不具芯片的浪涌吸收器的制作方法

文档序号:6979030阅读:203来源:国知局
专利名称:不具芯片的浪涌吸收器的制作方法
技术领域
本实用新型涉及电子元件,详言之,是关于不具芯片的浪涌吸收器(管)。
导致浪涌离散波和静电干扰等等为电子元件的根深抵固的障碍。高压杂波会导致电子元件中半导体元件的错误操作,且有时候甚至会破坏半导体或装置本身。然而,使用浪涌吸收器可解决这些问题。
传统的浪涌吸收器一般在绝缘微间隙之间安置芯片或放电磁芯,且将所述芯片密封于玻璃壳体内。例如,在由三铃材料公司(Mitsubishi Materials K.K.公)所制造的微间隙浪涌吸收器中,在陶制磁芯上形成一层导电薄膜,且在芯片两端固定有帽状金属电极。然后,藉由激光光束将导电薄膜移除,形成间隙或微间隙。其后,将以此方式形成的放电芯片(放电磁芯)密封于玻璃管内。因此,在传统芯片形式的浪涌吸收器内,可由微间隙或称(以间隙形式呈现沟槽)宽度决定放电电压。
再者,传统上,已知以微沟槽分割导电薄膜而形成的浪涌吸收器。然而,要在此种型式的浪涌吸收器中自由选择切换电压是很困难的,所以,严重地限制其使用性。为了克服这一缺点,美国专利第4,727,350号披露一种浪涌吸收器,它包含有交错式微沟槽之导电薄膜覆盖柱状管形磁芯,且将其密封于玻璃壳体内。
在日本公开特许公报第平成8-306467号中,本发明设计人同样提出了可解决上述问题的浪涌吸收器。在此浪涌吸收器中,将管芯放置在壳体中的一对电极之间,且在气室内充满惰性气体。这种配置使得浪涌吸收器能吸收较传统更高的切换电压。
然而,上述每一个浪涌吸收器均是由预先形成决定其放电特性的放电芯片或放电管,然后将此芯片或管芯密封在壳体中进行组装制成的。因此其结构复杂、制造程序烦琐,所以很难降低生产成本。特别是在最近几年内,要求浪涌吸收器安装在电子元件内以便可保护元件及减少电源供应器的电压波动。因此,由于上述的种种问题将直接导致整体装备的成本增加。
另外,传统浪涌吸收器放电电流将流过管芯。因此这些浪涌吸收器将无法抗衡高切换电压,如10000伏特,且无法在吸收浪涌的同时,亦可完全吸收大量浪涌能。结果导致的问题是,因为此残余电压,所以将在电路系统中产生伴随电流(follow current)(这是由残余电压所引起的电流,将流入受保护的电子元件)。再者,在传统装置中,问题是切换电压将随管状磁芯的特性而变化。
为了解决此问题,本实用新型之申请者在所提出的日本专利申请第平成10-189486号中提供因结构简单而可大量制造的浪涌吸收器,它可适用在大范围的浪涌电压和最大浪涌电流的情况。
依据先前所提出的发明,本发明设计人提出可在大范围切换电压中进行浪涌吸收的改进式浪涌吸收器。此种浪涌吸收器可瞬间吸收大量的能量,因为在吸收突波的同时,其电阻亦大大地降低。可以确保将先前在吸收浪涌波后所遗留下的任何残余电压完全去除。因此可避免由残余电压产生伴随电流。再者,可藉由设计浪涌吸收器之各零件微调各种放电电压、放电速度和浪涌波承受量(浪涌电流)的浪涌吸收器。
先前发明所提出的浪涌吸收器的特性是将一对具有导线端子的电极相隔一定距离放置,在此特定距离下,将壳体俩端熔化并使其熔接至放电极或导线端子上。
在先前的发明中,因为这对放电极精确地维持在此种配置下,所以可使放电极在壳体中相隔特定距离而互相对立。但是,当维持此种配置时,另要加热壳体,电极或导线端子焊接密封在壳体中。这种方式可任意选择二个放电极之间的距离,并可方便地精确调整其距离。
然而,在上述背景技术中,必须使用具有不同直径的各种放电极,以便提供用于各种浪涌电压标准的浪涌吸收器。本浪涌吸收管的特性,特别是浪涌电压和最大浪涌电流,是由对立放置的电极间隙、气室大小、以及电极形状等各种因素决定的。然而,放电极直径是决定浪涌吸收器特性的最主要因素,因此,为处理各种标准的浪涌的电压,必须提供各种具有不同半径的电极。
已知如Ishizuka Electronic K.K.公司所制造的气体管状避雷器为典型的不具芯片的浪涌吸收器。在此传统装置中,其电极是对立放置的,且藉由如玻璃等绝缘材料使其分隔一定距离。然而,该避雷器对立电极间距离是由绝缘管的长度来决定,并且绝缘管与电极焊接在一起。此种结构需要准备非常多的,具有不同长度的绝缘管,以便提供不同型式对立的电极对,换句话说,即各种距离间隔的对立的电极。因此利用这种结构,在实际上不可能获得不具芯片且能够应用在大范围放电电压及最大浪涌电流的浪涌吸收器。再者,因为绝缘管是玻璃制的,并且电极间距是由绝缘管长度来决定,所以假如绝缘管和电极是藉由加热焊接在一起,则电极间之临界距离将会随时变动。在此状态下,不能使用加热焊接,且必须在绝缘管和电极接点表面进行热熔接。在进行熔接处理之期间,其气室将因熔化等因素严重污染,并导致放电特性极度恶化。
为了解决现有技术中出现的上述问题。本实用新型目的是为了提供具有简单结构,且能够轻易地提供可处理很大浪涌波特性范围的多重型式改进的浪涌吸收管。
为了完成上述目的,本实用新型所提供的浪涌吸收器,包含一对具有做为放电极的已加宽尖端的导线端子;安装及固定在导线端子上的导线部分的密封垫片和壳体;其中这对具有密封垫片,固定于其上的导线端子是从壳体双侧的开口端插入,当将放电极维持在对立分开特定距离的位置时,该两个密封垫片可随意固定在壳体上。
再者,为了完成上述目的,本实用新型提供一种浪涌吸收器,它包含一对具有做为放电极的已加宽尖端的导线端;安装及固定在导线端子上的导线部分的密封垫片和壳体,其中这对具有密封垫片固定于其上的导线端子是从壳体双侧的开口端插入,当将放电极维持在对立且分开特定距离的位置时,该两个密封垫片是焊接在壳体的内壁。
依据本实用新型的装置,放电极是由导线端子尖端变宽而形成的,它可从相同直径导线端子经过加宽程序而形成各种尺寸的放电极。因为本实用新型放电极并不需要固定在壳体上,所以可将具有相同尺寸不同直径的放电极放在壳体内侧。使用相同直径的导线端子和壳体,及为导线端子的尖端选择各种放宽尺度的直径,这样可轻易地提供有不同标准浪涌电压的浪涌吸收器。
再者,依据本实用新型的装置,其壳体和密封垫片可以是固定的,也可以互换的,所以当具有放电极导线端子的相关位置已精确固定时,将壳体加热与密封垫片熔接在一起。在此方法中,本实用新型的优点为可以轻易地,精确地完成各种形式电极的相对位置。
另外,本实用新型浪涌吸收器的特性为壳体的气室充满纯净、干燥的空气或含有纯净、干燥空气和惰性气体或氢气等混合气体。
依据本实用新型这一构思,当将一对放电极分开特定空隙时,将放电极放置于壳体内,气室填满纯净、干燥空气和惰性气体或氢气体等之混合气体。藉由这种特别简单的结构,使得浪涌吸收器可适当地处理高切换电压的浪涌波。再者,因为在绝缘体放电的同时,气室内的气体阻抗是非常的低,所以当浪涌电压导致气体的电介质击穿时,其操作阻抗将非常的低。因此,就算是高切换电压下亦能瞬间吸收浪涌波,也可有效地避免典型残余电压生成。因为在电极间具有正常气室的浪涌吸收器是公知的气体管避雷器,所以密封在本实用新型气室内的气体是绝缘纯净和干燥之气体。因此,在气室内对立电极间所发生电介质击穿将维持在稳定的状态下,可确保提供一个非常有实用价值的浪涌吸收途径。
再者,密封于气室内的纯净且干燥的气体可以具有小于5%的相对湿度,且其纯净度为99.99%(0.5umDOP),这比经由过滤一般空气而获得的纯净度更高。
除了此干净空气,亦可将惰性气体或如氢气等活性气体密封在本实用新型气室内是显而易见的。使用含氢量1至10%气体所获得之结果显示,其放电电压变得更低且放电反应速度变得更快。这样的优点是气室内空气因氢气的净化作用而变得更干净,因此在一连串的放电操作之后,可避免放电特性的恶化,因此使其可稳定吸收浪涌。
本实用新型之另一个特征为密封垫片的形状可以是具有中空内通孔的玻璃或塑胶球状体,也可以是取代球状体的平面圆柱状(盘状)。当将导线端子的含导线部分插入中空内通孔时,加热这些密封垫片,可轻易地藉由熔融而将密封垫片和导线端子接合。当使用盘状密封垫片时,在上述热熔接期间可将密封垫片整体形成球状体。此球状密封垫片的优点是其可非常轻易地插入壳体中。
在考虑熔接密封垫片和导线端子时,导线端子最好是由杜梅(Dumet)丝所形成的。当需要较长的导线端子时,最好使用合成导线,且仅与密封垫片熔接的含导线部分是由杜梅(Dumet)丝所形成的,而其他的部分则使用如铁等传统的、较便宜的材料。
再者,在本实用新型不具芯片的浪涌吸收器中,至少放电极对的其中一个具有与气隙相接触的平坦放电表面。
本实用新型不具芯片的浪涌吸收器的壳体可为玻璃陶瓷或塑料等容器。
如上所述的,本实用新型密封在气室中的并非一般气体而是纯净干燥气体,此纯净度为99.99%(0.5umDOP),比经由过滤一般空气而获得的纯净度还要高。有关干燥度,相对湿度为0.01至5%,最好是低于3%。
再者,举例而言,为了调整浪涌波切换电压,可依照需求将惰性气体混合在要密封于气室内的气体中。最好使用氩气或氖气做为这种混合惰性气体,亦可用氮体来取代这些惰性气体。
上述不具芯片的浪涌吸收器可以广泛地应用在极端复杂的电子电路中,可用于高速操作中使用大容量记忆电脑的重要元件。吸收器使用可有效地消除因经常开/关电脑显示器及其他电子装置所产生的浪涌波的影响。
本实用新型不具芯片的浪涌吸收器也可应用在如电话、收音机、传真机、数据机、和可程式控制电话切换装置等连接至电话线的装置中,如放大器、录音机、汽车收音机、无线电收发机、和感测器讯号线等连接至天线或讯号线等装置中,如显示器和屏幕、家用电器用品、和可电脑控制的电子装置等需要避免静电的装置中。本实用新型的不具芯片的浪涌吸收器亦可做为过电压保护装置。换句话说,浪涌吸收器为可有效对抗如电子杂讯等有害影响的电子元件。
附图简要说明
以下结合
本实用新型,其中图1为本实用新型的浪涌吸收器的基本结构图;图2为本实用新型的浪涌吸收器的另一个最佳实施例;图3是显示具有与图2相类似结构的又一个最佳实施例;图4是显示依据本实用新型在导线端子的尖端形成放电极的压制程序;图5是图4所显示的压制程序的详细说明,显示在导线端子的尖端所形成的放电极;图6是依据本实用新型的可插入共用壳体的具有各种直径的放电极;图7A和7B是本实用新型浪涌吸收器的组合程序;图8A和8B是本实用新型具有另一个形状的浪涌吸收器的组装程序;
图9是另一个实施例,其中突出的部分是放置在其中一放电极之上;图10是在其中一个放电极上的锥形突出件;图11是放置在二个放电极表面的锥形突出件;图12是具有放置在此二电极上的锥形凹状的实施例;图13显示本实用新型的具有不同形状放电极的实施例;图14显示在二个放电极上具有弧形表面的实施例;图15显示用于导线端子尖端定型的压铸模;图16是由图15所显示的压铸模所形成的放电极;图17是本实用新型的导线端子的另一个最佳实施例;图18是处于封状态的本实用新型的浪涌吸收器;图19是本实用新型的浪涌波波形图;和图20是当本实用新型吸收图19所示的浪涌电压时的状态特性图。
元件符号的说明10壳体12气室14、16导线端子14a尖端区14b尾区14c焊接区18、20放电极18a、20a突出部22、24密封垫片22a内通孔30、32弓形夹34压模34a凹槽50、52开口60陶瓷封装60a、60b凹槽
62、陶瓷滤波器122、124密封垫片222、224密封垫片以下将参考相关图示描述本实用新型的最佳实施例。
图1示出本实用新型不具芯片的浪涌吸收器的最佳实施例。壳体10包含有玻璃或塑胶制圆筒,且在壳体内有气室12。导线端子14,16是从壳体10两侧的开口端插入。在气室12中,导线端子14,16尖端的直径加宽形成的放电极18、20是以相隔特定距离对立放置的。
本实用新型的特征是放电极18、20是藉由导线端子14,16尖端的直径加宽而形成的。这一点将以后详细描述加宽程序。
每一个放电极18、20的中心形成突出部分18a和20a。在这种配置下,当浪涌电压加在导线端子14、16时,在突出部分18a和20a之间可轻易地导致稳定放电。放电极18、20二者均以导线加宽成盘状而形成的。在进行加宽程序期间可需要选择电极直径。在放电极18、20之间除了可选择所需气隙外,亦可选择所需直径而获得对应于各种浪涌电压的浪涌吸收器。为了精确地维持导线端子14、16在壳体10中的位置,为导线端子14、16提供熔接固定的密封垫片22、24。具有密封垫片22、24的导线端子14、16是从壳体10的两侧开口端插入壳体10之中。在这种状况下,对密封垫片22、24和壳体10加热,密封垫片和壳体将如图中所示被熔接在一起。
当密封垫片22、24熔接至导线端子14、16时,可使用燃烧器在例如350至850℃之加热温度下进行熔接。反之,当对精确地安置在壳体10中的密封垫片22、24热熔接时,最好以缓慢的方式在350至850℃之间温度下进行加热。
本实用新型的导线端子14、16最好是由杜美(Dumet)丝形成的方便于密封垫片22、24的熔接。Dumet丝是含有镍铁合金材料做成的线心的导线,将主要组成为铜和硝酸盐的电镀材料覆盖在其表面上。其铜成份与玻璃制的密封垫片22、24可紧紧地互相熔接在一起。
从图1中可以很明显地得知,本实用新型放电极18、20并不需要直接固定在壳体10之上。因此可将较大的气室12牢牢地固定在壳体10之内,并使其放电特性更稳定。如上所述,其中另一个优点为可将具有一般尺寸的壳体10用于具有不司直径的放电极18、20。
本实用新型应用将电能转换成光能的电能消耗和吸收原理,有效地吸收高电压杂散波和突波脉冲。此吸收器的反应特性基本上不同于亮度从高亮度至熄灭逐渐减弱的LED(发光二极体)或放电管的光效应。
如上所述,依据本实用新型如图1所示的不具芯片的浪涌吸收器的实施例,在壳体10内侧互相对立放置放电极18、20之间时,气室12内发生电介质击穿,浪涌波能量发生转换和被吸收。
从图1中可看出,本实用新型中并未使用传统的放电芯片或放电磁芯。如上所述,本实用新型不具芯片的浪涌吸收器仅包含一对在壳体10内侧互相对立放置的放电极18、20。为了将此简单结构应用在实际的例子中,本实用新型是由具有一对放电极18、20的导线端子14、16对立放置在壳体10内而构成的。在典型的制造程序中,其中导线端子14是被插入并形成于底层机架中的孔洞内,且同时亦将壳体10放置于此洞中。
在此插入状态中,因为本实用新型密封垫片22的外侧直径比壳体10的内侧直径稍微小些,所以可轻易将密封垫片22放入壳体10中。还是如此,第一导线端子14和壳体10可站立在底层机架的正上方。
其后,将另一个导线端子16插入,并形成于上层机架上的孔洞内。然后使上层机架与下层机架相接触。在此状态下,其上层与下层机架是附着在一起的,因为另一个密封垫片24的外侧直径比壳体10的内侧直径稍微小些,所以支撑在上层机架内的另一个放电极20可垂直落下,使其位置可抵住第一电极18的表面。
然后,藉由将放置另一个放电极20的上层机架往上拉高特定距离,且维持在此位置。任何合适的机架均可用于进行这种拉高和维持操作,但此拉高距离则必须依据所需的准确度精确的控制。该方法完成后,必须将电极18、20之间的距离精准地调整至特定值。
其后将上层与下层机架放置在高温状态中。另一方面,上述的组装预备程序亦从一开始即在高温下进行。因此,可同时加热密封垫片22、24和壳体10以及上层与下层机架。当以30至850℃加热时,通常密封垫片22、24和壳体10会熔化,且如图1所显示在壳体10的双侧变成可熔接在一起。
本实用新型在高温加热和及后的冷却期间,可将导线端子14、16上层与下层精确地固定在机架内。因为对壳体10的熔接是当电极间气隙是以上述方式维持时进行的,所以可依据本实用新型在放电极间提供如第1图所显示出的精确气隙。
再者,本实用新型适当地调整此支撑在上层与下层机架内的放电极间距可将气隙控制在任何距离。不像传统的气体管避雷器,本实用新型可以非常轻易并精确地获得大范围的各种不具芯片的浪涌吸收器。
本实用新型之另一个特性为密封在气室12内的气体可以是纯净干燥空气或纯净干燥的空气和惰性或氢气的混合气体。
空气、纯净度最好是99.99%(0.5umDOP),它比经由过滤一般空气而获得的纯净度更高。有关干燥度,相对湿度最好是保持在0.01至5%,最好是低于3%。
本实用新型一般气体是利用Nippon Muki K.K.公司所制造的ATOMOSUltra ULPA滤波器进行过滤的,且其中可收集达99.99%如0.05um的微粒子。收集且使用以此方式所获得之的气体。
使用此纯净干燥的空气,气室电介质击穿电压将变得非常稳定。特别是,在本实用新型电介质击穿过程中,当提供给放电极18、20间的浪涌电压超过某特定切换电压时,将在如第1图所显示的气室12中的突出件18a、20a上产生电介质击穿的瞬态放电。此电介质击穿瞬间即扩散至整个气室12。因为纯净且干燥之气体在极短的时间内均匀地承受此电介质击穿,所以可在本实用新型之放电极间流过很大的绝缘电流。
如先前所述,本实用新型不具芯片的浪涌波吸收器包含有放置于气室内的对立放电极,且其间未放置任何绝缘体。因此,它可以免于产生传统上在放电时因发生铜分子黏着在绝缘体表面而明显缩短放电极间距离的现象。因此本实用新型可提供具有较长服务周期的稳定浪涌吸收器。
在本实用新型中,切换电压、绝缘电流(最大浪涌波电流)、和操作速度主要是由气室12的体积、放电极18、20间之气隙宽度、放电极18、20直径、和所密封气体的种类和压力决定的。改变任何这些因素,可获得所需要的具有各种浪涌波切换电压范围的浪涌波吸收器。可由适当地选择这些因素而选择大约50至15000伏特或更高的切换电压用于图1所示的实施例。
下表表示依据本实用新型放电极间距和切换电压典型实施例。
表1
本实用新型主要影响是,由于使用了纯净干燥气体,所以在电介质击穿时,气室12内可容许的电流密度将显著地增加。这意味着在电介质击穿时,纯净干燥气体的阻抗是很小的。
因为电介质击穿是瞬间发生的,且在放电极18、20间允许大的放电电流,所以就算提供高浪涌电压亦可瞬间转换和吸收浪涌波能量。因此,可以有效地消除传统的缺点,如残余电压的产生和因为此残余电压而持续存在的伴随电流。
当用玻璃圆柱体形成本实用新型壳体10时,举例而言,最好使用具有内径为0.66mm的国际标准DO-34型玻璃制二极管容器。将导线端子14、16从壳体10两侧以适合此内径的方式放入其中。在具有纯净干燥气体的空间中进行上述密封程序。因此,可将纯净干燥气体密封在气室12中。亦可将其他的可塑性或可收缩塑胶材料用于此壳体10。
再者,可以使用国际标准DO-35型(内径0.76mm)或DO-41型(内径1.53mm)容器做为壳体10。对具有大容量的浪涌吸收器而言,可使用外径为9.0mm的玻璃制二极管容器。再者,密封在气室12中纯净干燥气体可与氩、氖、氦、和氮气相混合。适当地选择混合比率,可调整浪涌电压、最大浪涌波电流、或反应速度。
依据本实用新型的配置,其中纯净干燥的气体如上所述是密封在气室12之中的,当从50至15000伏特之中选择任何浪涌电压时,可藉由混合上述几种气体来改变波特性而将各设定电压的操作准确度控制在大约10伏特范围内。可进行非常细微调整,因为密封气体是纯净干燥气体,所以在气室12内构成此气体分子的扰动是非常均匀的。因此,根据气室12的体积、密封气体的压力或型式而设定的浪涌电压也是非常稳定的。
因为气体既纯净又干燥,所以绝缘浪涌阻抗非常的低。电介质击穿时可允许的波电流因此可以很大,即使提供高浪涌电压亦可允许其瞬间吸收浪涌波能量。举例而言,使用上述日本特许公开第He平成8-306467号的浪涌吸收器,假如将浪涌电压设定为6000V,则当供应10500伏特之电压时,此浪涌吸收器可以释放1050安培的浪涌电流。然而,在吸收浪涌波之后,仍有4500伏特残余电压,这将导致在电路中产生450安培的伴随电流。反之,在相同的状况下,当使用本实用新型浪涌吸收器几乎没有残余电压或伴随电流产生。
图2显示本实用新型不具芯片的浪涌吸收器的另一个实施例。此实施例与第1图所显示之上述实施例不同的是其导线端子14、16和密封垫片122、124,及各密封垫片122、124和壳体110的束缚方式。
在此实施例中,密封垫片122、124是由塑胶材料组成且利用铸模形成的,并固定在各导线端子14、16上。在利用铸模形成的程序中,已知导线端子14、16是固定在球形铸模上,将塑胶材料注入此。在该方法中,密封垫片122、124每个都形成具有相对于导线端子的一个单元。
包含有导线端子14和密封垫片122的单元和,包含有导线端子16和密封垫片124的另一个单元是从壳体110的双侧开口端插入,用特定的夹具将其放置在正确的位置,可使对立的放电极18、20间维持精确的距离。在本实施例中,壳体110亦是由塑胶制成的。在如上所述的精确位置状况中,将熔化的塑胶从数字50、52所标示的两个开口注入壳体110中,因此,可以不透气的方式坚固地密封此开口。本实施例中可使用其他适当的黏着剂密封50、52。
再者,在此实施例中,密封垫片122、124和壳体110亦可由如陶瓷材料等其它适当的材料制成。
图3显示本实用新型不具芯片的另一个可替换的实施例。虽然此实施例所具有的结构与图2中所显示的相似,密封垫片222、224的形状可以是圆筒(圆盘)或长方形平盘,且为了吻合此形状,壳体110之形状可以是中空圆筒形或中空长方形方块。而制作这些元件的材料,和组合方法则对应于图2的实施例。
图4和图5显示依据本实用新型加宽导线端子尖端直径的程序。
图4中,将切割成特定长度的杜美(Dumet)丝用做导线端子14。藉由弓形夹30、32将导线端子14稳稳地固定住。弓形夹30、32包含有分开成两部份之钳子,其用于抓住导线端子14。在钳子之各固定区内放置用于固定导线端子14的半圆形沟槽。圆锥形的接收面30a、32a是位于弓形夹30、32上方表面。
压模34位于弓形夹30、32上侧。在压模34上形成圆锥形的凹槽34a,这个位置必须与导线端子14的轴相吻合。
当处于图4所示状况时,将压模34压向导线端子14尖端表面。因此将导线端子14尖端的直径如图5所示的加宽。以此方法,在导线端子14尖端形成放电极18。在上述成形处理期间,在图4所示的状况下,可调整位于弓形夹30、32上侧导线端子14突出件的长度,而依需要选择放电极18的外侧直径。
以此方法,如前所述,即使使用具有相同直径的导线端子14,如图6所示,也可将放电极18作成几种不同的直径18A、18B、18C。这些具有不同直径的放电极可轻易地插入具有相同直径的壳体10,因此,这样的吸收器可处理很大范围的浪涌电压。
图7A显示熔接导线端子14和密封垫片22的程序,而图7B显示将密封垫片22插入壳体10的程序。
在本实施例中,使用玻璃球做为密封垫片22。在玻璃球中央放置内通孔22a。导线端子14是从图7A所显示的状态下插入内通孔22a的。如先前所说明放电极18,图4和图5所显示,已经形成于导线端子14的尖端。
导线端子14和密封垫片22是藉由加热熔接在一起的。在将此二元件如图7B所显示作成一个单元后,将密封垫片22从壳体10的开口插入气室12。对此点进一步加热,壳体10和密封垫片22呆如图1所显示的熔接固定在一起。
本实用新型密封垫片22并不需要是球状的。在图8A和8B中,使用圆柱状(圆盘状)密封垫片22。如图8A中所示,导线端子14插入密封垫片22的内通孔22a,且密封垫片22和导线端子14藉因加热而熔接在一起。密封垫片22除了因加热而与导线端子14熔接外,如图8B虚线所显示,其形状变成图中由实线所表示的球状。因此密封垫片22可以第7图所显示的相同方法轻易地插入壳体10之中。
图8中的圆筒状密封垫片22的优点是与球状垫片相比,可用较低成本,更轻易地取得此种垫片。
图9显示与图1所示实施例相类似的另一个实施例,所以在此将省略其详细说明。图9中所说明的特性为突出件18a是仅放置于其中一放电极18的表面。在本实施例中,此单侧突出件18a包含有在气室12中的电介质击穿且可稳定地设定突波电压的标准。
图10显示另一个不同形状的电极。放电极18的整个表面是圆锥形,且其顶点形成向另一个放电极20靠近的突出件18a。此实施例的优点当此突出件18a尖端做成逐渐靠近另一个放电极20时,气室12是体积亦大到足以允许最大小浪涌电流。
图11所示实施例的结构位于上述图10单侧贺锥形放电极,现在则是放置于其两侧。在此实施例中,因为将此二放电极18、20圆锥顶点放得更互相靠近,这样可降低浪涌波切换电压。此实施例的另一个优点为因为气室12体积变大,所以可降低浪涌波吸收器静电容量,且增加最大浪涌波电流。
图12中显示的实施例包含二个具有锥状凹槽的放电极18、20。它所具有的优点为气室12变成几乎是由外侧完全光线屏蔽。特别是图12的实施例,这种电极形状可免除浪涌吸引器的浪涌电压因输入光变动而造成的“亮度效应”。通常当外部光很强时,会使浪涌波吸收器的浪涌电压升高。然而,在本实施例中,从外部进入气室12的光降低。因此,即使当外部光非常强,亦可将传统的光效应最小化。
图13显示图12实施例的另一个范例。据此范围,这二个放电极18、20的其中之一具有外凸表面,而另一个则具有相对应的内凹表面。将此种外表形状用于放电电极18、20,可任意选择气室12的体积,用于决定引起放电的气隙宽度和最大的浪涌电压。
图14显示另一种表面形状放电极18、20的实施例。在此例中,放电极18、20的表面是弧状形。如图所示,本实用新型中放电极的尖端并不需要是尖锐的突出部。使用此种逐渐倾斜的弧状尖端放电极,亦可成功地执行放电操作。再者,在某些例子中,多重放电操作的效应可将放电极的尖端尖锐突出部做成弧状,如图14所显示。就算在放电表面因为重覆使用而变成弧状亦可有效发挥本实用新型的浪涌吸收器作用。
在本实用新型中,导线端子尖端形状是可任意选择的。举例而言,图4压模34将其终端整体成具有网状沟槽,如图15所示。然后将相同的网状沟槽18b形成于导线端子14尖端放电极18的表面上。因为当浪涌电压来临时,可加大用于引起放电的表面区域,所以当以相当低的电压吸收浪涌波时,本实施例是有用的。
在上述各实施例中,导线端子14是由Dumet丝组成。然而,当与单一材料制成的导线相比时,Dumet丝通常较贵,但使用长导线会有增加吸收器成本的缺点。依图17中的本实用新型另一个实施例,导线端子14包含有尖端区14a、导线端尾区14b及放置于此二区域14a、14b间的焊接区14c。尖端区14a和端尾区14b是由较便宜的单一材料制成,仅与密封垫片焊接焊接区14c是由如Dumet丝等合成导线制成的。可经焊接而轻易地连接区14a和区14c及区14b和区14c,故可获得较便宜的导线端子。
图18显示本实用新型的不具芯片的吸收器整合在加强封装中。在对吸收器施加外力或假设是在具有振动的环境中使用吸收器时,将会损坏机壳。在此种状况下,其最好将整个吸收器100插入陶瓷封装60中,且由压模而与陶瓷滤波器62固定在一起,如图18所显示。封装60为盒状,在其某一区域上提供有凹槽60a、60b中。这样,封装60内的空间充满陶瓷材料,且可使整个单元变硬。由此,可获得具有足够机械强度的浪涌吸收器,它可应用位于马达或其他元件附近的电子电路中。很明显,此封装材料并不仅限于陶瓷。亦可使用如塑胶和金属等材料。
图19显示图1中所示本实用新型最佳实施例的浪涌波形图。浪涌电压为1120伏特。图20显示当将图19显示浪涌电压提供给图1所显示的5000伏特吸收器时,所获得的放电电压的情形。在5280伏特时启动比浪涌波吸收操作。在大约70ns之后,电压降低至大约300伏特。且未留下任何残余电压且未产生伴随电流。
本实用新型在机壳内对立放置的放电极,可以按上述方法于极简单的装置中。本实用新型提供具有工作寿命长、耐用性良好、且可广泛应用在电子装置中浪涌吸收器。
权利要求1.一种不具芯片的浪涌吸收器,其特征在于它包含有具有形成放电极的宽尖端的一对导线端子;安装且固定在该导线端子的含导线部分的密封垫片;和壳体,其中,所述的每个导线端子从该壳体两侧开口端插入,且当放电极固定在分开特定距离的对立位置时,将此二密封垫片气密式地固定在该壳体上。
2.一种不具芯片的浪涌吸收器,其特征在于,它包含有具有形成放电极的宽尖端的一对导线端子;安装且固定在前述导线端子的导线部分的密封垫片;和壳体,其中所述的每个导线端子从该壳体两侧开口端插入,且当放电极固定在分开特定距离的对立位置时,将此二密封垫片焊接在该壳体的内壁上。
3.如权利要求1或2所述的浪涌吸收器,其特征在于壳体内气室中充满纯净干燥气体、或包含有纯净干燥气体和惰性气体或氩气的混合气体。
4.如权利要求3所述的浪涌吸收器,其特征在于密封于气室内的纯净干燥气体具有0.01至5%的相对湿度,其纯净度为99.99%(0.5umDOP)。
5.如权利要求1或2所述的浪涌吸收器,其特征在于所述的密封垫片为球状或圆柱状,该密封热片具有可插入导线端子的导线部分的内通孔。
6.如权利要求1或2所述的浪涌吸收器,其特征在于导线端子是杜美丝形成的端子。
7.如权利要求1或2所述的浪涌吸收器,其特征在于导线端子是由合成导线构成,而与密封垫片焊接在一起的部分是由杜梅(Dumet)丝构成的。
专利摘要一种不具芯片的浪涌吸收器,包含有:一对导线端子,这对导线端子具有形成放电极的宽尖端;密封垫片,安装且固定在该导线端子之导线部分;和壳体,其中各导线端子从机壳两侧开口端插入,且当放电极固定有间距对立位置上时,所述的密封垫片气密式地固定在该机壳上。
文档编号H01T1/22GK2463926SQ0020636
公开日2001年12月5日 申请日期2000年3月16日 优先权日1999年3月16日
发明者杨炳霖 申请人:杨炳霖
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1