在加宽的光带宽上放大光输入信号的方法以及光放大器的制作方法

文档序号:6846879阅读:238来源:国知局
专利名称:在加宽的光带宽上放大光输入信号的方法以及光放大器的制作方法
技术领域
本发明涉及光放大器领域,更具体而言,本发明涉及包含一定长度的光导光纤的光放大器领域,其中光纤具有响应泵浦光而发出荧光的活性掺杂物。
背景技术
掺有铒的光纤放大器(EDFA)广泛应用于商业光学通信系统,既用作全光中继器,也用作预放大器。信息编码信号在通过很长的通信光纤(通常有数十公里)之后被光纤损耗大大削弱,掺有铒的光纤放大器(EDFA)的作用就是将这些信号放大到合理的功率水平。EDFA的能效现在已经达到了最佳,减少了对泵浦功率(很昂贵)的要求。EDFA的噪音性能已经进一步得到了优化,以致噪音数现在能够接近理论极限3dB。最佳EDFA的增益平稳度现在超过数十纳米带宽数十dB。EDFA现在设计成能够使他们的增益很少依赖输入信号的偏振。
EDFA的一个还非常活跃的领域是增益带宽。该增益带宽参数非常重要,因为它最终确定能够由给定EDFA放大的不同波长的信号数。带宽越宽,则能够被放大的个别信号数越大,因此能够由严格单光纤携带的带宽(单位时间的信号比特)越大。由于基质影响铒离子的光谱,因此一直并将继续研究数种基质材料,包括硅石,氟磷酸盐玻璃和硫族化物,来试图确定一种能够为Er3+的4I13/2→4I15/2转变提供更大的增益带宽的基质。在硅基玻璃内,带宽通常被分成C带和L带。在接近的术语中,C带是低于约1565纳米的光谱部分,而所谓的L带是高于约1565纳米的光谱部分。C带和L带的组合总带宽接近80纳米,尽管该数字迄今为止只是通过串联两个EDFA获得的。(例如参见Y.Sun,et al.,80nm ultra-wideband erbium-doped silica fibre amplifier,Electronics Letters,Vol.33,No.23,November 1997,pp.1965-1967)。情况与氟锆酸盐基质相同。(例如见S.Kawai,et al.,Wide bandwidth andlong distance WDM transmission using highly gain-flattened hybridamplifier,Proceedings of Optical Fiber Communication OFC’99,PaperFC3,February 1999,pp.56-58)。在亚碲酸盐光纤中,总带宽大约也是80纳米,但是可以用一个单光纤实现。(例如见Y.Ohishi,et al.,Opticalfiber amplifiers for WDM transmission,NTT R & D,Vol.46,No.7,pp.693-698,1997;Y.Ohishi,et al.,Gain characteristics of tellurite-basederbium-doped fiber amplifiers for 1.5μm broadband amplification,OpticsLetters,Vol.23,No.4,February 1998,pp.274-276.)图1表示一种具有一个掺铒光纤(EDFA)110的标准EDFA构造100的示例。光信号经一个第一光频隔离器120和一个波分复用(WDM)耦合器122输入掺铒光纤110内。光泵浦源124发出的一个光泵浦信号也经该WDM耦合器输入到该掺铒光纤110内。掺铒光纤110发出的放大输出信号通过一个第二光隔离器126输出。光隔离器126,120用于分别消除从输出口进入掺铒光纤110内的向后的反射,和从掺铒光纤110到输入口的向后的反射。如图1所示,可以朝前方泵浦出掺铒光纤110,或者朝后方泵浦出,或者朝两个方向泵浦出。由于光纤增益介质的广泛性,图1的构造产生的增益超过大的带宽。例如,在图1的构造中已经使用了掺铒的碲光纤和掺铒的硫族化物光纤。如Y.Ohishi,et al.,Gain characteristics of tellurite-based erbium-dopedfiber amplifiers for 1.5m broadband amplification,Optics Letters,Vol.23,No.4,February 1998,pp.274-276所述,使用碲光纤已经产生了大约80纳米的增益带宽。
当该光纤基质是硅基玻璃时,用一个单光纤不能够提供超过整个带宽(大约1525纳米到1610纳米)的增益。作为替换,需要在两个相邻光谱区域之间产生增益,接着将从该注意得到的输出组合起来。一种获得较宽增益带宽的一般方法是使用混合的放大器,其中两个或多个由不同基质组成的放大器连接起来。这些放大器设计成能够提供互相补充的增益谱,因此产生比只用任何一个时更大的总增益带宽。通过在一个硅基EDFA后连接一个氟基EDFA,该方法已经成功地得到了证实,该方法产生了17纳米的0.5-dB-带宽。(见P.F.Wysocki,etal.,Dual-stage erbium-doped,erbium/ytterbium-codoped fiber amplifierwith up to+26-dBm output power and a 17-nm flat spectrum,OpticsLetters,Vol.21,November 1996,pp.1744-1746.)。最近,对两个氟基EDFA采用了相同的概念。(见Y.Sun,et al.,80nm ultrawidebanderbium-doped silica fibre amplifier,Electronics Letters,Vol.33,No.23,November 1997,pp.1965-1967.)图2表示具有两个EDFA 210和220的一例构造200。一个EDFA用于放大C带宽(大约1525-1565纳米),另一个EDFA(上EDFA)用于放大L带宽(大约1565-1620纳米)。这两个EDFA 210,220都包括各自的泵浦源(未示出),它们使用各自的WDM耦合器与掺铒光纤耦合,如图1所示。间隔开一定量的不同波长的输入信号随一个WDM耦合器230分成两部分,放大的输出信号在一个输出耦合器232内结合。一个输入光隔离器240和一个输出光隔离器242如上述那样工作。由于WDM耦合器230,波长比1565纳米短的信号耦合到下面的分支内,传播到C带EDFA 210,波长比1565纳米大的信号耦合到上部分支内,传播到L带EDFA 22。(实际上,在C带和L带之间有避免两边内信号重叠的窄的保护带)。例如,硅基EDFA可以设计成具有一个在1568-1602纳米的范围内增益谱平稳度在0.5dB内的L带。该增益平稳度可以部分地通过选择适当的光纤长度或采用过滤器获得。这两种方法都是本领域公知。
C带EDFA 210和L带EDFA 220可以由相同的掺铒光纤,或者由不同的光纤构成,或者由不同的基质材料构成。C带和L带EDFA 210,220在设计上可以各自不同,尤其是泵浦波长、泵浦构造和光纤长度不同。
L带EDFA 220的上限大约为1610纳米。一些研究团体已经做了大量的努力来通过调整基质材料增加该上限。进一步增加该上限的困难在于对于碲玻璃而言在1620纳米左右和对于硅玻璃而言在1610纳米左右存在信号激发状态吸收(ESA)。该ESA构成不希望有的信号损失机理。根据这些结果,现在的硅基(上面引用的Y.Sun等)和氟基EDFA(上面引用的S.Kawai等)的带宽记录大约为80-85纳米(即,与上面引用的Y.Ohishi等的文章内公开的碲基EDFA带宽记录相同)。

发明内容
本发明一方面在于提供一种在一个加宽的光带宽上放大光输入信号的方法。该方法包括掺有稀土的非晶Y2SiO5。这些光输入信号包括至少一个具有第一波长的第一光信号和一个具有第二波长的第二光信号,其中第二波长大于第一波长。该方法包括对光波导施加泵浦光,使所述波导给光输入信号提供光增益,以便至少放大所述第一光信号和第二光信号。
在该方法的一个实施例中,非晶材料是掺有铒的Y2SiO5,第二波长大约比第一波长长160纳米。或者,非晶Y2SiO5材料也可以掺有铒和镱。
在该方法的第二实施例中,该非晶材料是Lu3Al5O12,第二波长大约比第一波长长160纳米。
在该方法的第三实施例中,该非晶材料是Y3Ga5O12,第二波长大约比第一波长长140纳米。
在该方法的第四实施例中,该非晶材料是Ca2Al2SiO7,第二波长大约比第一波长长130纳米。
在该方法的第五实施例中,该非晶材料是Y3Sc2Ga3O12,第二波长大约比第一波长长130纳米。或者,该非晶Y3Sc2Ga3O12材料也可以掺有铒和镱。还或者,该非晶Y3Sc2Ga3O12材料也可以掺有铒和铬。
在该方法的第六实施例中,该非晶材料是Bi4Ge3O12,第二波长大约比第一波长长125纳米。
在该方法的第七实施例中,该非晶材料是GdAlO3,第二波长大约比第一波长长125纳米。
在该方法的第八实施例中,该非晶材料是SrY4(SiO4)3O,第二波长大约比第一波长长125纳米。
在该方法的第九实施例中,该非晶材料是LiYF4,第二波长大约比第一波长长110纳米。
在该方法的第十实施例中,该非晶材料是CaF2-YF3,第二波长大约比第一波长长110纳米。
在该方法的第十一实施例中,该非晶材料是YVO4,第二波长大约比第一波长长90纳米。
在该方法的第十二实施例中,该非晶材料是LiErYP4O12,第二波长大约比第一波长长80纳米。
本发明的另一个方法是一种能够在一个扩展的光带宽上放大光输入信号的光放大器。该光放大器包括一个提供光泵浦光的光泵浦源,和一个包括一种掺有稀土的非晶材料的光波导。该光波导光耦合接收来自光泵浦源的光泵浦光。该光波导接收具有多个波长的光输入信号。这些光输入信号包括至少一个具有第一波长的第一光信号和至少一个具有比第一波长更大波长的第二波长的第二光信号。该泵浦光在泵浦波长处有一个泵浦波长和强度,使光波导提供光增益,以便至少放大所述第一光信号和第二光信号。
在该装置的一个实施例中,非晶材料是掺有铒的Y2SiO5,第二波长大约比第一波长长160纳米。或者,非晶Y2SiO5材料也可以掺有铒和镱。
在该装置的第二实施例中,该非晶材料是Lu3Al5O12,第二波长大约比第一波长长160纳米。
在该装置的第三实施例中,该非晶材料是Y3Ga5O12,第二波长大约比第一波长长140纳米。
在该装置的第四实施例中,该非晶材料是Ca2Al2SiO7,第二波长大约比第一波长长130纳米。
在该装置的第五实施例中,该非晶材料是Y3Sc2Ga3O12,第二波长大约比第一波长长130纳米。或者,该非晶Y3Sc2Ga3O12材料也可以掺有铒和镱。还或者,该非晶Y3Sc2Ga3O12材料也可以掺有铒和铬。
在该装置的第六实施例中,该非晶材料是Bi4Ge3O12,第二波长大约比第一波长长125纳米。
在该装置的第七实施例中,该非晶材料是GdAlO3,第二波长大约比第一波长长125纳米。
在该装置的第八实施例中,该非晶材料是SrY4(SiO4)3O,第二波长大约比第一波长长125纳米。
在该装置的第九实施例中,该非晶材料是LiYF4,第二波长大约比第一波长长110纳米。
在该装置的第十实施例中,该非晶材料是CaF2-YF3,第二波长大约比第一波长长110纳米。
在该装置的第十一实施例中,该非晶材料是YVO4,第二波长大约比第一波长长90纳米。
在该装置的第十二实施例中,该非晶材料是LiErYP4O12,第二波长大约比第一波长长80纳米。


下面将结合附图描述本发明的这些和其它方面。
图1表示一例包括一个掺铒光纤的标准EDFA构造;图2表示一例有两个EDFA的构造,其中一个EDFA放大C带,另一个EDFA放大L带;图3表示非晶YAG光纤和在掺有各种浓度的铒和在980纳米下用大约45毫泵浦出的非晶镧替代YAG光纤;图4表示该非晶YAG光纤和该非晶镧替代YAG光纤的向后荧光谱测量谱;图5表示铒摩尔浓度增加对掺铒非晶YAG和掺铒非晶镧替代YAG的向前和向后的带宽的影响;图6A表示掺铒1%的非晶YAG光纤辐射的荧光的暂时衰变(张驰);图6B表示掺铒5%的非晶YAG光纤辐射的荧光的暂时衰变(张驰);图7表示铒浓度对掺铒非晶YAG光纤荧光的快光(下部曲线内的方形标记)和慢光(上部曲线内的圆形标记)的影响;图8表示用于实现本发明的方法的第一实施例的一种放大器的第一构造;图9表示用于实现本发明的方法的第二实施例的一种放大器的第二构造;图10表示一个包括单一长度的掺铒非晶YAG光纤的前L带放大器;图11表示类似图8的构造但是却具有用做L带放大器的更长的掺铒非晶YAG光纤的一种放大器构造;图12表示一种L带放大器的构造,其中一个掺铒非晶YAG光纤位于两个WDM耦合器之间,这些耦合器接收各个泵浦信号,向前后两个方向泵浦出掺铒的非晶YAG光纤;图13表示一种包括两个由一个WDM耦合器串联连接的掺铒非晶YAG光纤的L带放大器的构造,其中带有引向前泵浦第二光纤的泵浦光;图14表示一种包括由一个WDM多路复用器串联连接的第一掺铒非晶YAG光纤和第二掺铒非晶YAG光纤的放大器构造,其中带有引向后泵浦第二光纤的泵浦光;图15表示从图6A和6B所示相同荧光衰变曲线测量的荧光功率的1/e衰变时间常数,其中1/e时间常数代表快和慢时间常数的平均值;图16-23是国际专利申请PCT/US97/00466中附图的再现,该专利申请的申请日是1997年1月9日,公开于1997年7月17日,国际公开号为WO97/25284,其附图和说明书在此引入用于说明一种制造一种光纤的方法,用于完成本发明,其中图16表示一种制造光纤的方法的光纤插入管拉制系统的一个实施例的示意图;图17表示根据WO97/25284的原理,沿相反的方向从过冷和漂浮的融化物中拉制光纤的一种方法的一个实施例;图18表示根据WO97/25284的原理,从保持在圆锥形喷嘴漂浮器中的过冷融化物内拉制光纤的一种方法的一个实施例;图19表示漂浮和融化在空气声学漂浮器内的0.3cm直径富铝红柱石(mullite)样品的典型冷却曲线图;图20表示典型的铝-硅相图;图21表示从保持在非等温容器内的过冷融化物中拉制光纤的一种方法的一个实施例;图22表示富铝红柱石接近融化温度的行为的一部分异常铝-硅相图;及图23表示含富铝红柱石成分的玻璃光纤的典型张力测试结果图;图24表示掺铒结晶铝石榴石(LuAG)的荧光谱。
具体实施例方式
本发明涉及一种在较宽的增益带宽上放大光信号的方法。该方法部分依赖使用一种具有较宽荧光(fluorescent)带宽的光纤。更具体而言,Containerless Research公司(CRI)最近已经研制了一种由固体均衡融化点下形成几乎无粘液体的材料制造光纤和少量样品的方法。(见J.K.R.Weber,et al.,Glass fibers of pure and erbium orneodymium-doped yttria-alumina compositions,Nature,Vol.393,1998,PP.769-771;及Paul C.Nordine,er al.,Fiber Drawing fromUndercooled Molten Materials,其国际公开号为WO97/25284,公开于1997年7月17日)。该国际专利申请在此引入作为参考。该国际专利申请的详细描述作为本申请说明书的一部分给出。
该方法包括完全融化一种固体,在处于或稍微高于结晶材料均衡融化点处形成一种成分均匀的液体。为了获得支持光纤拉制所要求的粘性,要把该液体过冷(即冷却到其均衡融化点以下)。使用过冷来增加粘性在该方法中是一个主要步骤。接着从该粘性的过冷液体中拉制玻璃光纤。
该光纤合成方法的一个实施例使用无容器处理技术,能够避免接触固体容器壁产生的复相成核,允许深冷到低于结晶先兆材料融化点的温度。无容器处理技术消除了接触外部物体(例如坩埚带来的液体污染)。它们还可以用于从各种氧化材料中合成直径2-3毫米的玻璃球体。(例如见J.K.R.Weber,et al.,Enhanced Formation of Calcia-GalliaGlass by Containerless Processing,J.Am.Geram.Soc.Vol.76,No.9,1993,pp.2139-2141;及J.K.R.Weber,et al.,Aeroacoustic lebitation-Amethod forcontainerless liquid-phase processing at high temperatures,Rev.Sci.Instrumen.,Vol.65,1994,pp.456-465)。新的光纤制造工艺已经应用于很多种既不含有二氧化硅(硅石)也不含有任何其它通过传统光纤制造技术制造的典型玻璃光纤成分的“网络”形成物。该方法允许生成直径通常为10-30微米长达1米的光纤。
一种可以通过该方法制造的原型材料是Y3Al5O12成分。本申请中讨论的这些材料是通过在材料内用镧(La),镱(Yb)和/或铒(Er)替代钇(Y)原子形成的组分的改型。这些材料由纯氧化物按一定重量的混合物合成,这些氧化物是Y2O3,Al2O3,La2O3,Yb2O3,Er2O3,每种组分的称重误差大约占总质量0.5克的0.5毫克。纯氧化物的纯度是99.999%,比325粉末小,可以从Cerac,of Milwaukee,Wisconsin获得。对于含Er2O30.5摩尔%的一种成分,使用Yb2O3∶Er2O3等于9∶1的“母合金”能够容易称量掺杂剂。这些氧化物成分的混合物融化在激光炉融化器内,首先融化并搅匀0.5克的样品,然后通过再次融化物体内的碎片来获得大约3毫米的球体。(例如见J.K.R.Weber,et al.,Laserhearth melt processing of ceramic materials,Rev.Sci.Instrum.,Vol.67,1996,pp.522-524)。这些球体接着由激光光束在一个空气声学悬浮器(例如如J.K.R.Weber,et al.,Aero-acoustic levitation-A method forcontainerless liquidphase processing at high temperatures,Rev.Sci.Instrumen.,Vol.65,1994,pp.456-465中所述的)或在一个锥形喷嘴悬浮器(如J.P.Coutures,et al.,Contactless Treatments of Liquids in a LargeTemperature Range by an Aerodynamic Levitation Debice under LaserHeating,Proc.6thEuropean Symposium on Materials under MicrogravityConditions,Bordeaux,France,December 2-5,1986,pp.427-30;J.K.R.Weber,et al.,Containerless LiquidPhase Processing of Ceramic Materials,Microgravity Sci.Technol.,Vol.7,1995,pp.279-282;S.Krishnan,et al.,Levitation apparatus for structural studies of high temperature liquids usingsynchrotron radiation,Rev.Sci.Instrum.,Vol.68,1997,pp.3512-3518所述)中受热得到悬浮和融化。
在无容器条件下,切断加热激光光束的电源使液体样品迅速冷却到室温可以制备玻璃球。可以通过减少加热激光器的功率直到液体温度为1600°-1700°K来制备玻璃光纤,其中液体粘性足以进行光纤牵引。接着将钨丝插入管迅速插入融化物中,并以恒定的的大约为100厘米/秒的速度抽出来从该融化物中牵引光纤。上述部分过程描述在Paul C.Nordine,et al.,Fiber Drawing from Undercooled Molten Materials中,它是公开号为WO97/25284的国际专利申请,公开于1997NA年7月17日,在此公开了其中的一部分。
纯Y3Al5O12的结晶形态公知的是钇铝石榴石或简称为YAG。这里所述的“YAG”指结晶材料。掺有钕离子(Nd3+)是将要论证的最早和最成功的激光器材料。钕-YAG(Nd:YAG)激光器可以购买已经有25年之多,他们现在仍然是一个最有效和功率最高和最广泛使用的激光器。相反,这里论述的Y3Al5O12成分的非晶光纤将被称作非晶YAG,由镧替代的YaAl5O12光纤将被称为由非晶镧替代(或由La替代)的YAG光纤。
YAG和这里论述的材料有两个主要差别。首先,这里描述的材料不同,因为它们与YAG相比是非晶的玻璃材料,它是一种结晶材料。其次,这里论述的材料含有镧(La)原子,镱(Yb)原子,和/或铒(Er)原子取代Y3Al5O12成分中的一些钇(Y)原子。这里讨论的材料将被称为掺铒非晶YAG,掺镱非晶YAG,非晶镧替代YAG或非晶YAG。该术语源于不同的目的,用于铒原子,镱原子和镧原子替代钇原子。铒原子和镱原子替代在基质玻璃材料内的光学活性掺杂剂。
元素钇、镧、铒和镱是“稀土”族元素,即这些元素的原子序数为21、39、57到71个。这些稀土元素有+3的原子价,尽管一些稀土元素尤其是镱也会有+2的原子价。该说明书中合成的所有材料的一般化学式都可以书写为RE3Al5O12,其中“RE”的下标“3”代表Y、La、Er、Yb的总量。这些玻璃球和光纤含有镧和或铒,并在空气、纯氩气或纯氧气中制造。尽管在此已经针对前面的稀土元素进行了描述,但是可以理解也可以使用其他稀土材料。
用镧原子、铒原子和镱原子替代钇原子合成的非晶YAG成分的材料的化学成分由表I给出


掺杂的和替代的非晶YAG材料的一个最吸引人的特点是他们可以掺有很高浓度的Er3+、Yb3+或其他稀土离子。能够在玻璃中得到的最大浓度取决于Er2O3在玻璃中的溶解率。如果稀土氧化物在玻璃融化物中的浓度太高,那么结晶氧化物粒子沉淀在基质内。这些结晶粒子通常是对具有该材料的激光器和放大器性能有害的。限制一些材料尤其是硅基玻璃内掺杂物浓度的第二个因素是基质材料内溶解的掺杂物离子簇的形成,该形成发生在在浓度小于危害氧化物粒子规定浓度的浓度下。
不象铒离子那样均匀地分布在基质中,成簇的铒离子受到一种公知的交叉驰豫的有害过程。(例如见J.L.Wagenet,et al.,modeling ofion pairs in erbium-doped fiber amplifiers,optics Letters,Vol.19,March1994,pp.347-349)。通过该过程,当两个离子受到光激发成为亚稳定(激光器)状态时,其中的一个离子迅速失去了其能量,把能量给了另外一个离子,导致了不希望出现的粒子数反转损失和光增益的巨大减少。在硅基玻璃中,在该作用变得显著之前,可以使用的最大铒浓度大约为百万分之100(ppm)摩尔Er2O3。为了避免这种影响,绝大多数硅基光纤激光器和放大器使用少于500ppm摩尔的Er2O3。这个数字在氟基光纤中是比较高的,其中几千ppm的浓度是可以接受的。(例如见J.S.Sanghera,et al.,Rare earth doped heavy-metal fluoride glass fiber,inRare Earth Doped Fiber lasers and Amplifiers,M.J.F.Digonnet,Ed.,MarcelDekker,Inc.,N.Y,1993)。在碲光纤中,该数字是几千ppm,即一摩尔百分比的十分之几。(见Y.Ohishi,et al.,Gain characteristics oftellurite-based erbium-doped fiber amplifiers for 1.5-μm broadbandamplification,Optics Letters,Vol.23,No.4,Febreary 1198,pp.274-276)。这些浓度限制的主要后果是单位长度上如此多的离子都能够被组合在一个光纤内,长光纤用于制造有用的装置,这样成本高、体积大。例如,一种典型的硅基EDFA要求数十米长度的掺杂光纤。
人们已经对掺有Er3+的新玻璃材料的光谱性能的早期实验研究。这些研究的一个目的是给这些材料添加新的几个光学性能,或者是球体或者是光纤形态的。尤其是,该研究是将材料的吸收和辐射交叉部分引向是否存在簇(交叉驰豫)和在这样的浓度,荧光光谱的带宽(它反映该材料的增益带宽)。
为了光学特征的目的,将长度短的掺铒非晶YAG光纤插入毛细管内,接着与UV熟化环氧树脂结合,然后抛光。通常在相同的毛细管内安装四到五个具有相同基质和铒浓度的光纤。制备几个毛细管,其中每个都具有几种浓度(百分之0.5,1,2,5,8摩尔的Er2O3)。这些光纤是暴露的。这些光纤的外径大约为30-15微米或更小,在抛光后光纤的长度为大约5毫米或大约为10毫米。已经对两种新的氧化物玻璃基质成分进行了实验,也就是非晶YAG(Y3Al5O12,用铒替代Y)和非晶镧替代YAG光纤,其中50%的钇用镧替代(La1.5Y1.5Al5O12,用铒替代La和Y)。对于所有测量,这些光纤用980纳米50毫瓦的光功率从市场上可以购买的辫状光纤激光器二极管泵浦出。
通过测量输出和输入泵浦功率的比值,然后假定泵浦入光纤内的耦合为100%,并在每个光纤端部修正菲涅尔(Fresnel)反射(大约8.3%),可以测量光纤吸收。菲涅尔反射是在假定材料的折射系数与晶体YAG的折射系数相同的情况下计算的,该系数在这些波长下大约为1.8。从这些数据可以推倒出吸收系数αa,以及吸收交叉部分σa=αa/N0,其中N0是光纤中的铒浓度。在具有两种不同浓度的几种样品中观察到的平均值是σa=2.4*10-21cm2。它能够与标准值为2.2*10-21cm2的掺铒硅光纤相比。
图3表示在非晶YAG光纤内和非晶镧替代YAG光纤内测量的荧光谱,其中光纤长度为0.5-1.0厘米,直径为30微米,掺有各种浓度的铒,在980纳米以大约45毫瓦泵浦出。这些谱是从前方测出的,即该谱代表按照与光纤的泵浦出方向相同的方向辐射出的荧光。所有光谱都是宽的,并且不受掺铒晶体的转变线的影响。该观察证实了X线衍射分析的结果,它表明从YAG成分的过冷液体中牵引的光纤是非晶的。(例如见J.K.R.Weber,et al.,Glass fibers of pure and erbium orneodymium-doped yttria-alumina compositions,Nature,Vol.393,1998,pp.769-771)。在铒浓度低的光纤中,该谱表现出的特性是在其他氧化物玻璃内通常具有低功率的Er2+荧光谱,即峰值在1530纳米左右,平的侧翼大约为1550纳米。在较高浓度下,这些特性变得不明显,光谱朝长波长移动,因为泵浦功率不足以激发所有铒离子,基态吸收筛选出1530-1550纳米带宽(C带)。在这些光纤中,L带(波长大于1565纳米)更突出。该材料的L带极宽。在1厘米和掺杂8%的光纤内,L带拓宽到1653纳米。人们已经观察到3dB荧光带宽在1厘米和掺杂5%YAG光纤内达到116纳米。这远远高于以前报道的任何基质内的铒转变带宽。作为一个比较点,在1650纳米的标准掺铒硅基光纤内,荧光功率通常从1530纳米下降50dB。相反,在本发明的非晶YAG光纤内,荧光功率只减少大约12dB(见图3)。这可以解释成一种荧光光谱,该谱从20-40纳米进一步拓宽到比掺铒硅基光纤更长的波长。
后荧光光谱表示在图4中,其中表示了C带的特点,如期望的那样,但是这里的光谱也非常宽。在0.5厘米掺杂8%的YAG光纤中,对于后光谱观察到的最高3-dB的带宽是121纳米。
前和后荧光带宽通常都随浓度的增加而增加,如图5所示。钻石代表掺铒非晶YAG,而圆圈表示掺铒非晶镧替代YAG。前和后荧光分别由实心和空心符号表示。在实验误差内,这两种材料都具有大体相同的性能。
通过在输入泵浦束路径内放置一个80MHz的声光调制器(acousto-optic modulator),将泵浦强度调制成大约20毫秒长和衰减时间短(大约5毫秒)的方脉冲可以测量荧光的临时驰豫。接着用快速光电探测器记录在每个泵浦脉冲之后光纤辐射的荧光的临时衰减。对于低的浓度,驰豫曲线表现出单指数衰减,如图6A中对于1%掺铒非晶YAG光纤所示的。对于较高的铒浓度,驰豫曲线不再是单指数的,而是随时间增加的具有时间常数的指数衰减。对于5%掺铒非晶YAG光纤,这表示在图6B中。该曲线随时间常数τ1开始衰减。随时间变化,该常数增加(衰减斜率),直到在衰减曲线的下端时间常数达到渐进值τ2(比τ1大)。
图6A和6B中另一个显著的重要结果是这些光纤基本不受铒簇影响,即使在最高浓度下。如果出现这些簇,那么驰豫曲线表现出首先由于簇离子而非常快的驰豫成分,然后由于非成簇离子的慢成分。(例如见P.F.Wysocki,et al.,Evidence and modeling of paired ions and otherloss mechanisms in erbiim-doped silica fibers,in SPIE Proceedings onFiber Laser Sources and Amplifiers IV,Vli.1789,1993,pp.66-79)。在其他材料中,快速成分通常比辐射寿命小2-3个数量极(即期望它为100微秒以下)。每个有观察到这种成分的事实表明在这两个新基质中存在可忽略的铒离子簇,其浓度达到在非晶YAG中80%,这大约比硅基玻璃中无簇浓度的高600倍。
从对所有浓度测量的衰减曲线中推导出的寿命τ1和τ2绘制在图7中。方形代表快速成分(τ1)的寿命,圆圈代表慢速成分(τ2)的寿命,实心和空心符号分别代表非晶YAG基质光纤和非晶镧替代YAG基质光纤。两个寿命都随铒浓度的增加而单调减少,如通常在其他基质中观察到的那样。慢成分τ2是辐射寿命。在5%和8%的YAG光纤内测量的最低辐射寿命大约是4毫秒,而最短寿命是0.6-1.0毫秒(也是在这些材料内)。相比之下,在现在作为商业EDFA的碲玻璃内的铒的寿命为几毫秒,而在硅基玻璃内通常为8-10毫秒。
为了更好地估算两种材料的相对性能,图15表示了从与图6A和6B相同的荧光衰减曲线中测量的荧光功率的1/e衰减时间常数。1/e时间常数代表快时间常数和慢时间常数的平均值,在某种意义上,它提供铒离子激发状态的测量平均寿命(该平均寿命尤其部分控制放大器的动力学和饱和性能)。图15表示1/e寿命随铒浓度增加单调减少,镧替代材料内的铒有较短的寿命,尽管这两种材料的差异在实验误差内。结论是在两种材料内的铒表现出大致相同的带宽和相同的寿命,比非晶YAG稍微有利。
玻璃光纤掺有一种以上的稀土离子,利用了两种或两种以上掺杂机物样品材料相互作用的优点。例如,掺铒光纤掺有Yb3+,能够泵浦出接近1.06微米的铒离子。(例如,见J.E.Townsend,et al.,Yb3+sensitised Er3+doped silica optical fibre with ultrahigh transfer efficiencyand gain,Electronics Letters,Vol.10,No.21,1991,pp.1958-1959)。原因是在某些方面对泵浦出大约1.06微米的EDFA(其他掺铒光纤装置),一种可以在更大功率下可以得到的低成本的激光波长,它来自商业Nd:YAG激光或覆层的掺钕光纤激光器,比现在用做泵浦源的980纳米和1480纳米的激光器二极管更有利。Er3+不能表现出1.06微米的吸收带,但是Yb3+可以。在掺有Er3+和Yb3+和泵浦出的接近1.06微米的光纤中,泵浦能量由Yb3+离子吸收。由于Yb3+(2F5/2)的激发状态具有的能量与Er3+的4I11/2能级(level)相近,该激发的Yb3+离子的能量迅速转移到邻近的Er3+离子的4I11/2能级。来自该4I11/2能级的下一个驰豫将铒离子带到潜在的激发状态(4I13/2能级)。实际上,镱离子通过吸收泵浦和将所需能量传递给铒离子而作为中介物。该原理在光纤中的使用目的与上述表I中最后的项目中表示的掺镱/铒的非晶YAG光纤的相同。
在掺有铒之外的其它稀土离子的玻璃光纤也已经被证实具有其他光纤和波导装置的潜在商业重要性。尤其是,连续波(CW)、Q开关和模式锁定的光纤激光器,无论工作在从紫外光直到远红外光都已经被证实了。(例如见Rare Earth Doped Fiber Lasers and Amplifiers,M.J.F.Digonnet,Ed.,Marcel Dekker,Inc.,New York,1993)。上述这些实验结果,已经用Er3+的4I13/2→4I15/2转换收集在一起,但是他们的普遍性不应该被忽略。
这里描述的掺铒非晶YAG光纤的特点是能够提供一种在比现有装置和方法提供的带宽更宽的带宽上放大输入信号的方法。通过用掺铒非晶YAG光纤替代硅基掺铒光纤,与现有公知放大器大约为1620纳米的上限相比,同样的放大器构造在大约扩展到1650纳米的带宽上提供放大作用。
采用本发明的方法的第一构造800表示在图8中。图8与图1相似,但是在图8中,传统掺铒光纤110被掺铒非晶YAG光纤810取代。为与上述图1相关联,还包括一个第一光隔离器820,一个波分多路复用(WDM)耦合器822,一个第二光隔离器824,和一个光泵浦源830。
图8中的本发明的方法的操作与图1中的EDFA 100的操作相似。但是,与图1中的构造的操作方法相对照,施加于图8中实施例的光信号包括大约1610纳米-1653纳米的L带上部范围内的波长。由于掺铒非晶YAG光纤810的带宽加宽,波长为1610-1653的光信号在掺铒非晶YAG光纤10内得到放大。因此,与以前构造的操作方法相比,图8的构造的操作方法提供了一个加宽的增益带宽。换言之,除了泵浦朝后输入或朝前后两个方向输入之外,可以采用与图8相同的方案。
图3表示非晶YAG材料和非晶镧替代YAG材料的C带都极宽,该C带加宽到大约1481纳米(3-dB点)。例如,在0.5厘米和掺铒8%的非晶YAG光纤中,4I13/2→4I15/2转换谱中主要也是含有更短波长部分的后荧光谱大约从1482纳米扩展到1603纳米(3dB点)。本发明的另一方面是一种操作采用图8的构造的C带放大器来放大波长大约为1480纳米或高于1480纳米到1565纳米或低于1565纳米多个信号的方法。该范围中较低的波长即约1480纳米大体低于其它公知基质内相同转换Er3+报告的值。
图9表示使用本发明的方法的又一个构造900。图9的构造900与图2的构造200相同,并包括一个较低C带EDFA 910和一个较高的L带EDFA 920。这些输入光信号通过一个WDM耦合器930与EDFA910和920耦合。EDFA 910和920的输出在耦合器WDM 932内结合,这些组合输出提供给一个输出口。每个EDFA 910和920够有一个或多个各自的泵浦源(未示出)。在图9中,较高的(L带)EDFA 920包括一个上述的掺铒非晶YAG光纤940。较低的(C带)EDFA 910也包括一个掺铒的非晶YAG光纤950,但是,较低EDFA 910和较高EDFA 920还可以是一种使用传统硅基或其他玻璃基光纤的传统EDFA。第一光隔离器60防止从EDFA 910、920到输入口内的后反射。第二光隔离器962防止从输出口到EDFA 910和920内的后反射。
通过施加波长为约1481纳米或低于1481纳米到大约1653纳米或高于1653纳米的输入光信号,采用图9中的构造900操作。该WDM耦合器930分开输入光信号,使波长小于约1565纳米的输入光信号与较低EDFA 910耦合,使波长大于约1565的输入光信号与较高EDFA920耦合。较低EDFA 910放大范围大约为1481纳米-1565纳米的信号,通过耦合器932给输出口提供放大后的输出信号。较高的EDFA 920放大大约1565纳米-1653纳米范围内的信号,通过耦合器932给输出口提供放大信号。本领域的普通技术人员可以理解,光输入信号内的静带可以在1565纳米附近提供,排除通过EDFA 910和920在该波长下放大信号。如前所述,在较高EDFA 920或较低EDFA 920或这两个EDFA内使用掺铒非晶YAG在比以前更大的带宽上提供放大作用。
图9中的较高(L带)EDFA 920也可以如图19-14中所述实施例之一那样构成。
图10表示如上所述的那样具有一个单一长度1010的掺铒非晶YAG光纤的前L带放大器1000。该光纤1010由一个光泵浦源1020通过一个第一WDM耦合器1022的一个输入泵浦。输入口1030的输入光信号通过一个第一光隔离器1032和一个第一WDM耦合器1022的第二输入提供给输出口1034。光纤1010的输出通过一个第二光隔离器1036提供给输出口1034。图10中的放大器1000的输入口1030与图9中的WDM耦合器930的上输出口耦合,输出口1034与图9中的耦合器932的上述入口耦合。在图10中,光泵浦源1020包括一个在第一光泵浦波长λp1下提供泵浦光的第一光泵浦1050和第二光泵浦波长λp2提供光泵浦波长的第二光泵浦1052。两个泵浦1050,1052的输出在第二WDM耦合器1054内耦合。第二WDM耦合器1054的输出作为复合泵浦信号提供给第一WDM耦合器1022的第一输入。这两个泵浦信号可以按其他公知的方法多路传输。在一种最佳操作方法中,第一泵浦波长λp1为980纳米或1480纳米(或为优选不受到泵浦激发状态吸收的另一Er3+泵浦波长),该第二泵浦波长λp2大约为1555纳米。这些泵浦信号可以用半导体激光器或用其它固态激光器产生。这两个波长λp1、λp2从第一WDM耦合器1022进入光纤1010内。第一泵浦波长λp1与C带EDFA内的泵浦波长的作用相同。尤其是,第一泵浦波长λp1在光纤1010内产生了粒子数反转,因此提供了增益。但是,该增益谱在C带内最大,L带内较弱。结果,在C带内同时辐射被大大地放大了,产生了一个很强C带放大的同时辐射(amplified spontaneousemission,即ASE),其在光纤1010的整个增益带宽上使增益衰减,包括L带内的增益。因此,L带内的增益减少,通常L带内的增益太低而不具有实际使用价值。为了提高L带的增益,C带ASE被减少。在采用图10构造的操作方法中,C带ASE被波长λp2的第二泵浦减少。第二泵浦的波长选择为大约1555纳米,与C带内的高增益区域一致。在进入光纤1010内的波长λP2的泵浦得到很强地放大,导致C带和L带内增益衰减。当时波长为的λP2泵浦在C带ASE内也显著地减少了功率(例如见J.F.Massicott,et al.,Low noise operation of Er3+ dopedsilica fibre amplifier around 1.6μm,Electronics Letters,Vol.28,No.20,Sept.1992,pp.1924-1925)。在C带ASE内减小的功率导致两个带内增益增加。在这两个相对立的效果中,后者占优势的,因此L带增益增加,甚至优于C带增益。这种类型L带放大器有良好的(低)噪音特征,但是其增益效率低(它需要一个高泵浦功率来产生一定的增益)。
图11表示一个与图8的构造类似的构造1100。该构造1100包括一个前泵浦的掺铒非晶YAG光纤1110。该光纤1110可以980纳米或1480纳米(另一个无ESA泵浦的铒波长)通过一个WDM耦合器1130从光泵浦源1120泵浦出。第一和第二光隔离器1140和142如上述那样操作。
图11中表示的构造是前泵浦构造。后泵浦和双向泵浦也是可能的。铒在C带内表现出很强的基态吸收(GSA),但是在L带内很少或没有GSA。GSA随着L带内波长的增加而减少。然后,随着光纤1110的增加,在某些点处,C带波长的GSA变得如此大,以致于对于给定泵浦功率没有增益,在C带内反而是损失。另一方面,在L带内只有很少的GSA,可以获得增益。因此,一种在L带内具有相当大的增益的常规放大器设计方法是选择足够长的光纤,例如,是相同类型光纤的C带放大器要求的两倍。该方法破坏了C带的增益,极大地减少了C带内ASE。因此,图11的构造变成了一个可以与图9中构造的上边结合的L带放大器。
图12表示L带放大器的又一个构造,该构造与图11所示放大器的构造相似。该构造1200包括一个位于WDM耦合器1220,1222之间的掺铒非晶YAG光纤1210。第一WDM耦合器1222通过一个第一光隔离器1232与输出口1240耦合。第二WDM耦合器1222通过一个第二光隔离器1242与输出口1240耦合。一个第一光泵浦源1250通过第一WDM耦合器1220与该光纤1210耦合,在光纤1210内沿从第一WDM耦合器1220朝第二WDM耦合器1222的方向传播泵浦光。一个第二光泵浦缘1252通过该第二WDM耦合器1222与该光纤1210耦合,在光纤1210内沿从第二WDM耦合器1222朝第一WDM耦合器1220的方向传播泵浦光。因此,来自这两个源的泵浦光在该光纤1210内双方向传播。使用传统掺铒光纤的一种同样的双方向构造例如公开在H.Ono,et al.,Gain-flattened Er3+-doped fiber amplifier for a WDM signal inthe 1.57-1.60-m wavelength region,IEEE Photonics Technology Letters,Vol.9,No.5,May 1997,pp.596-598中,其表示了一种使用常规的掺铒硅光纤的的类似实施例。图12的的构造与图11的构造操作方式相同。朝后向提供泵浦光第二泵浦源1252用于调节增益谱。尤其是,该增益谱可以通过适当地调节后泵浦功率而在很大L带带宽上被平稳。
图13表示一种L带放大器的另一种构造1300。该构造1300包括两个掺铒的非晶YAG光纤1310,1312,它们通过一个WDM耦合器1320串联连接。尤其是,一个输入口1330通过一个第一光隔离器1332与第一光纤1310的一端耦合。第一光纤1310的另一端与WDM耦合器1320的一个输入连接。一个泵浦源1340与WDM耦合器1320的第二输入连接。WDM耦合器1320的输出与第二光纤1312的一端连接。第二光纤1312的另一端通过一个第二光隔离器1352与输出口1350连接。泵浦源1340提供的泵浦光的波长优选为大约980纳米或约1480纳米。泵浦源1340泵浦第二光纤1312,在第二光纤1312内产生增益。第二光纤1312在后向产生放大的同时辐射(ASE),即朝WDM耦合器1320辐射。来自第二光纤1312的ASE通过WDM耦合器1320耦合在第一光纤1310内。该ASE中心大约为1550纳米(C带),该ASE被第一光纤1310吸收。该第一光纤1310因此被光泵浦出,并在L带区域内产生增益。例如见J.Lee,et al.,Enhancement of the powerconversion efficiency for an L-band EDFA with a secondary pumpingeffect in the unpumped EDF section,IEEE Photonics Technology Letters,Vol.11,No.1,Jan.1999,pp.42-44,其中表示了一个使用传统掺铒硅光纤的类似实施例。
图14表示一个与图13的构造类似的构造1400。该构造1400包括通过一个WDM多路复用器1420串联接的一个第一掺铒非晶YAG光纤1410和一个第二掺铒非晶YAG光纤14112。尤其是,一个输入口1430通过一个第一光隔离器1432与第一光纤1410的一端耦合。第一光纤1410的另一端连接到WDM耦合器1420的输入上。泵浦源1440连接到WDM耦合器1420的第二输入上;但是,不象图13那样,泵浦源1440连接WDM耦合器1420的第二输入上,与WDM耦合器1420的第一输出相对。WDM耦合器1420的输出连接第二光纤1412的一端。第二光纤1412的另一端通过一个第二光隔离器1452连接到一个输出口1450。在构造1400中,来自泵浦源1440的泵浦光直接到第一光纤1410上,第一光纤1410在1555纳米周围的ASE为第二光纤1412提供了泵浦光。图14中向后泵浦出的双重EDFA比图13中向前泵浦出的双重EDMA效果稍微差一些。例如见J.Lee,et al.,Enhancement of thepower conversion efficiency for an L-band EDFA with a secondarypumping effect in the unpumped EDF section,IEEE Photonics TechnologyLetters,Vol.11,No.1,Jan.1999,pp.42-44,其中表示了一个使用传统掺铒硅光纤的类似实施例。
显然,在本领域中,这些不同的构造提供了一定的优点,如效率和噪音特性,另外还有尺寸、复杂性、成本、生产的重复性等。此外,在一定类型的应用中可以优选一种特定的构造,在另一种应用中可以优选另一种构造。
与公知的使用其它光纤或波导如包括硅、氟锆酸盐、亚碲酸盐等构成放大器的方法相比,本发明的方法有很多优点。例如,一个优点是C带的带宽比其它公知材料中的铒的带宽宽。已经观察到在一些材料成分内荧光小到大约1481纳米(3-dB点),表示C带短波长尾部上带宽加大。因此,在这些非晶YAG组分的材料内,增益带宽大体在C带的短波长尾部都加宽了。
该方法的第二个特点是L带的带宽比其他公知宽带材料内铒的带宽更宽。已经观察到在一些材料组成内,荧光达到约1653纳米(3dB点),这表明L带长波长尾部上带宽增加。L带带宽约比任何其他公知的光纤材料内的铒的带宽宽60%。
该方法的第三个特点是通过结合上述L带放大器和上述C带放大器,使用图9所示普通电路,或使用图8所示的电路,得到的放大器在一个带宽上给的C带加L带增益比任何公知宽带材料内铒的增益更宽。例如,使用图9的电路,能够观察到大约为1481纳米到1653纳米的荧光,或者一个大约172纳米的3dB带宽,它大约是用其他公知宽带材料内铒观察到的最宽荧光带宽的两倍。
该方法的第四个特点是可以使用非常短L带和C带光纤放大器实现,一个特点是有几个好处,例如更紧凑并减少了成本。在技术上的另一个重要的好处是该方法能够减少有害的非线性效应,它们是公知L带放大器关注的一个问题。在任何光纤内,当在传输信号的传输长度上传输信号强度的结果太大时,开始产生一些非线性效应,例如受激发的Brillouin散射(stimulated Brillouin scattered,SBS)和交相调制(cross-phase modulation,XPM)。两种效应都对EDFA的操作有害。SBS将向前传输的信号光转换成向后传输的信号光,其中带有一个相关的频移。向后传输光和频移的产生都是有害的。XPM效应能够引起编码在一个信号上的信息部分地传给另一个信号,导致不必要的串话。该SBS效应和XPM效应在光纤连接的通信部分内和EDFA本身内发生。该通信光纤非常长(几十公里),但是通信光纤的方式字段比较大(即对于给定泵浦功率强度低),这就减少了通信光纤内的XPM和SBS效应。另一方面,一个EDFA涉及一个长度更短的光纤,但是其方式字段通常相当小(即掺铒光纤携带的信号强度比通信光纤的更高)。因此,XPM效应在一个EDFA内可能更强,尤其是在传统的L带EDFA内,它们涉及一个比传统C带EDFA更长的掺铒光纤。用在本发明的方法中的掺铒非晶YAG材料通过大体在铒浓度比值内减少光纤长度而避免了这些问题,它通常是100或更多个因数中的一个。因此,这些光纤内XPM效应和SBS效应的效率也由于光纤长度减少而得到降低。
对于这里所述的每一个构造,各种掺铒光纤的长度,各种泵浦内的功率,以及其他参数也可以使用文献和公知技术中描述的理论模型和实验技术,通过理论和实验进行评估,来优化一定的EDFA参数,例如增益,增益曲线,噪音特性,泵浦效率等。
尽管上面结合掺铒非晶YAG光纤描述了本发明的方法,但是应该可以理解,该方法还能够利用平面波导技术实现。特别地,在这种波导使用掺铒非晶YAG材料构成时,该方法也可以用平面通道波导实现。
本发明的方法部分源于该发现,即在非晶YAG内Er3+的4I13/2→4I15/2转变提供了极宽的荧光带宽,即在掺有8%的铒时约为121纳米,部分源于该发现,即更高浓度的Er3+(也许为其他稀土元素氧化物离子)导致更宽的荧光带宽和更宽的光增益谱。
申请人已经描述了一种L带掺铒光纤放大器的放大方法,其中使用了一族新材料来产生对于Er3+的4I13/2→4I15/2转变来说比其他任何公知材料更宽的L带谱。申请人已经描述了一种C带掺铒光纤放大器的放大方法,其中使用了一族新材料来产生对于Er3+的4I13/2→4I15/2转变来说比其他任何公知材料更宽的C带谱。
国际公开出版物WO97/25284的描述Paul C.Nordine,et al.,in Fiber Drawing from Undercooled MoltenMaterials,WIPO International Publication No.WO97/25284公开于1997年7月17日,其中披露了一例制造光纤的方法,可以很好的用于完成本发明。其说明书在此全部引入作为参考。对于它的详细描述下面将结合图16-23给出,它们对应于WO97/25284的图1-8。
根据国际专利申请WO97/25284,Paul C.Nordine等令人惊奇地发现了在控制状态下将一定的液体融化物过冷能够形成具有足够粘性的融化物,能够无大量液体再结晶地拉制光纤,包括熔点粘性太低而允许如此操作的融化物。这里描述的是从几种氧化材料的过冷融化物中拉制的几例光纤,为此光纤能够在熔点下或高于熔点的情况下从融化物中拉制出来。利用WO97/25284的方法,能够在过冷温度状态下和低于均衡融化温度超过20%的状态下从这种融化物中迅速拉制光纤。还令人惊奇的是,玻璃光纤也可以从化学成分的过冷融化物中拉制出来,其含有的添加剂比现有技术光纤的添加剂浓度更高。此外,可以注意到根据WO97/25284的方法拉制的光纤有极高的抗张强度,假定是由于WO97/25284光纤的表面比较完美无暇。
WO97/25284的方法利用一个“插入管”开始拉制。生长光纤的能力受到插入管物理性能、使用插入管的几个条件如材料、尺寸、表面抛光和内插入的插入管尖的插入深度以及开始拉制之前液体内插入管的停留时间的重要影响。这些性能和过程的控制影响表面润湿和黏附性,允许在光纤拉制过程中进行有意义的控制。
简单地说,WO97/25284中的方法包括步骤(1)在无容器条件下融化选出材料的样品,产生悬浮液滴,或者在有容器的状态下如在一个坩埚内,(2)将液体冷却到融化温度以下,即使该液体过冷,及(3)使过冷液体与插入管探针接触,在要求的状态下拉出探针,从液体中拉制光纤。
在所有情况下,可以通过控制(1)液体粘度(通过改变融化温度和/或气体环境),及(2)光纤拉制率来达到光纤直径的控制。下述试验中使用的气体包括例如氧气、空气和氩气,尽管也可以使用其它气体如氮气、氦气、一氧化碳、二氧化碳、氢气和水蒸气。快拉制速度和/或慢拉制速度通常有利于小直径光纤。光纤直径上限由可以使用但是不会在大量过冷融化物中引起结晶的最小拉制速度决定。光纤直径的下限由可以获得的不会折断光纤或从融化物中拉制光纤的最大拉制速度决定。
此外,根据WO97/25284的方法拉制的光纤可以通过将玻璃光纤加热到出现特别的玻璃结晶的温度而转变为结晶光纤。
在WO97/25284中描述的方法能够从数种材料中生产高纯度光纤,人们都知道在高温下具有这些复合材料的组分强度高、坚硬、蠕变速度慢、耐氧化能力强、或者化学兼容性好。可以允许光纤由电磁辐射吸收性能低的材料构成,例如但是不限于远程通信领域使用的材料。WO97/25284中公开的方法还能够合成同质玻璃光纤,包括例如使用光纤激光器和光纤激光器放大器领域但不限于这些领域的高浓度支配元件。根据WO97/25284,这些光纤可以迅速地拉制出,能够降低生产成本,可以被结晶化,形成稳定的材料,可以用在具有很高温度结构的领域的抗氧化化合材料内,例如透平燃烧室衬垫和射流偏向器内。WO97/25284的方法能够允许合成聚合母体化合材料领域中使用的抗张强度和硬度提高的光纤。此外,WO97/25284的方法允许由有机活体领域使用的生物相容材料构成。因此,WO97/25284的方法大大地拓展了能够利用液体融化物拉制的光纤的材料范围。
实例1-光纤拉制装置图16表示一种在有容器或无容器的融化条件下,利用WO97/25284中公开的原理,从过冷融化物中拉制光纤的最佳方案。应该注意的是WO97/25284中插入管的一种新的重要特点是光纤不是通过一个模具或类似的成型装置拉制。在该实例中,描绘了一种无容器状态,尽管这些原理和光纤拉制方法可以使用任何融化物来拉制所需的光纤,包括有容器的融化物。
图16所述的无容器状态也可以利用空气声学插入管(AAL)插入来自拉制光纤的液滴获得。该方法利用来自气体喷射器的32的空气动力,通过使用来自一个三轴声学定位系统33的声学影响进行稳定。根据WO97/25284,插入样品的该装置和其他装置是现有技术描述的装置,插入过冷样品的任何方法的使用都在WO97/25284的范围内。这些方法包括如电磁悬浮和静电悬浮。这些方法涉及在高真空状态下融化物的悬浮和保持,它能够将WO97/25284的光纤拉制方法容易地应用于金属、合金,以及对与空气和气体环境中出现的气体反应敏感的材料。
一种悬浮液滴通过利用二氧化碳激光器发出的光束加热和融化样品来形成,尽管可以认为任何加热方法都在WO97/25284的范围内,例如白炽灯或弧光灯,微波加热,感应加热,炉具或悬浮在热气流中。此外,任何能够给样品提供足够热量的激光束都可以用于WO97/25284的方法。在该具体的实例中,二氧化碳激光光束分成两束34,它们聚焦在悬浮样品的相反侧,使样品融化。融化物保持在高温下,直到全部被融化,接着通过切断或减少提供的加热功率使熔融液滴过冷并保持其过冷。
插入管(stinger)和光纤拉制装置31由连接到一个杆3的直径为0.01cm的钨丝插入管构成,由螺线管执行机构4操纵,定位成能够在螺线管被激发时使钨丝插入管尖端插入悬浮液滴1内。钨丝插入管和过冷融化物之间的接触必须得到认真控制,以避免由于接触插入管而在过冷融化物中出现异相晶核。虽然该核通常并不是通过WO97/25284的光纤拉制操作引起的,但是如果以前形成的玻璃光纤用作插入管材料,那么可以减轻异相核的问题。尽管钨丝用做本实施例的插入管,但是预计利用各种材料和尺寸的插入管要取决于粘性和要求的光纤特性,这样的另外一些插入管也包括在WO97/25284的范围内。
在该实例中,弹簧操纵的拉制机构5为确定长度的光纤拉制提供了拉制力,尽管任何拉制光纤的方法都包括在WO97/25284的范围内。可以调节弹簧的拉制力,以便其力常数在k+0.1-0.25lb/in的范围内。光纤拉制速度受到摩擦阻尼器6的进一步控制。电子控制电路7用于初始化螺线管执行机构,在螺线管执行机构释放而进行光纤拉制操作时的预定时间内将插入管保持在液滴内。高速高温计35用于监测悬浮样品的温度,该温度可以实时显示在计算机屏幕上,作为温度与时间的图象。通过增加或减少激光光束的曝光强度和时间将融化液滴的温度保持在要求的过冷温度。
当然,为了获得要求尺寸的光纤,应该根据需要调节弹簧的力常数以及光纤的拉制速度。此外,光纤拉制装置可以是任何适当的装置,例如电机和轮组件,拉制力可以根据所需光纤的物理性能以及光纤拉制方法进行调节。
在第一次阻挡激光束加热和检测冷却的液滴的温度时启动光纤拉制(在计算机屏幕上显示为温度与时间图)。在温度达到预选值时,螺线管执行器通过手动启动,预选值优选在最佳拉制温度范围内。在该具体的实施例中,螺线管设计成能够在插入样品之后自动切断。接着通过拉制机构的动作将插入器抽出,从液滴中拉制光纤。液滴温度控制是WO97/25284中的方法的关键部分。在温度高于拉制光纤的最佳温度范围时,可以将插入管从液滴中拉出而不拉制光纤。在温度低于拉制光纤的最佳温度范围时,液体的粘性很高,以致必须将插入管施加于液滴上的力增加到超过悬浮装置恢复力,插入管的运动用于推动或从悬浮位置拉出液滴,而不是从液滴中拉制光纤。此外,如果融化温度太低,那么得到的光纤将比需要的短。在中间过冷温度下,可以形成各种长度的光纤,直径为小于1毫米到超过60毫米。
虽然在本实例中报道了一定范围的光纤尺寸,但是也可以理解,可以生产尺寸范围很宽的光纤,这取决于拉制条件。光纤的直径在低速拉制时比较大。光纤的直径在高速拉制时比较小。光纤的窗度受到两个效应的限制。首先,在较低的温度下,液滴上的力最终将从其悬浮位牵引液滴。其次,在较高温度下,光纤直径随牵引速度增加,以致张力不再能够克服表面张力,从液体中牵引光纤被中断。在适当的拉制温度范围内,可以拉制极长的光纤。例如,拉制10毫米直径的光纤直到0.35厘米直径的液滴减少到0.25厘米的直径,可以产生比18000厘米还长的光纤。
图17表示根据WO97/25284的原理的一个最佳方法,其中可以沿一个以上的方向从处于无容器条件的悬浮液滴中拉制光纤。在该方法中,悬浮液滴15开始在悬浮喷嘴16中或使用另一种悬浮融化技术形成。通过电机和轮18或其他能够控制插入管操作和光纤拉制速度的拉制装置,光纤17同时沿相反的方向从液滴相反侧拉制。拉制力相对并能够受到控制,使它们几乎相等或相对,从而使液滴上产生的力减少,液滴不能够从其初始位置拉制出。该图还表示通过激光光束19或其他辐射热源的加热由一个透镜20聚焦在悬浮液滴顶表面上。受热区域内的温度保持高于融化点,而该温度在液滴其他区域将下降,并能够在液滴侧面被足够地过冷,允许拉制光纤。从液滴中拉出的光纤材料可以通过在辐射受热区域增加和融化固体材料21来补充,这些材料可以以可控速度随固体材料的粉末流和一个或一个以上的小杆增加到悬浮液体中。通过控制光纤拉制速度,在辐射受热区域增加和融化材料,保持拉制光纤的过冷区域,可以得到一种生产长而连续的光纤的连续工艺,WO97/25284公开的该方法设想沿多个方向从没有相对于悬浮位置发生显著位移的位置拉制多个光纤。
插入管状态和操作包括通过在从过冷融化物拉制光纤之前以高于融化点的温度接触融化物而启动该插入管,及允许插入管接触融化液滴的时间(通常为1-50毫秒),尽管启动时间可以根据该插入管、容融化物的成分和融化物的粘性变化。,插入管插入融化物内的距离和插入管的插入和从融化物的拔出速度。如果温度太高,通过插入管的成核现象可以通过快速插入和拔出插入管而避免,但是拔出速度不必太高而不从融化物中拉制光纤。在适当的过冷温度下,融化物的过冷温度,融化物的粘性增加,光纤可以被拉制,结晶速度降低,低于接近材料融化点时观察的速度。
实例2使用锥形喷嘴悬浮器拉制光纤图18表示使用电机和轮组件和一个锥形喷嘴悬浮器(CNL)拉制光纤的方案,可以拉制和悬浮直径为0.25-0.40厘米的光纤,尽管悬浮大样品取决于他们的表面张力和密度。一种悬浮气流8通过一个充气室9,通过该喷嘴10和在悬浮样品11上。该悬浮样品用由ZnSe透镜13将二氧化碳激光束聚焦在样品顶表面上加热和融化。该样品的温度通过利用任何信号阻挡装置阻挡激光加热光束和改变激光功率来控制。使用一个通过喷嘴输入和由一个可逆步进电机和轮组件14驱动的钨丝插入管77从过冷融化物底表面拉制光纤。该插入管包括一个连接该轮的长钨丝,当牵引光纤时长钨丝卷饶在轮上。当然,也可以想到使用其他激光器加热样品,例如连续波的Nd-钇-铝-石榴石(Nd-YAG)激光器。当然,除了激光器外,也可以使用能够有效融化这些材料和不干扰拉制操作的任何加热方法。除了上述实例1的插入管方法和步进电机和轮组件之外,还可以想到利用能够给拉制工艺提供电力的任何装置。
可以用计算机控制电机和轮组件14的方向和加速度,操纵插入管,改变光纤牵引速度的加速度,得到恒定的光纤牵引速度。高速高温计用于监测样品温度和观察冷却行为。插入管和得到的光纤缠绕在连接电机14的轮上,不进行进一步的机械处理,例如通过模具拉制。在该实施例中,光纤拉制速度达到120厘米/秒,尽管光纤拉制速度取决于用于给拉制提供动力的个别装置(这里是电机和轮)。插入管的加速度由计算机控制,使用的一个加速度等于1200厘米/秒2,尽管WO97/25284设想可以根据具体拉制材料和所需的光纤特性使用其他加速度。用该装置可以拉制长达60厘米和同一直径为5-20毫米的光纤,尽管使用不同的拉制条件也可以得到其他长度和直径的光纤。插入操作和光纤拉制操作通常是在少于0.6秒的周期内完成,尽管该时间可以根据融化物的粘性、牵引光纤的速度和结晶速度变化。必须以一定的牵引光纤速度开始牵引光纤。
用CNL装置开始和连续拉制光纤的速度可以低于用上述实例1中AAL装置拉制光纤的速度,因为在拉制力大时液体样品并不由光纤拉制开。在低温下,当融化物粘性大时,和在光纤拉制力大拉制速度较快时,拉制力足以使融化物位移,从而使融化物接触悬浮喷嘴侧面。通过于喷嘴接触使融化物结晶,但是光纤拉制一直持续到融化物结晶达到光纤拉制点。在拉制力大的足以使融化物接触喷嘴的温度下,警惕生长速度通常很低,足以在一定的时间周期内使样品中心保持为液态,足以连续拉制长度大于60厘米的光纤。
例如,在拉制速度为120厘米秒的速度下接触喷嘴时,在富铝红柱石或钇-铝石榴石(YAG)成分的液滴成分发生位移的温度下,晶体生长速度通常小于1厘米/秒。液体和喷嘴之间的接触点距离光纤拉制点大约0.2厘米。因此,在与喷嘴接触之后光纤拉制持续大于0.2秒,拉制长度为24-60厘米的光纤。作为光纤拉制力位移的结果,允许与过冷液体接触机械限制装置的方法因此可以用于牵引有用长度的光纤。令人吃惊的是,通过接触机械限制装置的晶体成核以限定的速度传播,不干扰光纤的连续拉制,直到这些晶体达到县委从液体中拉制的拉制点。
也可以评估拉制线的冷却速度。例如,对于直径为10毫米和在空气中使用CNL装置以100厘米/秒的速度拉制的光纤,冷却速度可以如下面那样计算例如,假定液体氧化物液滴的温度是1500摄氏度。液滴热边界层的厚度大大小于悬浮气流驻点处的样品直径,该点是与从液体中拉制光纤相同的点。对于直径通常为0.3厘米,和100厘米/秒的拉制速度,光纤材料通过边界层在少于.003秒的时间内拉制出来。假定光纤材料与气体保持热平衡,冷却速度的数量级为500000摄氏度/秒。如果如同根据氧化铝热性能和从每单位表面面积10毫米直径光纤的焓变化速度计算的那样,光纤表面的热流量大约为700瓦/厘米2,那么将出现该冷却速度。
现在假定光纤保持较热。在冷到1500摄氏度的环境气体温度下,光纤的对流热流量q”由下面的公式给出q′′=Nuhkf(Tf-Ta)d]]>其中Tf和Ta是光纤和环境温度,kf是平均气体“薄膜”温度(Tf+Ta)/2下气体导热系数,d是光纤直径,及
Nuh是传热的努谢尔特数(Nusselt number)。
对于假定的条件,kf大约为4*10-4瓦/(厘米摄氏度),Nuh大约为1,q”大约为600瓦/厘米。因此,光纤没有冷却的假定导致热流量可以与要求维持与环境气体热平衡的热流量相比。因此可以推断CNL光纤拉制方法对于10厘米直径的光纤获得了每秒几十万摄氏度的拉制光纤的冷却速度。对于更大直径的光纤,冷却速度较小,大体与光纤直径的平方成正比。因此,对于直径50厘米的光纤将产生超过每秒4000摄氏度的冷却速度。
实例3-从富铝红柱石融化物中拉制光纤图19表示从富铝红柱石成分的过冷融化物中拉制光纤的时间和温度条件,其中Al2O3∶SiO2的摩尔比为60∶40,使用WO97/25284的光纤拉制方法。
图19表示光纤拉制试验中悬浮样品的典型温度-时间过程,作为用光学高温计测量的温度与时间的函数图。在所述时间周期之前,用二氧化碳激光光束融化样品,同时将其悬浮在在氩气流内的AAL装置内,并保持在恒定温度下。拉制光纤的温度范围通过在各种温度下使用图16和实例1所述的插入和拉制装置拉制光纤来确定。温度随0-2.0秒的记录时间间隔的降低表明一旦阻挡激光加热光束液体就冷却。在冷却周期内从过冷液体中成功拉制光纤的温度范围显示在图上。在大约2.0-2.2秒的时间周期内,表明温度上升到样品的融化点。当过冷液体自发结晶时出现该温度上升。结晶释放的能量足以将样品加热到融化点,其中温度保持恒定,同时继续结晶。最后,在所有气体都被消耗完之后,由于固体样品的热损失使温度下降。
如图22所示,晶体富铝红柱石的成分与高温液体平衡,不包含在低温富铝红柱石相域内。因此该图表明与最高温时与液体平衡时形成的富铝红柱石在低温下是热动力学不稳定的。相反,根据WO97/25284的原理形成的玻璃光纤组分可以在打算应用的温度下从富铝红柱石相域中独立选择。这些玻璃光纤可以被加热,转变成纯结晶富铝红柱石光纤,这些光纤关于应用温度下第二相的沉淀是稳定的。
在观察到再辉(recalescence)(通过结晶释放的热量致使温度上升到融化点)的很多情况下也能够拉制玻璃光纤。例如,即使在观察到再辉的情况下,也可以得到如该实例所述的富铝红柱石成分的玻璃光纤。
实例4-使用有容器系统从过冷融化物中拉制光纤WO97/25284中的描述还设想在有容器的系统中拉制光纤。图21表示指出使用液体容器的一种方法的一个最佳实施例,它便于从过冷融化物中无再结晶地拉制光纤。该方法的一个重要特点包括在容器内建立和维持温度梯度,以便部分融化量得到过冷。在该方法中,所关心的材料30放置在一个开口容器2内,如一个坩埚内,该容器的温度保持高于融化点的温度。盖子25也保持在高于融化点的温度上,盖子开始可被放置在容器上,在容器内部获得热平衡,实现材料的融化。然后盖子可以被抬起或移开,使热量损失和冷却融化表面。可以控制融化表面23的传热状态,使曝露的融化表面中央区域得到过冷,从而从过冷液体中拉制光纤。容器28的内壁和接近容器这些内壁的少部分液体27可以保持在高于融化温度的温度下,使异相成核不能够出现在这些壁上。
图21表示加热坩埚22和融化材料30,可以通过抬升的盖子25内的比光纤大的开口拉制光纤24,也可以利用如电机和轮26或其他拉制装置的作用通过独立导向器的开口拉制光纤。从融化物中取出的光纤材料可以通过在融化温度超过融化点的区域内增加和融化固体材料得到补充。利用实例1所述的一个或一个以上的插入管(未示出),或者通过电机和轮组件或其他拉制装置的作用启动光纤拉制。
液体和坩埚顶表面的温度图示表示在图21的底部内,作为坩埚和所含液体顶表面上横向位置的函数。平衡融化温度由图21该部分坐标上Tm表示。靠近坩埚壁的那部分液体和坩埚的温度高于Tm,而远离容器壁的液体表面温度下降到小于Tm。曝露液体表面的中心温度可以如下面那样估算,假定容器的直径远远大于液体深度,使热量从底部传递到表面。为了估算温度梯度的大小,还假定对流热损失可以忽略,热量只通过辐射从液体表面损失,辐射热量不再反射回到液体表面上。液体内温度下降接近下面的方程,其中右侧给出了从底表面到液体顶表面的热流量,温度保持在坩埚温度下,其中左侧给出了液体表面的辐射热损失σϵTS4=kTC-TSh]]>其中σ=5.67*10-12瓦/(cm2度K4),对液体氧化物的斯蒂芬波尔茨曼常数ε为0.8,液体表面的发射率Ts是液体表面的温度,To是坩埚的温度,h是液体层的深度。
高温下氧化物的平均导热率k为0.02-0.2瓦/(厘米摄氏度)。
使用富铝红柱石作为一个实例,TC=1900摄氏度(稍微高于融化点),TS=1670摄氏度(大约200摄氏度的过冷度),Nordine等依据实际k值得到h=0.045厘米。
上述计算表明估算的液体深度小于0.5厘米,足以在保持在融化点以上的在容器内的液体表面上获得深冷。该深度足够小,足以迅速满足液体深度比容器直径小很多的假定。
实例5-气体环境和再辉效应人们已经发现过冷度、玻璃块的形成和光纤拉制条件取决于气体环境。在该实例中,已经报道了在三个不同的气体环境下拉制光纤空气,纯氧,和纯氩气。但是也可以想到利用其他气体,如氮气、氦气、一氧化碳、二氧化碳、氢气和水蒸气。
例如,Y3Al5O12成分的玻璃块可以在氩气中无结晶地形成。在空气或氧气中,液体Y3Al5O12成分在过冷时自发结晶。第二个实例利用纯氧化铝提供,为此在自发结晶之前,液体可以冷却到氩气内融化点450摄氏度以下。可以在形成大量玻璃样品的所有情况下拉制光纤,在融化物冷却时结晶不会发生。通常能够在观察到再辉的很多情况下拉制玻璃光纤。例如,在氧气环境下,可以得到富铝红柱石成分的玻璃光纤,其中也可以观察到再辉。这些光纤可以在高于晶体成核和发生融化物自发结晶的的温度下拉制这些光纤。
在用再辉使过冷融化物自发结晶的条件下,通常大量液体的冷却速度为每秒100-500摄氏度。已经知道如果冷却温度超过玻璃形成的临界冷却速度,那么将由融化物形成玻璃光纤;因此,再辉的观察表明在大量液体中不能够得到临界冷却速度。但是,在液体温度高于自发结晶温度时还可以通过拉制光纤获得玻璃光纤。这些结果表明光纤拉制工艺导致光纤内的冷却速度超过液滴自由冷却速度。
实例6-新光纤成分表II列出了一些能够使用WO97/25284的方法获得的一些新光纤成分。表II列出这些光纤可以使用很多种方法拉制,包括插入管,和实例1所述的拉制装置,以及表示在图18中和实例所述的插入管和电机轮组件。融化物可以使用任何悬浮装置悬浮,包括上述AAL和CNL装置,或者融化物也可以包含在如上述实例4内。固体样品通过激光器炉融化由基本的纯氧化物形成。使用钕或铒和其他材料作为添加剂,其中Al2O3∶SiO2为50∶50,Al2O3∶Y2O3为63∶37。
对于等于或高于融化点的温度,在悬浮融化物内观察到的震荡和流体流表明融化物粘性低,可以与液体氧化铝的粘性相比,大大小于典型玻璃形成材料如纯氧化硅或富硅融化物的粘性。这些融化物的低粘性也表明了在高于融化点的温度下不能够从融化物中拉制光纤的事实。但是,在这里所述的所有情况下,可以WO97/25284的方法从过冷融化物中拉制玻璃光纤。在所有情况下从这些融化物中拉制出的玻璃光纤在外观上是均匀的。在显微镜下的可视检查表明光纤内没有第二相沉淀的迹象。
旋光掺杂剂浓度高的玻璃光纤的合成可以通过在50∶50的Al2O3∶SiO2和63∶37的Al2O3∶Y2O3材料内添加Nd2O3和Er2O3。使用的添加剂浓度比现有技术的光纤的典型浓度高1%左右。WO97/25284的方法通过首先将材料加热到所有成分都形成完全融化液体的温度而获得了这些添加剂浓度高的光纤。由于过冷融化物不结晶,它保持为同质的,能够形成添加剂浓度高的玻璃光纤。
此外,纯度很高的光纤和添加剂浓度很小的光纤的合成也是可能的。使用无容器条件保持融化物能够使融化物纯化,纯化方法是(1)杂质蒸发及(2)杂质的反应汽化。例如,开始含有约0.0005摩尔%铬(百万分之五的铬)的氧化铝可以通过无容器地将液体融化和加热到2400摄氏度来进行纯化。分析的铬浓度在几分钟的处理时间内减少到百万分之一。同样,可以通过现有技术中公知的装置利用蒸发来纯化很多氧化物。当在非常高的温度下在容器内处理材料时,融化物内容器材料的溶解将防止液体的纯化。因此,通过在无容器的条件下纯化液体,可以形成含有的杂质量少于0.0001摩尔百分数(百万分之一)的光纤。同样,通过首先纯化该液体,可以使用添加剂来将从液体中牵引的光纤内添加剂的浓度控制在少于0.0001摩尔百分数到50摩尔百分数的范围内。
具有化学成分CaAl2O4的玻璃光纤的合成方法是可以在无容器的条件下,使用WO97/25284的方法,使融化物充分过冷以便拉制光纤。光纤牵引方法描述在图18中,悬浮是在氧气中。这些光纤从过冷到大约低于材料的融化温度200摄氏度的温度的融化物中牵引。一旦进一步过冷,不会出现结晶,能够得到大量的CaAl2O4玻璃光纤样品。希望可以使用其他光纤牵引方法,例如图16的插入管(stinger)拉制装置,能够牵引光纤的任何方法也包括在WO97/25284的范围内。
使用WO97/25284的方法,可以从CaO-Al2O3融化物中合成玻璃光纤,这些光纤可以用做生物相容的结构材料,如果它们被吸入也不会引起矽肺病,如美国专利5552213所公开的那样,其全部说明书在此引入作为参考。
使用WO97/25284的方法,还可以形成有化学成分矿物镁橄榄石Mg2SiO4的玻璃光纤。该矿物是与矿物顽辉石Mg2Si2O6热动力学相容的,这在现有技术中是公知的,Mg2SiO4在现有技术中是公知的,是相间削弱涂层(interphase weakening coating),用于韧化复合材料。镁橄榄石光纤是使用图16所示的光纤插入管装置和由悬浮和在锥形喷嘴悬浮装置内过冷的融化物形成的。
图20表明铝-硅系统的相平衡图,表示纯氧化硅和氧化铝之间的全部组分。在表II中可以看到WO97/25284公开的工作,在很大范围的成分中获得玻璃光纤,这些成分包括低温下稳定的纯富铝红柱石成分。
实例7-光纤结晶根据WO97/25284的方法获得的光纤也可以被结晶。表III报告了在1100和1200摄氏度的温度下富铝红柱石成分玻璃光纤如60∶40的Al2O3∶SiO2。这些结果表明,从过冷融化物中拉制玻璃光纤然后加热到中间温度的方法能够生产化学成分可以控制的结晶光纤,这些成分在中间温度下是稳定的。
光纤拉制速度受到控制,通常超过过冷融化物的结晶速度,在光纤内得到的冷却速度通常大于拉制光纤的材料内形成玻璃的临界冷却速度。玻璃形成的结晶速度或临界冷却速度不能严格地作为温度的函数。对于富铝红柱石而言,30厘米/秒的拉制速度足以避免融化物结晶。富铝红柱石的结晶速度在低于融化点200K的温度下大约是3厘米/秒。
液体氧化钇-铝结晶速度大于液体富铝红柱石成分的结晶速度。使用图18所述电机和轮组件在纯氩气流中以30厘米/秒的速度拉制长度为几个毫米的氧化钇-铝玻璃光纤,以100厘米/秒的速度拉制长60厘米的光纤。该液体被冷却到低于融化点200摄氏度左右。
如实例2中所示,在光纤中的冷却速度随光纤直径增加而减少。用于获得具有给定直径光纤的拉制速度也随光纤直径的增加而减少。因此,在大直径光纤的附图中,可能出现在光纤中获得的冷却速度小于玻璃成型临界冷却速度的状态。在该状态下获得的光纤至少包含一些结晶材料。此外,如果在光纤拉制状态下结晶速度超过光纤拉制速度,那么在光纤内形成的结晶将在光纤内传播,引起形成光纤的过冷液体结晶,因此结束光纤拉制过程。
表III提供了从过冷融化物中拉制的玻璃光纤和通过在空气中加热拉制光纤形成的结晶光纤的张力实验数据。应该注意到如此牵引的光纤后很高的抗张强度。与根据WO97/25284的原理获得的富铝红柱石成分光纤内抗张强度值达到6.4Gpa相比,在具有相同成分的现有技术光纤中可以获得的抗张强度被限制到少于3Gpa。
表II从过冷融化物中拉制玻璃光纤的化学成分化学成分,摩尔分数 添加剂氧化铝-氧化硅材料0.50Al2O3+0.50SiO20.50Al2O3+0.50SiO2Nd2O3,1%到20%重量0.50Al2O3+0.50SiO2Er2O3,1%到20%重量
0.60Al2O3+0.40SiO20.67Al2O3+0.33SiO20.69Al2O3+0.31SiO20.70Al2O3+0.30SiO20.71Al2O3+0.29SiO2氧化铝-氧化钇材料0.63Al2O3+0.37Y2O30.63Al2O3+0.37Y2O3Nd2O3,5mol%替代Y2O3其它材料0.50Al2O3+0.50CaO0.30Al2O3+0.70CaO0.67MgO+0.33SiO2(镁橄榄石)0.50Al2O3+0.50La2O30.35Al2O3+0.35LiO+SiO2表III富铝红柱石成分光纤特性光纤状态光纤直径,_m拉断强度,Gpa如拉制 32.06.45如拉制 20.54.68如拉制 32.75.21如拉制 30.56.14如拉制 33.05.55在1100℃结晶19.00.78在1200℃结晶8.0 1.00在1200℃结晶28.00.66其他基质光纤材料的描述大多数结晶氧化物激光基质都没有生产出非晶产品,因此还没有试验过个非晶形态的光学性能。因此在目前的文献中还没有关于这种基质光学性能的资料。尤其是,该文献没有推荐非晶形态的荧光带宽。申请人已经研究了报道的很多掺铒激光晶体的荧光光谱,申请人已经使用了给定晶体内荧光光谱作为信息来开始推算个材料的相应非晶荧光带宽,希望非晶结晶材料也能够具有宽的荧光带宽。
例如,掺铒结晶镥铝石榴石(LuAG)的荧光光谱表示在图24中,如A.A.Kaminsky,et al.,Investigation of stimulated emission fromLu3Al5O12crystals with Ho3+,Er3+and Tm3+ions,phys.stat,sol.(a),Vol.18,K31,1973所述。LuAG光谱表现出一系列的不连贯的峰。因为在任何晶体内,每个峰都对应Er3+的4I13/2能级和4I15/2能级的斯塔克子能级(Stark sub-level)之间的一个或一个以上的不同辐射驰豫转变。材料内Er3+的总荧光带宽Δλ被确定为是荧光光谱中最长和最短荧光波长之间的距离。从图24中可以看出,对于掺铒LuAG,这些波长是1520纳米和1670纳米,带宽是150纳米。接着,推定非晶LuAG内铒荧光带宽接近测量的晶体带宽Δλ。换句话说,推定在LuAG晶体内铒的大约1550纳米的离散荧光光谱转变成非晶LuAG的总的连续光谱,这与将掺铒结晶YAG的特性与掺铒非晶YAG的特性进行比较而发现的转变方式是相似的。
前述研究已经应用大量的掺铒晶体来确定多种具有潜在的大荧光带宽的材料。尤其是,这些研究用于YAG的改进,因为期望YAG基质的小化学改进(例如用钇代替镥)基本上将不会改变掺铒非晶YAG的有利带宽荧光和增益性能。
表IV列出了这样确定的最大的带宽。表IV第一栏列出了基质光纤材料的化学式,表IV第二栏列出了包含在基质光纤材料内的掺杂剂和共掺质。表IV内的第三栏列出了使用上述方法从公开的荧光光谱推断的荧光带宽Δλ。表IV第四栏表示ESA是否是在该晶体中在980纳米中观察到的。表IV列出了非晶材料,这些非晶材料在1550纳米左右具有较宽的荧光带宽。
表IV潜在宽带氧化物


尽管表IV现在提供了很少有关研究的泵浦ESA性能的信息,表IV为研究EDFA宽带非晶基质提供起始点。
尽管这里已经结合光纤放大器进行了描述,但是本发明的放大光信号的方法能够使用集成光放大器实现,这些放大器是通过使用现有技术公知的几种技术之一用非晶YAG大块样品制成的。
权利要求
1.一种在加宽的光带宽上放大光输入信号的方法,所述方法包括向包括掺有稀土的非晶Bi4Ge3O12材料的光波导内输入光信号,所述光信号包括至少一个具有第一波长的第一光信号和一个具有第二波长的第二光信号,其中所述第二波长大于所述第一波长约125纳米;及对光波导施加泵浦光,使所述波导给光输入信号提供光增益,以便至少放大所述第一光信号和第二光信号。
2.如权利要求1所述的方法,其中所述非晶Bi4Ge3O12材料掺有铒。
3.一种在加宽的光带宽上放大光输入信号的光放大器,所述光放大器包括一个提供光泵浦光的光泵浦源;和一个包括一种掺有稀土的非晶Bi4Ge3O12材料的光波导,所述光波导光耦合接收来自光泵浦源的光泵浦光,所述光波导接收具有多个波长的光输入信号,所述光输入信号包括至少一个具有第一波长的第一光信号和至少一个具有第二波长的第二光信号,所述第二波长大于所述第一波长约125纳米,所述泵浦光在泵浦波长处有一个泵浦波长和强度,使光波导提供光增益,以便至少能够放大所述第一光信号和第二光信号。
4.如权利要求3所述的光放大器,其中所述非晶Bi4Ge3O12材料掺有铒。
全文摘要
在一个较宽的带宽上放大光输入信号的方法中,将光输入信号输入到由掺有稀土元素非晶材料(如掺铒钇铝氧化物材料)制成的光波导(810)内。该光输入信号包括的光信号的波长范围为至少80纳米,优选为至少160纳米。泵浦光(830)提供给光波导(810),使光波导(810)给光输入信号提供光增益。该光增益使光信号在波导(810)内放大,在加宽的80-160纳米的范围内提供放大的光信号,尤其包括该范围的一端波长和该范围的另一端波长的光信号。
文档编号H01S3/06GK1654983SQ20051000235
公开日2005年8月17日 申请日期2000年7月28日 优先权日2000年7月28日
发明者Y·G·费兰斯, M·J·F·迪戈内, M·M·费耶尔 申请人:里兰斯坦福初级大学理事会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1