光源的第一和第二半导体激光元件的波长变化造成的入射位置的变化范围。因此,即使在第一和第二半导体激光元件的波长的变化随着温度等的变化发生时,从第一和第二半导体激光元件发射出、并由光学记录介质的信息记录表面反射过的第一和第二波长的光束也能够可靠地进入第一光学元件,而且从光源发射出、并由光学记录介质的信息记录表面反射的第二波长的光束也能够可靠地进入第二光学元件。因此,第一光学元件将第一波长的光束向着光接收元件衍射,第二光学元件将第二波长的光束向着光接收元件衍射,所以能够根据光接收元件接收到的相应光束获得在光学记录介质上记录信息和重放记录在光学记录介质上信息所需的信号。
而且,根据本发明,第一和第二光学元件的尺寸是根据透镜的数值孔径进行确定的,透镜将光学记录介质反射的光束导引到全息耦合件。通过根据透镜的数值孔径由此确定第一和第二光学元件的尺寸,第一和第二光学元件的尺寸能被确定为最小尺寸。这样与第一和第二光学元件的尺寸相对较大的情况相比,就能够降低第一和第二光学元件的制造成本和便于制造它们。此外,即使在第一和第二光学元件形成为具有上述确定的最小尺寸时,第一和第二波长的光束也能够可靠地分别通过第一和第二光学元件。
而且,根据本发明,在第一基板上形成分束衍射光栅,该分束衍射光栅将入射光分为一个主光束和两个副光束。通过由此在第一光学元件形成在其上的第一基板上形成分束衍射光栅,与分束衍射光栅独立设置的情况相比,能够减少全息激光单元中光学部件的数量。而且,在使用光学部件数量减少的全息激光单元的情况下,例如,在光学拾取装置中,能够减小光学拾取装置的尺寸和重量,并能够降低光学拾取装置的制造成本。
而且,根据本发明,光接收元件在共用光接收区接收第一波长的光束和第二波长的光束。因此,与接收第一波长激光束的光接收区和接收第二波长激光束的光接收区单独设置以能在单独设置的光接收区接收第一和第二波长的光束的情况相比,该光接收元件的尺寸较小。这样就能够减小全息激光单元的尺寸和重量。
而且,根据本发明,光学系统将从全息激光单元的光源发射出的光束聚集在光学记录介质的信息记录表面上,并将该反射的光导引到全息激光单元。偏振元件将由光学记录介质的信息记录表面反射的并被光学系统导引到全息激光单元的第二波长的光束的偏振方向改变为第二偏振方向。从光源发射出、经全息激光单元和偏振元件由光学记录介质的信息记录表面反射的且在第一偏振方向被偏振的第一波长的光束,具有了作为第一偏振方向的偏振方向,即使在光束再次进入偏振元件时也是如此。第一波长的光束由光学系统导引到全息激光单元的第二光学元件,由该第二光学元件透射,然后进入第一光学元件。接着,已经进入第一光学元件且在第一偏振方向上被偏振的第一波长的光束,在向着光接收元件的方向上被衍射。
而且,从光源发射出、经全息激光单元和偏振元件由光学记录介质的信息记录表面反射的且在第一偏振方向被偏振的第二波长的光束,在再次进入偏振元件时,具有从第一偏振方向变为第二偏振方向的偏振方向。第二波长的光束由光学系统导引到全息激光单元的第二光学元件,并进入第二光学元件。接着,已经进入第二光学元件且在第二偏振方向上被偏振的第二波长的光束,在向着光接收元件的方向上被衍射。
如上所述,从光源发射出的、已经穿过全息激光单元和偏振元件且然后由光学记录介质的信息记录表面反射的第一和第二波长的光束在向着光接收元件的方向上被可靠地衍射且分别被光接收元件接收。而且,即使当由光学记录介质的信息记录表面反射且在第二偏振方向上被偏振的第二波长的光束,在经过第二光学元件衍射后在向着光接收元件的途中进入第一光学元件时,第一光学元件也具有透射在第二偏振方向上被偏振的光束,且不会衍射该光束的特性,因此不会产生由于由第二光学元件衍射的光束入射到第一光学元件中而造成的不必要光。因此,应该被光接收元件接收的光束量不会减少,这与相关领域内的不一样,因此与现有技术相比,能够提高光的使用效率。这增强了可靠性。
而且,根据本发明,偏振元件与第二基板构成在单个主体上。通过由此将偏振元件和第二基板构成在单个主体上,就能够减少制造时的光学部件数量和组装步骤数,还能够简化光学调节,如光轴调节的操作。此外,在使用包括减少了光学部件数量的全息耦合件的全息激光单元的情况下,例如,在光学拾取装置中,能够减小光学拾取装置的尺寸和重量,并能够降低光学拾取装置的制造成本。


本发明的其它和进一步目的、特征和效果从下面参考附图的详细描述中将会更清楚,其中图1是根据本发明第一实施例的包括全息耦合件的全息激光单元的结构的示意透视图;图2是集成的半导体激光元件单元的结构的剖视图;图3是光学拾取装置结构的示意图;
图4是第一偏振全息基板的剖视图;图5A至5C是第一偏振全息基板的制造步骤的视图;图6是全息耦合件的剖视图;图7A和7B是第一和第二偏振全息衍射光栅和接收由第一和第二偏振全息衍射光栅衍射的光束的光接收元件的视图;图8A和8B是第一和第二偏振全息衍射光栅和接收由第一和第二偏振全息衍射光栅衍射的光束的光接收元件的视图;图9是根据本发明第二实施例的全息激光单元的结构的示意透视图;和图10是光学拾取装置的结构的示意图。
具体实施例方式
现在参考附图,下面描述本发明的优选实施例。
图1是根据本发明第一实施例的全息激光单元1的结构的示意透视图。图2是集成的半导体激光元件单元2的结构的剖视图。在图1中,下面描述的罩12被局部剖视显示。全息激光单元1包括全息耦合件3和半导体激光装置14。半导体激光装置14包括集成的半导体激光元件单元2、光接收元件9、管座10、电极11、罩12和散热片13。全息耦合件3包括用作第一基板的第一偏振全息基板4,和用作第二基板的第二偏振全息基板5。第一偏振全息基板4包括分束衍射光栅6和用作第一光学元件的第一偏振全息衍射光栅7,第二偏振全息基板5包括用作第二光学元件的第二偏振全息衍射光栅8。
如图2所示,用作光源的集成半导体激光元件单元2包括集成半导体激光元件50和副支座60。集成半导体激光元件单元2是集成半导体激光单元。集成半导体激光元件50包括第一半导体激光元件51和第二半导体激光元件52。集成半导体激光元件50安装在是绝缘基板的副支座60上。第一半导体激光元件51发射出振荡波长,例如,为780nm的红外线波长的激光束。第一半导体激光元件51用于读取记录在CD(致密盘)的信息记录表面上的信息和将信息记录在CD的信息记录表面上。第二半导体激光元件52发射出振荡波长,例如,为650nm的红外线波长的激光束。第二半导体激光元件52用于读取记录在DVD(数字通用盘)的信息记录表面上的信息。从第一和第二半导体激光元件51,52发射出的激光束是在第一偏振方向上被偏振的线性偏振光束。从第一半导体激光元件51发射出的激光束的光轴L1和从第二半导体激光元件52发射出的激光束的光轴L2相互平行。集成半导体激光元件50的各半导体激光元件51和52在垂直于光轴L1,L2的方向上彼此相邻。散热片13安装在形成板状的管座10的厚度方向上的一个表面上。集成半导体激光元件单元2安装在散热片13的一个表面上,该表面垂直于管座10厚度方向上的一个表面。
分束衍射光栅6衍射进入的激光束,以此将激光束分为用作一个主光束的透射光和用作两个副光束的±第一阶衍射光。第一偏振全息衍射光栅7设计为在第一偏振方向上衍射光以便零阶衍射光和±第一阶衍射光的比率大致为4∶1。第一偏振全息衍射光栅7设计为具有使第二偏振方向上的所有光被透射的性能。这样的性能是由在第一偏振全息衍射光栅7上形成的衍射槽的深度和宽高比,以及填充在衍射槽中的双折射材料的组合确定的。第二偏振全息衍射光栅8设计为使第一偏振方向上的所有光被透射,特别是这种透射率为95%或类似的值。第二偏振全息衍射光栅8设计为具有使第二偏振方向上的所有光能被衍射的性能。在下面的描述中,从第一和第二半导体激光元件51,52发射出的激光束偶尔被简称为“光”或“光束”。
已经进入第一偏振全息衍射光栅7的从第一半导体激光元件51发射出的第一波长的激光束,该光束在第一偏振方向上正被偏振,被衍射,然后进入第二偏振全息衍射光栅8。已经进入第二偏振全息衍射光栅8的第一偏振方向上的激光束没有被衍射地被透射。被第二偏振全息衍射光栅8透射的激光束穿过四分之五波长板(下文,偶尔称为“5λ/4板)23以便聚集在光学记录介质26上,然后被光学记录介质26反射,再次穿过5λ/4板23以便进入第二偏振全息衍射光栅8。已经进入第二偏振全息衍射光栅8的光被第二偏振全息衍射光栅8透射,且进入第一偏振全息衍射光栅7,然后在朝向后面描述的光接收元件9的方向上被第一偏振全息衍射光栅7衍射。
而且,已经进入第一偏振全息衍射光栅7、从第二半导体激光元件发射出的第二波长的光束,即,在第一偏振方向上正被偏振的光束,没有被衍射地被透射,然后进入第二偏振全息衍射光栅8。已经进入第二偏振全息衍射光栅8的第一偏振方向上的激光束由第二偏振全息衍射光栅8衍射。由第二偏振全息衍射光栅8衍射的激光束穿过下面描述的5λ/4板以便聚集在光学记录介质26上,然后被光学记录介质26反射,再次穿过5λ/4板23,以此将偏振方向从第一偏振方向转换为垂直于第一偏振方向的第二偏振方向。已经通过5λ/4板23且具有转换为第二偏振方向的偏振方向的第二波长的光束进入第二偏振全息衍射光栅8,然后在朝向后面描述的光接收元件9的方向上被第二偏振全息衍射光栅8衍射。
光接收元件9使用光电二极管等实现,并将入射光转换为电信号。光接收元件9安装在散热片13厚度方向上的一个表面上。罩12是用于密封集成半导体激光元件单元2和光接收元件9的密封件,以便避免集成半导体激光元件单元2和光接收元件9与外界的物理接触。罩12安装在形成板状的管座10的厚度方向上的一个表面上。因此,集成半导体激光元件单元2和光接收元件9被管座10和罩12密闭地密封。电极11设置为从管座10厚度方向上的另一个表面部向厚度方向上的另一侧突出,并与集成半导体激光元件单元2电连接。
形成为长方体的第一偏振全息基板4安装在半导体激光装置14上。更详细的说,第一偏振全息基板4安装在罩12的一个表面部分上,该表面部分垂直于光轴L1,L2。分束衍射光栅6形成在第一偏振全息基板4厚度方向上的另一个表面部分上,第一偏振全息衍射光栅7形成在与分束衍射光栅6形成在其上的表面部分相反的表面部分上,即第一偏振全息基板4厚度方向上的一个表面部分。形成为长方体的第二偏振全息基板5安装在第一偏振全息基板4厚度方向上的一个表面部分上。第二偏振全息衍射光栅8形成在第二偏振全息基板5的表面部分上,该表面部分与同第一偏振全息基板4连接的表面相对,即,在第二偏振全息基板5厚度方向上的一个表面部分上。
在该实施例中,面对第一偏振全息基板4的罩12的表面、面对罩12的第一偏振全息基板4的表面、面对第二偏振全息基板5的第一偏振全息基板4的表面,和面对第一偏振全息基板4的第二偏振全息基板5的表面分别是平面,并相互平行。而且,从第一和第二半导体激光元件51、52分别发射出的激光束的光轴L1、L2垂直于面对第一偏振全息基板4的罩12的表面、面对罩12的第一偏振全息基板4的表面、面对第二偏振全息基板5的第一偏振全息基板4的表面,和面对第一偏振全息基板4的第二偏振全息基板5的表面。
图3是光学拾取装置21的结构的示意图。光学拾取装置21包括全息激光单元1、准直透镜22、四分之五波长板23、正像镜24和物镜25。光学拾取装置21是执行至少其中一个处理的装置,所述处理包括光学读取记录在光学记录介质26的信息记录表面上的信息,和将信息光学记录在光学记录介质26的信息记录表面上。光学记录介质26,例如,是CD,CD-R(可读致密盘),CD-RW(可重写致密盘),DVD,DVD-R(可记录数字通用盘),DVD-RAM(数字通用盘一随机访问存储器)等。
准直透镜22使入射激光束变为平行光束。5λ/4板23是将从集成半导体激光元件单元2的每个半导体激光元件51,52发射出的两个不同波长的光束分别产生不同相差的偏振元件。5λ/4板23通过光透射相差膜而实现。5λ/4板23,例如,通过聚碳酸酯树脂、聚乙烯醇树脂和Arton(注册商标)形成,Arton是由JSR Co.制造的耐热透明树脂。5λ/4板23放置在第二偏振全息基板5和后面描述的物镜25之间的光路上,第二偏振全息基板5设有用作第二光学元件的偏振全息衍射光栅8。
5λ/4板23是能给从第一半导体激光元件51发射出的第一波长,特别是780nm,的激光束提供几乎为360度相差的偏振元件,即,是一种用作用于从第一半导体激光元件51发射出的激光束的波长板的偏振元件。在从第一半导体激光元件51发射出的线性偏振光束进入5λ/4板23时,5λ/4板23按照原样透射线性偏振光束。从第一半导体激光元件51发射出的激光束是线性偏振光束,即使在进入5λ/4板23时,该线性偏振激光束也按照原样被透射。由5λ/4板23透射的线性偏振激光束穿过后面描述的正像镜24和物镜25,并聚集在光学记录介质26的信息记录表面上。即使在由光学记录介质26的信息记录表面反射的激光束再次穿过5λ/4板23时,它仍然保持为偏振方向与进入5λ/4板23前的线性偏振激光束的偏振方向相同的线性偏振光束。
而且,5λ/4板23是能给从第二半导体激光元件52发射出的、第二波长的,特别是650nm的,激光束提供几乎为90度相差的偏振元件,即,是一种用作用于从第二半导体激光元件52发射出的激光束的四分之一波长板的偏振元件。在从第二半导体激光元件52发射出的线性偏振光束进入5λ/4板23时,5λ/4板23将线性偏振光束转换为圆形偏振光束,并发射圆形偏振光束。在圆形偏振光束进入5λ/4板23时,5λ/4板23将该圆形偏振光束转换为线性偏振光束,并发射该线性偏振光束。从第二半导体激光元件52发射出的激光束是线性偏振光束,在该线性偏振光束进入5λ/4板23时,它被转换为圆形偏振光束。该圆形偏振光束穿过后面描述的正像镜24和物镜25,并被聚集在光学记录介质26的信息记录表面上。由光学记录介质26的信息记录表面反射的激光束再次穿过5λ/4板23,以此被转换为其偏振方向与进入5λ/4板23前的线性偏振激光束的偏振方向交叉成直角的线性偏振光束。
如上所述,对于第一和第二波长的激光束来说,可以通过5λ/4板23分别产生不同的相差。这样就能够使第一和第二波长的激光束的偏振方向彼此不同。这样能够将波长为780nm的激光束在第一偏振全息衍射光栅7中在向着光接收元件9的方向上衍射,和将波长为650nm的激光束在第二偏振全息衍射光栅8中在向着光接收元件9的方向上衍射。
正像镜24将从第一和第二半导体激光元件51,52发射出的、已经穿过5λ/4板23的激光束光路弯曲90度。然后,正像镜24将激光束导引到物镜25。物镜25将经过正像镜24弯曲的激光束聚集在光学记录介质上。在驱动电压和驱动电流经过设置在半导体激光装置14的管座10上的电极11施加到集成半导体激光元件单元2的第一和第二半导体激光元件51,52时,所述半导体激光元件单元2用作光学拾取装置21的光源,激光束就从集成半导体激光元件单元2发射出。从第一和第二半导体激光元件51,52发射出的线性偏振激光束进入形成在第一偏振全息基板4上的分束衍射光栅6。分束衍射光栅6设置用于使用一种微分相位检测(缩写为DPD)方法以便检测读取DVD的信息所需的跟踪误差信号(下文,偶尔称之为“TES”),和使用三光束方法或者差分推挽(缩写为DPP)方法以便检测读取CD的信息所需的TES。在这些TES检测方法中,主光束和副光束如需求而形成,主光束平行于光轴L1,L2,副光束在光学记录介质26上设置在主光束跟踪方向上的两侧部上,因为光轴L1,L2轻微倾斜。因此,入射光通过分束衍射光栅6进行衍射,±第一阶衍射光作为副光束而产生。
分束衍射光栅6衍射从第一半导体激光元件51发射出的激光束,由此将该激光束分散为主光束的透射光束和作为两个副光束的第一阶衍射光,且几乎不衍射从第二半导体激光元件52发射出的激光束。为了形成上述的分束衍射光栅6,必须适当地设定形成在分束衍射光栅6上的衍射光栅槽的长度,以使由于衍射产生的不必要光尽可能的少。例如,在将形成在分束衍射光栅6上的衍射光栅槽的长度设定为1.4μm的情况下,对于从第一半导体激光元件51发射出的激光束来说,主光束的透射率,即,透射光束的透射率为72%,副光束的衍射效率,即,第一阶衍射光的衍射效率为12%,由此能够获得三种光束的正确光量比。而且,在将衍射光栅槽的长度设定为1.4μm的情况下,从第二半导体激光元件52发射出的激光束的衍射效率几乎为零,结果是,能够几乎没有衍射地透射从第二半导体激光元件52发射出的激光束。部分激光束,特别是从第一和第二半导体激光元件51,52发射出、并已经穿过分束衍射光栅6的大约67%激光束通过第一偏振全息衍射光栅7透射,并进入第二偏振全息衍射光栅8。第二偏振全息衍射光栅8没有被衍射地透射入射光以便该光进入准直透镜22。由准直透镜22形成为平行光束的光进入5λ/4板23。
即使在从第一半导体激光元件51发射出的线性偏振光束进入5λ/4板23时,它也是作为线性偏振光束进行传输的,并被正像镜24反射,然后被导引到物镜25。物镜25将正像镜24反射的光束聚集在光学记录介质26的信息记录表面上。即使在经过光学记录介质26的信息记录表面反射的光束遵循与到达光学记录介质相同的光路,并再次穿过5λ/4板23时,由光学记录介质26的信息记录表面反射的光束也能够保持其偏振方向与从第一半导体激光元件发射出的光束的偏振方向相同的线性偏振光束。已经穿过5λ/4板23且进入第二偏振全息衍射光栅8的入射光由第二偏振全息衍射光栅8透射,并进入第一偏振全息衍射光栅7。已经进入第一偏振全息衍射光栅7的光束由第一偏振全息衍射光栅7进行衍射。在这些衍射过的光中,无论是+第一阶衍射光还是-第一阶衍射光都被光接收元件9所接收。
在从第二半导体激光元件52发射出的波长为650nm的线性偏振激光束进入5λ/4板23时,它被转换为顺时针的圆形偏振光束,然后由正像镜24反射,并导引到物镜25。物镜25将经过正像镜24反射的光束聚集在光学记录介质26的信息记录表面上。经过光学记录介质26的信息记录表面反射的光束转换为反向的圆形偏振光束,即,与到达光学记录介质的光束成逆时针的,且遵循与到达光学记录介质相同的光路。反射的光束再次穿过5λ/4板23,由此从圆形偏振光束转换为线性偏振光束。由此,偏振方向转换为与到达光学记录介质的偏振方向相垂直的偏振方向。结果是,已经穿过5λ/4板23并进入第二偏振全息衍射光栅8的所有入射光通过第二偏振全息衍射光栅8在朝向光接收元件9的方向上衍射,然后,该衍射的光被光接收元件9接收。由第二偏振全息衍射光栅8衍射的光束在向着光接收元件9的光路途中进入第一偏振全息衍射光栅7,但是已经进入第一偏振全息衍射光栅7的所有光由第一偏振全息衍射光栅7透射。
根据本实施例,偏振全息衍射光栅可以为相应的振荡波长而单独设置。更具体的说,可以设置第一偏振全息衍射光栅7和第二偏振全息衍射光栅8。因此,与通过一个偏振全息衍射光栅对两个不同的波长的光束执行诸如光轴调节的光学调节时相比,它能够高精度地执行光学调节,并能够便于容易地安装集成半导体激光元件单元2和光接收元件9。因此,减小了装配的公差,提高了产品的合格率。
图4表示第一偏振全息基板4的剖视图。第一偏振全息基板4包括光透射基板31、双折射层32和各向同性外涂层33。光透射基板31是由玻璃、塑料等制成的。双折射层32具有凹凸周期形状的衍射表面,且由双折射材料制成。双折射材料是一种表示各向异性的膜,从而在平行于图4的片表面的方向上振动的光的折射率与在垂直于片表面的方向上振动的光的折射率不同。在该实施例中,双折射层32例如是利用光或热聚合聚合液晶单体而形成的。优选的是一个或多个苯基组,更具体的说,两个或三个苯基组包含在组成酯的乙醇残基中。而且一个环己基组可包含在组成酯的乙醇残基中。除此之外,在使用了通过聚合液晶单体而形成的液晶聚合物的偏振全息基板上,衍射效率的温度依从性相当小。但是,在全息偏振基板安装用于在车辆上,如温度条件发生显著变化的四轮驱动的摩托车上使用的情况下,有时就会产生由于衍射效率降低而带来的信噪比(S/N比率)恶化的问题。为了解决该问题,使用的是一种通过聚合液晶组分而形成的液晶聚合物,所述液晶组分包括重量比50%或更大的且小于重量比90%的非交联液晶单体和重量比5%或更大且小于重量比50%的交联液晶单体。通过光聚合的光聚合液晶单体能够获得与在控制液晶校准状态后通过光聚合形成为液晶聚合物的双折射液晶一样高的衍射效率。
各向同性外涂层33,例如,是通过扩散方法或者是光聚合方法而形成的,扩散方法是将光各向同性的非晶态聚合物溶液扩散在双折射层32,然后蒸发该溶液的方法,光聚合方法是扩散单体,然后进行光聚合的方法。特别是,光聚合方法是优选的,因为该方法比较简单。单体是苯乙烯、苯乙烯衍生物、丙烯酸酯、丙烯酸酯衍生物、异丁烯酸树脂和异丁烯酸树脂衍生物。而且,在分子两端具有聚合功能基的低聚物,如丙烯酸聚醚、丙烯酸氨基甲酸乙酯、丙烯酸环氧树脂可以单独使用或组合使用。
第二偏振全息基板5包括光透射基板31、双折射层32和各向同性外涂层33。该构成用与图4所示的第一偏振全息基板4相同的方式形成。由于第二偏振全息基板5以与第一偏振全息基板4相同的方式形成,第二偏振全息基板5的相对应部分用相同的参考标号表示以省略其描述。在该实施例中,包含在第一偏振全息基板4中的双折射层32与第一偏振全息衍射光栅7相同,而包含在第二偏振全息基板5中的双折射层32与第二偏振全息衍射光栅8相同。
在从第一和第二半导体激光元件51、52发射出的激光束进入第一偏振全息基板4的双折射层32中的情况下,受控制的是形成在包含于图4所示的第一偏振全息基板4中的光透射基板31上的双折射层32的液晶准直状态。更具体的说,液晶准直状态被控制,从而双折射层32的光学各向异性聚合物的折射率相对于线性偏振光束(此下文,偶尔称之为“第一偏振方向”)是普通光的折射率,该线性偏振光束沿与在第一偏振全息衍射光栅7中形成的衍射光栅的槽方向相垂直的方向,即垂直于图4的图纸的方向上具有电矢量。而且,该液晶准直状态被控制,从而双折射层32的光学各向异性聚合物的折射率相对于线性偏振光束(此下文,偶尔称之为“第二偏振方向”)是特殊光的折射率,该线性偏振光束沿与在第一偏振全息衍射光栅7中形成的衍射光栅的槽方向相平行的方向,即垂直于图4的图纸的方向上具有电矢量。结果是,各向同性外涂层33的折射率相应于特殊光的折射率。
在从第一半导体激光元件51发射出的光束进入分束衍射光栅6时,它被分散为三个光束。在下面的解释中,将描述零阶光,该零阶光是在三个分光束中具有最高密度的主光束。在第一偏振方向(此下文,偶尔简称为“第一偏振方向”)上被偏振、从第一半导体激光元件51发射出并已经穿过分束衍射光栅6的光束,在它进入第一偏振全息衍射光栅7时被衍射。由于第一偏振全息衍射光栅7相对于第一偏振方向上的光束给各向异性外涂层33和双折射层32提供不同的折射率,因此零阶光和第一阶衍射光的衍射效率比可以通过控制将被形成为衍射光栅槽的厚度方向上的尺寸进行调节。已经穿过第一偏振全息衍射光栅7的光束通过第二偏振全息衍射光栅8透射,然后,进入5λ/4板23。从第一半导体激光元件51发射出的光束保持为第一偏振方向上的光,并同时被5λ/4板23透射,然后聚集在光学记录介质26的信息记录表面上。即使在由光学记录介质26的信息记录表面反射的第一偏振方向上的光束遵循与到达光学记录介质26相同的光路,并再次穿过5λ/4板23时,偏振方向保持为第一偏振方向,第一偏振方向与其中光束从第一半导体激光元件51发射出的偏振方向相同。即使在已经穿过5λ/4板23的第一偏振方向上的光束进入第二偏振全息衍射光栅8时,该光束几乎没有被衍射,然后被透射。在第一偏振方向上的光束进入第一偏振全息衍射光栅7时,如到达光学记录介质26一样,各向异性外涂层33和双折射层32具有不同的折射率,因此,第一偏振方向上的光被衍射。
在从第一和第二半导体激光元件51、52发射出的激光束进入第一偏振全息基板4的双折射层32中的情况下,受控制的是形成在包含于第二偏振全息基板5中的光透射基板31上的双折射层32的液晶准直状态。更具体的说,液晶准直状态被控制,从而双折射层32的光学各向异性聚合物的折射率相对于线性偏振光束(此下文,偶尔称之为“第一偏振方向”)是普通光的折射率,该线性偏振光束沿与在第二偏振全息衍射光栅8中形成的衍射光栅的槽方向相垂直的方向具有电矢量。而且,该液晶准直状态被控制,从而双折射层32的光学各向异性聚合物的折射率相对于线性偏振光束(此下文,偶尔称之为“第二偏振方向”)是特殊光的折射率,该线性偏振光束沿与在第二偏振全息衍射光栅8中形成的衍射光栅的槽方向相平行的方向具有电矢量。结果是,各向同性外涂层33的折射率相应于普通光的折射率。
从第二半导体激光元件52发射出的第一偏振方向上的光束通过分束衍射光栅6透射,然后进入第一偏振全息衍射光栅7。第一偏振方向上的光束通过第一偏振全息衍射光栅7进行衍射。如上所述,由于第一偏振全息衍射光栅7相对于第一偏振方向上的光束给各向异性外涂层33和双折射层32不同的折射率,因此零阶光和第一阶衍射光的衍射效率比可以通过控制将被形成为衍射光栅槽的厚度方向上的尺寸进行调节。已经穿过第一偏振全息衍射光栅7的光束通过第二偏振全息衍射光栅8透射,然后,进入5λ/4板23。第二波长的线性偏振光束通过5λ/4板23转换为圆形偏振光束,然后聚集在光学记录介质26的信息记录表面上。经过光学记录介质26的信息记录表面反射的光束遵循与到达光学记录介质26相同的光路,并再次穿过5λ/4板23,然后转换为在与第一偏振方向相垂直的第二偏振方向(此下文,偶尔简称为“第二偏振方向上的光束”)上偏振的光束。第二偏振方向上的光束进入第二偏振全息衍射光栅8,然后,因为各向异性外涂层33和双折射层32具有不同的折射率而被衍射。衍射光被导引到光接收元件9。原理上讲,可以获得40%等的光束作为+第一阶衍射光和40%等的光束作为一第一阶衍射光。已经通过第二偏振全息衍射光栅8衍射的光束,更具体的说,无论是+第一阶衍射光还是-第一阶衍射光,在朝向光接收元件9的光路途中进入第一偏振全息衍射光栅7,然后,在不受影响的条件下传输。
图5A至5C是描述第一偏振全息基板4的制造步骤的视图。图6是全息耦合件3的剖视图。首先,如图5A所示,在光透射基板31上形成双折射层32。双折射层32例如利用光或热通过聚合液晶单体而形成。第二,如图5B所示,各向异性外涂层33形成在双折射层32的衍射表面上。如上所述,各向异性外涂层33例如通过扩散方法和聚合方法形成。在形成各向异性外涂层33后,光透射基板31如图5C所示形成在各向异性外涂层33上。在上述步骤后,形成第一偏振全息基板4。第二偏振全息基板5根据与制造第一偏振全息基板4相同的步骤而形成。
在第一和第二偏振全息基板4、5根据上述制造步骤而形成后,第一偏振全息基板4和第二偏振全息基板5被层叠以便根据下述的制造步骤形成全息耦合件3。在该实施例中,第一偏振全息基板4在其周缘区域被暴露的情况下结合到半导体激光装置14的罩12厚度方向上的一个表面中,第二偏振全息基板5在其周缘区域被暴露的情况下结合到第一偏振全息基板4厚度方向上的一个表面中。首先,第一偏振全息基板4被放置在罩12的表面上,而且,第二偏振全息基板5被放置在第一偏振全息基板4的表面上。然后,使第一半导体激光元件51发射出振荡波长为780nm的激光束,并执行聚焦误差信号(此下文,偶尔称之为“FES”)和跟踪误差信号(此下文,偶尔称之为“TES”)中的偏差调节和诸如光轴调节的光学调节。
第二,在使第二半导体激光元件52产生发射出其振荡波长为650nm的激光束,且执行FES和TES中的光学调节,通过涂覆诸如紫外线固化树脂的光透射输粘合剂到且用紫外线照射其中半导体激光装置14的周缘区和第一偏振全息基板4的外周表面(即与半导体激光装置14的周缘区面对的表面)相交的角部,第一偏振全息基板4被粘合于半导体激光装置14的罩12上。而且,通过涂覆诸如紫外线固化树脂70的光透射粘合剂作到且用紫外线照射其中半导体激光装置14的周缘区和第二偏振全息基板5的外周表面(即与第一偏振全息基板4的周缘区面对的表面)相交的角部,第二偏振全息基板5被粘合于第一偏振全息基板4上。在上述制造步骤后,第一偏振全息基板4和第二偏振全息基板5被层叠的全息耦合件3如图6所示而形成为一体。在该实施例中,层叠第一偏振全息基板4和第二偏振全息基板5的顺序与组装的顺序相同。
在如图6所示的第一和第二偏振全息基板4,5中,各向同性外涂层33形成在双折射层32的衍射表面上,而且,光透射基板31形成在各向同性外涂层33上。相互面对的第一和第二偏振全息基板4,5的各个表面是平行的平面。因此,在第二偏振全息基板5层叠在第一偏振全息基板4上,然后对第二偏振全息衍射光栅8执行如光轴调节的光学调节的情况下,能够对第一基板的表面,即与第二基板面对的表面容易地执行操作以使第二基板能够在水平方向上移动,并使第二基板转动。而且,如上所述的用于光学调节的转动操作等能够避免第一偏振全息衍射光栅7受到损害。因此,与使用基板表面上具有不均匀性的凹凸全息图的情况一样,不需要在两个基板的相应表面,即相互面对的表面,之间插入硅玻璃和丙烯酸树脂等,所以能够减少制造步骤数。制造步骤数的减少易于全息耦合件3的制造。此外,制造步骤数的减少使得全息耦合件3的制造成本的降低。
图7A和7B表示第一和第二偏振全息衍射光栅7,8和接收由第一和第二偏振全息衍射光栅7,8衍射的光束的光接收元件9的视图。图7A表示第二偏振全息衍射光栅8的视图,和从第二半导体激光元件52发射出的激光束的由光学记录介质26反射的反射光由第二偏振全息衍射光栅8衍射并进入光接收元件9时获得的光束的光点形状的例子。图7B表示第一偏振全息衍射光栅7的视图,和从第一半导体激光元件51发射出的激光束的由光学记录介质26反射的反射光经过第一偏振全息衍射光栅7衍射并进入光接收元件9时获得的光束的光点形状的例子。
图7A中所示的第二偏振全息衍射光栅8衍射从第二半导体激光元件52发射出并经过DVD信息记录表面反射的激光束,并导引衍射的光束到光接收元件9。图7B中所示的第一偏振全息衍射光栅7衍射从第一半导体激光元件51发射出并经过CD信息记录表面反射过的激光束,并导引衍射过的光束到光接收元件9。
为了检测在光接收元件9上光束的光点形状随着光学记录介质26和物镜25相对移动而变化时获得的输出信号,并保持光学记录介质26和物镜25之间固定的距离,必须将第一和第二偏振全息衍射光栅7,8分别分为至少两个光栅区。该实施例的第二偏振全息衍射光栅8是图7A所示的圆形形状,第一偏振全息衍射光栅7是图7B所示的椭圆形状。而且,第一和第二偏振全息衍射光栅7,8具有图7A和7B所示的第一光栅区8c、7c,第二光栅区8d、7d,和第三光栅区8e、7e。
在由光学记录介质26的信息记录表面反射并由第二偏振全息衍射光栅8衍射的第二偏振方向上的第一阶衍射光进入形成在第一偏振全息基板4上的第一偏振全息衍射光栅7的情况下,已经进入第一偏振全息衍射光栅7的光在透射时不会被衍射。此时,通过第一偏振全息衍射光栅7透射的光和通过除了第一偏振全息衍射光栅7外的基板表面透射的光的透射特性理想上是相同的,但是在实际上稍有差别,因此,第一偏振全息衍射光栅7形成的形状最好使由第二偏振全息衍射光栅8衍射的所有光进入第一偏振全息衍射光栅7。因此,在该实施例中,通过将第一偏振全息衍射光栅7形成为椭圆形状,由第二偏振全息衍射光栅8衍射的第二偏振方向上的所有第一阶衍射光能够进入第一偏振全息衍射光栅7,并被透射。更具体的说,该椭圆的长轴设计成具有这样的尺寸,即由第二偏振全息衍射光栅8衍射在第二偏振方向上的所有第一阶衍射光进入,且形成为比由于用作光源的第二半导体激光元件52波长的变化而产生的入射位置的变化范围长。因此,即使在第二半导体激光元件52的波长由于温度等变化而改变时,也能够可靠地透射光束和获得所需的信号。而且,椭圆的长轴的设置为垂直于光学记录介质26的信息记录表面上的轨迹方向。这样能够在与信息坑长度方向垂直的方向上定位光束形状的长度方向,并能够获得有利的跳动特性。因此,能够更加准确地将信息记录在光学记录介质26上和重放记录在光学记录介质26上的信息。此外,在椭圆的短轴的设计成具有这样的长度,即根据准直透镜22的数值孔径(缩写为NA)确定的直径的光束能够进入时,椭圆短轴形成为具有这样的长度,即由第二偏振全息衍射光栅8衍射的第二偏振方向上的第一阶衍射光能够进入。
每个第一光栅区8c、7c是通过用每个第一分线8a、7a分开每个圆形区而获得的两个半圆区中的其中之一。每个第二光栅区8d、7d是通过用每个第二分线8b、7b分开两个半圆区中的另一个半圆区而获得的两个四分之一圆区中的其中之一,第二分线8b、7b垂直于第一分线8a、7a。每个第三光栅区7e、8e是两个四分之一圆区中的另一个圆区。
光接收元件9分别具有用于接收由第一和第二偏振全息衍射光栅7,8的第一光栅区8c、7c,第二光栅区8d、7d,和第三光栅区8e、7e衍射的光束的多个光接收区。本实施例的光接收元件9具有如图7A和7B所示的10个光接收区D1至D10。每个光接收区D1至D10被选择性地用于读取CD和DVD的信息,和检测FES、TES和重放信号(缩写为RF)。
由光学记录介质26反射并由第二偏振全息衍射光栅8的第一光栅区8c衍射的光束在光接收元件9的相应光接收区的两个光接收区D5,D6的横方向上进入中心部。而且,由光学记录介质26反射并由第二偏振全息衍射光栅8的第二光栅区8d衍射的光束进入光接收元件9的光接收区D2。由第二偏振全息衍射光栅8的第三光栅区8e衍射的光束进入光接收元件9的光接收区D9。由光学记录介质26反射并由第一偏振全息衍射光栅7的第一光栅区7c衍射的光束在光接收元件9的相应光接收区的两个光接收区D5,D6的横方向上进入中心部。而且,由光学记录介质26反射并由第一偏振全息衍射光栅7的第二光栅区7d衍射的光束进入光接收元件9的光接收区D2。由第一偏振全息衍射光栅7的第三光栅区7e衍射的光束进入光接收元件9的光接收区D9。为了进一步描述,由第一偏振全息衍射光栅7的相应光栅区7c至7e衍射并进入光接收元件9的光接收区D2、D5、D6、D9的光束是从第一和第二半导体激光元件51,52发射出并由分束衍射光栅6衍射的光束的主光束。进入光接收区D1、D3、D8、D9、D10的光束是从第一和第二半导体激光元件51,52发射出并由分束衍射光栅6衍射的光束的副光束。
而且,光接收元件9设置成各个光接收区D1至D10的长度方向平行于第一和第二偏振全息衍射光栅7,8的衍射方向。各个光接收区D1至D10形成为长度方向上的长度大于由于第一和第二半导体激光元件51,52波长的变化而产生的入射位置的变化范围。因此,即使在第一和第二半导体激光元件51,52波长由于温度等变化而改变时,也能够可靠地接收光束和获得所需的信号。此外,由于在各个光接收区D1至D10的长度方向上的长度设置得非常长的情况下,电容会增大和各个光接收区D1至D10的响应速度会降低,因此光接收元件9设置成具有这样的长度,即电容不影响响应速度。
在本实施例中,一种刀刃方法被用于检测读取DVD和CD信息所需的FES。而且,在该实施例中,一种微分相位检测(缩写为DPD)方法用于检测读取DVD信息所需的TES和一种差动推挽(缩写为DPP)方法用于检测读取CD信息所需的TES。在图7A和7B中,CD和DVD的RFs根据光接收区D2、D4、D5、D6、D7、D9的输出信号进行检测。此外,以DPD方法为基础的DVD的TES是根据光接收区D2和D9的输出信号进行检测的。如上所述,光接收区需要较高的响应速度来用于根据DPD方法检测包含在高频分量如RF和TES中的信号,并需要迅速读取光学记录介质26的重放信号。
而且,CD的TES是根据光接收区D1、D3、D8、D10的输出信号进行检测的,CD和DVD的FESs是根据光接收区D4、D5、D6、D7的输出信号进行检测的。光接收区D1、D3、D8、D10不需要较高的响应速度来检测CD的TES。此外,光接收区D4、D7不需要较高的响应速度,因为这些光接收区用于补偿读取双层盘的DVD时对FES产生的杂散光,光在信号再现过程中不会进入这些区域。
在图7A和7B中,为了减少全息激光单元1的输出端子的数量,用于检测相同信号的光接收区可以在内部进行连接。例如,在本实施例中,能够内部连接光接收区D4和光接收区D6,和连接分别检测FES的光接收区D5和光接收区D7。而且,能够内部连接光接收区D1和光接收区D3,和连接分别根据DPP方法检测TES的光接收区D8和光接收区D10。在图7A和7B中,在内部连接光接收区D1和光接收区D3时的输出信号用P1表示,在内部连接光接收区D5和光接收区D7时的输出信号用P3表示,在内部连接光接收区D4和光接收区D6时的输出信号用P4表示,在内部连接光接收区D8和光接收区D10时的输出信号用P5表示。而且,光接收区D2,D6的输出信号分别用P2,P6表示。
在DVD的信息记录表面上反射的光束由第二偏振全息衍射光栅8衍射并被光接收元件9的各个光接收区D1至D10接收时,以从各个光接收区D1至D10输出的信号为基础的FES,TES和RF分别用下述的表达式(1)至(3)来建立FES=P3-P4(1)TES=相位(P2-P6) (2)RF=P2+P3+P4+P6 (3)在CD的信息记录表面上反射的光束由第一偏振全息衍射光栅7衍射并被光接收元件9的各个光接收区D1至D10接收时,以从各个光接收区D1至D10输出的信号为基础的FES,TES和RF分别用下述的表达式(4)至(6)来建立FES=P3-P4 (4)TES=(P2-P6)-K(P1-P5)(5)RF=P2+P3+P4+P6 (6)这里,表达式(5)的系数K是一个常数,用于校正由三光束衍射光栅6衍射的一个主光束和两个副光束的光量比。在主光束∶副光束∶副光束的光量比等于a∶b∶b(a,b是自然数)时的系数K用表达式k=a/(2b)表示。
如上所述,在图7A和7B所示的光接收元件9中,刀刃方法用于检测读取DVD和CD信息所需的FES,DPD方法用于检测读取DVD信息所需的TES,和DPP方法用于检测读取CD信息所需的TES,但是,例如,光点直径方法可用于检测读取DVD和CD信息所需的FES,DPD方法可用于检测读取DVD信息所需的TES,和DPP方法可用于检测读取CD信息所需的TES。
图8A和8B表示第一和第二偏振全息衍射光栅7,8和用于接收由第一和第二偏振全息衍射光栅7,8衍射的光束的光接收元件9的视图。图8A表示第二偏振全息衍射光栅8的视图,和从第二半导体激光元件52发射出的激光束的由光学记录介质26反射的反射光由第二偏振全息衍射光栅8衍射并进入光接收元件9时获得的光束的光点形状的例子。图8B表示第一偏振全息衍射光栅7的视图,和从第一半导体激光元件51发射出的激光束的由光学记录介质26反射的反射光由第一偏振全息衍射光栅7衍射并进入光接收元件9时获得的光束的光点形状的例子。
图8A中所示的第二偏振全息衍射光栅8衍射从第二半导体激光元件52发射出并由DVD信息记录表面反射的激光束,且导引衍射的光束到光接收元件9。图8B中所示的第一偏振全息衍射光栅7衍射从第一半导体激光元件51发射出并由CD信息记录表面反射过的激光束,且导引衍射的光束到光接收元件9。由于图8A和8B所示的第一和第二偏振全息衍射光栅7,8与图7A和7B所示的第一和第二偏振全息衍射光栅7,8具有相同的形状和功能,所以相对应的部分用相同的参考标号表示以省略其描述。
图8A和8B所示的光接收元件9具有分别用于接收由第一和第二偏振全息衍射光栅7,8的第一光栅区8c、7c,第二光栅区8d、7d,和第三光栅区8e、7e衍射的光束的光接收区。如图8A和8B所示,光接收元件9具有12个光接收区S1至S12。各个光接收区S1至S12被有选择地用于读取CD和DVD的信息和检测FES、TES和RF。
由光学记录介质26反射并由第二偏振全息衍射光栅8的第一光栅区8c衍射的光束在光接收元件9的相应光接收区的两个光接收区S6、S7的横方向上进入中心部。而且,由光学记录介质26反射并由第二偏振全息衍射光栅8的第二光栅区8d衍射的光束进入光接收元件9的光接收区S2。由第二偏振全息衍射光栅8的第三光栅区8e衍射的光束进入光接收元件9的光接收区S11。由光学记录介质26反射并由第一偏振全息衍射光栅7的第一光栅区7c衍射的光束在光接收元件9的相应光接收区的两个光接收区S6、S7的横方向上进入中心部。而且,由光学记录介质26反射并由第一偏振全息衍射光栅7的第二光栅区7d衍射的光束进入光接收元件9的光接收区S2。由第一偏振全息衍射光栅7的第三光栅区7e衍射的光束进入光接收元件9的光接收区S11。为了进一步描述,由第一偏振全息衍射光栅7的相应光栅区7c至7e衍射并进入光接收元件9的光接收区S2、S6、S7、S11的光束是从第一和第二半导体激光元件51,52发射出并由分束衍射光栅6分光的光束的主光束。进入光接收区S1、S3、S4、S9,S10,S12的光束是从第一和第二半导体激光元件51,52发射出并由分束衍射光栅6分光的光束的副光束。
在图8A和8B中,刀刃方法用于检测读取DVD和CD信息所需的FES。而且,DPD方法用于检测读取DVD信息所需的TES和三光束方法用于检测读取CD信息所需的TES。
在图8A和8B中,CD和DVD的RFs根据光接收区S2、S5、S6、S7、S8、S11的输出信号进行检测。此外,以DPD方法为基础的DVD的TES是根据光接收区S2和S11的输出信号进行检测的。而且,CD的TES是根据光接收区光接收区S1、S3、S4、S9,S10,S12的输出信号进行检测的。光接收区S5、S8不需要较高的响应速度,因为这些光接收区用于补偿读取双层盘的DVD时对FES产生的杂散光,光在信号再现过程中不会进入这些区域。
虽然内部连接用于检测相同信号的光接收区的状态没有显示在图8A和8B中,但是,为了减少全息激光单元1的输出端子数量,这些光接收区可用与图7A和7B所示相同的方式进行内部连接。例如,在该实施例中,能够内部连接光接收区S5和光接收区S7,和连接分别检测FES的光接收区S6和光接收区S8。而且,能够内部连接光接收区S1,光接收区S4和光接收区S10,和连接分别根据三光束方法检测TES的光接收区S3,光接收区S9和光接收区S12。
在DVD的信息记录表面上反射的光束由第二偏振全息衍射光栅8衍射并被光接收元件9的相应光接收区S1至S12接收时,以从相应光接收区S1至S12输出的信号为基础的FES,TES和RF分别用下述的表达式(7)至(9)来建立FES=(S5+S7)-(S6+S8) (7)TES=S2-S11 (8)RF=S2+(S5+S7)+(S6+S8)+S11 (9)在CD的信息记录表面上反射的光束由第一偏振全息衍射光栅7衍射并被光接收元件9的相应光接收区S1至S12接收时,以从相应光接收区S1至S12输出的信号为基础的FES,TES和RF分别用下述的表达式(10)至(12)来建立FES=(S5+S7)-(S6+S8) (10)TES=(S1+S4+S10)-(S3+S9+S12) (11)RF=S2+(S5+S7)+(S6+S8)+S11 (12)如上所述,在图8A和8B所示的光接收元件9中,刀刃方法用于检测读取DVD和CD信息所需的FES,DPD方法用于检测读取DVD信息所需的TES,和三光束方法用于检测读取CD信息所需的TES,但是,例如,光点直径方法可用于检测读取DVD和CD信息所需的FES,DPP方法可用于检测读取DVD和CD信息所需的TES。
如上所述,根据本实施例,从集成半导体激光元件单元2的第一和第二半导体激光元件51,52发射出、并已经穿过全息激光单元1和5λ/4板23,然后由光学记录介质26的信息记录表面反射的光束,分别由第一和第二偏振全息衍射光栅7,8在可靠地朝向光接收元件9的方向上衍射被光接收元件9接收。而且,即使在由光学记录介质26的信息记录表面反射的第二波长的光束,即正在第二偏振方向上被偏振的光束,在由第二偏振全息衍射光栅8衍射后在向着光接收元件9的途中进入第一偏振全息衍射光栅7时,第一偏振全息衍射光栅7也具有透射在第二偏振方向上被偏振的光束,而不会衍射该光束的特性,因此不会产生由于由第二偏振全息衍射光栅8衍射的光束入射到第一偏振全息衍射光栅7中而产生的不必要光。相应地,应该被光接收元件接收的光束量不会减少,这与相关领域内的不一样,因此与现有技术相比,能够提高光的使用效率。这增强了可靠性。
而且,根据本实施例,全息耦合件3的结构是第一偏振全息基板4和第二偏振全息基板5的叠层,其中第一偏振全息衍射光栅7形成在第一偏振全息基板4上,第二偏振全息衍射光栅8形成在第二偏振全息基板5上,相互面对的第一和第二偏振全息基板4,5的表面是平面。因此,在第二偏振全息基板5层叠在第一偏振全息基板4上,然后执行光学调节,如对第二偏振全息衍射光栅8执行的光轴调节的情况下,能够容易地对第一偏振全息基板4的表面,即与第二偏振全息基板5面对的表面,执行操作以使第二偏振全息基板5在水平方向上移动和使第二偏振全息基板5转动。这就能够简单地对第二偏振全息衍射光栅8执行光学调节。
而且,根据本实施例,发射出第一波长的光束的第一半导体激光元件51和发射出第二波长的光束的第二半导体激光元件52集成为集成的半导体激光元件单元2。这样,与第一激光器元件51和第二激光器元件52单独设置而没有集成的情况相比,在制造全息激光单元1时,就能够减少全息激光单元1中部件的数量,而且,还减少组装过程中的步骤。
而且,根据本实施例,第一波长是780nm,第二波长是650nm。从第一半导体激光元件51发射出并由光学记录介质26的信息记录表面反射的780nm的第一波长的光束由第二偏振全息衍射光栅8透射,并由第一偏振全息衍射光栅7衍射,然后导引到光接收元件9。这就能够检测在CD上记录信息和播放记录在CD上信息所需的信号。而且,从第二半导体激光元件52发射出并由光学记录介质26的信息记录表面反射过的650nm的第二波长的光束由第二偏振全息衍射光栅8衍射,然后导引到光接收元件9。这就能够检测在DVD上记录信息和播放记录在的DVD上信息所需的信号。
而且,根据本实施例,第一和第二偏振全息衍射光栅7,8形成为第一波长的光束穿过第一和第二偏振全息衍射光栅7,8,第二波长的光束穿过第一和第二偏振全息衍射光栅7,8。第一和第二偏振全息衍射光栅7,8形成为具有这样的尺寸,即所述尺寸长于由于第一和第二半导体激光元件51,52的波长变化而导致的入射位置的变化范围。因此,即使在第一和第二半导体激光元件的波长的变化由于温度等额变化而发生时,从第一和第二半导体激光元件51,52发射出、并由光学记录介质26的信息记录表面反射的第一和第二波长的光束也能够可靠地进入第一偏振全息衍射光栅7,而且从第一和第二半导体激光元件51,52发射出、并由光学记录介质26的信息记录表面反射的第二波长的光束也能够可靠地进入第二偏振全息衍射光栅8。因此,第一偏振全息衍射光栅7将第一波长的光束向着光接收元件9衍射,第二偏振全息衍射光栅8将第二波长的光束向着光接收元件9衍射,所以能够根据光接收元件9接收到的相应光束获得在光学记录介质26上记录信息和重放记录在光学记录介质26上信息所需的信号。
而且,根据本实施例,第一和第二偏振全息衍射光栅7,8的尺寸是根据准直透镜22的数值孔径进行确定的,准直透镜22将由光学记录介质26反射的光束导引到全息耦合件3。通过根据准直透镜22的数值孔径由此确定第一和第二偏振全息衍射光栅7,8的尺寸,第一和第二偏振全息衍射光栅7,8的尺寸能被确定为最小尺寸。这样与第一和第二偏振全息衍射光栅7,8的尺寸相对较大的情况相比,能够降低第一和第二偏振全息衍射光栅7,8的制造成本且容易制造它们。此外,即使在第一和第二偏振全息衍射光栅7,8形成为具有上述确定的最小尺寸时,第一和第二波长的光束也能够可靠地分别通过第一和第二偏振全息衍射光栅7,8。
而且,根据本实施例,在第一偏振全息基板4上形成分束衍射光栅6,该分束衍射光栅6将入射光分为一个主光束和两个副光束。通过由此在第一偏振全息衍射光栅7形成于其上的第一偏振全息基板4上形成分束衍射光栅6,与分束衍射光栅6独立设置的情况相比,它能够减少全息激光单元1中光学部件的数量。而且,在使用光学部件数量减少的全息激光单元1的情况下,例如,在光学拾取装置21中,能够减小光学拾取装置21的尺寸和重量,并能够降低光学拾取装置21的制造成本。
而且,根据本实施例,光接收元件9在共用光接收区接收从第一半导体激光元件5发射出的第一波长的光束和从第二半导体激光元件6发射出的第二波长的光束。因此,与接收第一波长激光束的光接收区和接收第二波长激光束的光接收区单独设置以能在单独设置的光接收区接收第一和第二波长的光束的情况相比,该光接收元件9的尺寸较小。这样就能够减小全息激光单元1的尺寸和重量。
图9大致表示根据本发明第二实施例的5λ/4板集成全息激光单元40结构的透视图。图10大致表示光学拾取装置41结构的视图。在图9中,下面描述的罩12被局部剖视。由于5λ/4板集成全息激光单元40与上述的光示波装置21中的全息激光单元1相似,全息激光单元40与全息激光单元1具有相同的结构和功能,除了5λ/4板23一体形成在全息耦合件3的厚度方向上的一个表面上外,相对应的部分用相同的参考标号表示,所以将省略与全息激光单元1那些相同结构和功能的描述。5λ/4板集成全息激光单元40包括全息激光单元1和5λ/4板23。光学拾取装置41包括5λ/4板集成全息激光单元40、准直透镜22、正像镜24和物镜25。光学拾取装置41是至少执行下面两个处理中其中之一的装置,即光学读取记录在光学记录介质26的信息记录表面上信息的处理和将信息光学记录在光学记录介质26的信息记录表面上的处理。
虽然如图2所示,5λ/4板23放置在光学拾取装置21中的准直透镜22和正像镜24之间的光路上,但是如图10所示,5λ/4波长板23与光学拾取装置41中的全息激光单元1的全息耦合件3一体形成。为了进一步描述,5λ/4板23安装和设置在全息耦合件3的第二偏振全息基板5的厚度方向上的一个表面上。
根据如上所述的实施例,通过集成5λ/4板23和全息耦合件3以能构成5λ/4板集成全息激光单元40,能够减少制造时的光学部件数量和组装步骤数,还能够简化光学调节,如光轴调节的操作。此外,在光学拾取装置41中使用减少了光学部件数量的5λ/4板集成全息激光单元40的情况下,能够使5λ/4板集成全息激光单元40和正像镜24之间的光路长度小于上述光学拾取装置21中的光路长度,结果能够减小光学拾取装置41的尺寸和重量,并能够降低光学拾取装置41的制造成本。
根据本实施例,5λ/4板集成全息激光单元40和光学拾取装置41具有与上述第一实施例相同的结构,因此,能够获得与上述实施例相同的效果。
前述的实施例仅仅是举例说明本发明,本发明的结构可以在本发明的保护范围内改变。例如,虽然在使用发出在第一偏振方向上偏振的线性偏振激光束的第一和第二半导体激光元件51,52作为光源的情况下,在前面的实施例中描述了全息激光单元1和光学拾取装置21,但是本发明也可以在本发明另一个实施例中使用发出圆形偏振激光束的第一和第二半导体激光元件51,52作为光源的情况下同样能够进行体现。
本发明在不脱离其精神或必要特征的情况下可以其它具体的形式进行体现。因此,本发明的实施例无论从那方面来说都应被认为是起说明性作用,而不是其限制性作用,如后面权利要求所示而不是前面的描述所限定的本发明保护范围以及落在权利要求等效意义和范围内的所有变化都被认为包含在其中。
权利要求
1.一种全息激光单元,包括光源(2),所述光源(2)用于发射第一波长和第二波长的光束;光接收元件(9),所述光接收元件(9)用于接收从光源(2)发射出并由光学记录介质的信息记录表面反射的光束;和全息耦合件(3),所述全息耦合件(3)具有第一光学元件(7)和第二光学元件(8),第一光学元件(7)将在第一偏振方向上被偏振的第一波长的入射光衍射到朝向光接收元件(9)的方向,并透射在垂直于第一偏振方向的第二偏振方向上被偏振的入射光,且第二光学元件(8)将在第二偏振方向上被偏振的第二波长的入射光衍射到朝向光接收元件(9)的方向,并透射在第一偏振方向上被偏振的入射光。
2.如权利要求1所述的全息激光单元,其中全息耦合件(3)被构造成为第一基板(4)和第二基板(5)的叠层,其中第一光学元件(7)形成在第一基板(4)上,且第二光学元件(8)形成在第二基板(5)上,和第一和第二基板(4,5)的、彼此面对的表面是平面。
3.如权利要求1所述的全息激光单元,其中光源(2)是集成的半导体激光单元(50),其中用于发射第一波长的光束的第一半导体激光元件(51)和用于发射第二波长的光束的第二半导体激光元件(52)集成在半导体激光单元(50)内。
4.如权利要求1所述的全息激光单元,其中第一波长是780nm,第二波长是650nm。
5.如权利要求1所述的全息激光单元,其中第一和第二光学元件(7,8)形成为第一波长的光束穿过第一和第二光学元件(7,8),且第二波长的光束穿过第一和第二光学元件(7,8)。
6.如权利要求5所述的全息激光单元,其中第一和第二光学元件(7,8)的尺寸是基于透镜的数值孔径确定的,所述透镜将由光学记录介质反射的光束导引到全息耦合件(3)。
7.如权利要求2所述的全息激光单元,其中在第一基板(4)上形成分束衍射光栅(6),该分束衍射光栅(6)将入射光分为一个主光束和两个副光束。
8.如权利要求1所述的全息激光单元,其中光接收元件(9)在共用光接收区(D1至D10)接收第一和第二波长的光束。
9.一种光学拾取装置,包括权利要求1至8中任一项所述的全息激光单元(1),其中光源(2)发射出在第一偏振方向上被偏振的光束;光学系统,所述光学系统用于将从全息激光单元(1)的光源(2)发射出的光束聚集在光学记录介质的信息记录表面上,并将反射光导引到全息激光单元(1);偏振元件(23),所述偏振元件(23)用于将由光学记录介质的信息记录表面反射的、并由光学系统导引到全息激光单元(1)的第二波长的光束的偏振方向改变为第二偏振方向。
10.如权利要求9所述的光学拾取装置,其中偏振元件(23)与第二基板(5)构成在单个主体中。
全文摘要
在第一偏振方向上被偏振的、并从第一和第二半导体激光元件(51,52)发射出,且由光学记录介质(26)的信息记录表面反射的第一波长的光束由第二偏振全息衍射光栅(8)透射,并由第一偏振全息衍射光栅(7)在朝向光接收元件(9)的方向衍射。在第一偏振方向上被偏振的,且由光学记录介质(26)的信息记录表面反射的第二波长的光束的由5λ/4板(23)转换以便在第二偏振方向上。在第二偏振方向上被偏振的第二波长的光束由第二偏振全息衍射光栅(8)朝向光接收元件(9)的方向衍射。
文档编号G11B7/135GK1750144SQ200510096908
公开日2006年3月22日 申请日期2005年8月25日 优先权日2004年8月30日
发明者高木辉一 申请人:夏普株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1