通过混合多种振荡波长的光产生白光的光发射装置的制作方法

文档序号:6851892阅读:176来源:国知局
专利名称:通过混合多种振荡波长的光产生白光的光发射装置的制作方法
技术领域
本发明涉及光发射装置,具体地说,涉及一种通过混合多种振荡波长的光产生白光的光发射装置。
背景技术
为开发采用发光二极管(也称LED)的高质量光源进行了多种研究。采用发光二极管的白光源比如被用于液晶显示器件、光源或图像读取设备的背光。
一般地说,以发光二极管产生白光源的方法可分为使用荧光材料的方法和使用多种振荡波长的方法。在使用荧光材料的方法中,将荧光材料用于把发光二极管发射的从紫外到蓝色范围内的光转换成比如黄、绿和红等颜色,以产生白色。在使用多种振荡波长的方法中,使具有两种、三种或更多种不同振荡波长的多个发光二极管被导通,从而产生白色。
不过,采用两种方法中的任何一种都与实际所要得到的发光色度和强度不同。
在前一种使用荧光材料的方法中,紫外-蓝色发光二极管的亮度会因所用荧光材料的改变之故而变化,并使色度有很大的不同。另外,一旦把使用荧光材料的白光源制成为产品,要调整色度实质就成为是不可能的。
譬如下面的文献都述及后一种使用多种振荡波长的方法。
日本未审专利公开No.2001-272938公开一种色调调整电路,它能通过控制流过单色LED的正向电流,控制发光的色调,而修正每个LED色调的改变,并公开一种包含这种电路的LED显示器件。
日本未审专利公开No.2002-324685公开一种光源,它能通过控制加给发光二极管的电流值和通-断时间比,调整照明光的色度和亮度。
日本未审专利公开No.2004-086081公开一种彩色显示装置,包括记忆多个发光二极管之光发射时间的时间存储电路,以及用以根据所述时间存储电路存储的信息,改变各发光二极管之光发射时间的控制单元,其中,通过重写所述时间存储电路的记忆信息,调整多个发光器件的光发射而得到光的白色平衡。
日本未审专利公开No.2002-533870公开一种发射白光的二极管光源,包括多个LED,对于红、绿和蓝色中的每一种分别具有分立的电源,还包括光电二极管形成测量所有LED的光输出。
下面将参照附图详细描述日本未审专利公开No.2001-272938中公开的普通色调调整电路。
图12是包含常规色调调整电路100之具体电路结构的电路图。
参照图12,常规色调调整电路100包括使用InGaN(铟镓氮化物)的发光二极管101、可变电阻器102、晶体管103,以及脉冲宽度调制电路(下称PWM电路)104。发光二极管101、可变电阻器102和晶体管103被串联连接在电源接点Vcc和接地点之间。PWM电路104与晶体管所基极相连,并通过该基极加给具有一定调制脉冲宽度的驱动电压。
这种常规色调调整电路100通过调整可变电阻器102的阻值调整流过发光二极管101的正向电流值。由此,可使发光二极管101的色调受到调整。另外,常规色调调整电路100以PWM电路104改变正向电流的脉冲宽度(时间宽度),从而调整占空比。由此,可使发光二极管101的照明强度受到调整。
如上所述,上述各文献所描述的常规色调调整电路等调整每个光发射器件的正向电流值,从而产生所需的色度,并改变驱动电压的脉冲宽度或占空因数,以调整发光强度。这是因为在通用的发光二极管中,当其中流过的电流大小改变时,振荡波长变化,并因此而使色度变化。因此,一旦色度确定,一般地说电流值将不会再改变;或者作为另一种选择,照明时间变化,从而光发射器件的亮度改变。
通过改变每种振荡波长发光二极管的点亮时间比可以实现只调整色度,而不调整发光强度。日本专利未审公开No.2000-209049公开了一种照明装置和液晶显示器件,其中的每一种都具有分开设置的发光二极管,用以修正色度,其中二极管的发光强度随着电流值而变,以便调整色度。
此外,设计一种发光二极管,它在一个器件中有多个不同波长的发光区域,并混合各种振荡波长,从而以一个器件发出白光。日本专利未审公开No.2002-368268公开了一种复合半导体发光二极管,它具有多个量子阻挡层,用以具有不同光波长的分开两个以上壁层,以便能够在一个器件内发射多种不同波长,从而实现白光的发射。
当把多个白光源排成一行,以用作液晶显示器件的背光或照明光源时,即使这些白光源中间色度的小差异将会给出反常的影响,由于人的眼睛通过比较会感觉到相对较大的不同。因此,尽可能使白光源的色度均衡。
在利用多种振荡波长产生白光源的普通方法中,由于是单独控制流过每个发光器件的电流,所以就需要有与发光器件或振荡波长相同数量的单独调整装置。于是,整个驱动电路就变得大而复杂,引起成本的增大。另外,由于需要对每种振荡波长调整色度,就使调整工作变得复杂。

发明内容
本发明的目的在于提供一种光发射装置,它不需要有与发光器件或振荡波长同样数量的单独调整装置,也不需要对每种振荡波长调整色度。
本发明是一种通过混合多种振荡波长的光而产生白光的光发射装置,它包括第一发光器件、具有与第一发光器件不同振荡波长的第二发光器件,以及给第一和第二发光器件提供电压的电源接点。从所述电源接点流入第一和第二发光器件中每一个的电流值逐渐变化,以调整第一和第二发光器件的混合光的色度,从而得到所需的白色。
最好调整所述电源接点的电压值,以得到第一和第二发光器件的混合光的色度对应于所需的白色。
最好使第一和第二发光器件与电源接点并联连接,而且所述光发射装置还包括用以调整流过第一发光器件电流值的第一可变电阻器和流过第二发光器件电流值的第二可变电阻器。调整所述第一和第二可变电阻器中每一个的电阻值,以得到第一和第二发光器件的混合光的色度对应于所需的白色。
最好使第一和第二发光器件串联连接,以使流过所述第一和第二发光器件中每一个的电流相等,而且所述光发射装置还包括用以调整流过第一和第二发光器件电流值的可变电阻器。调整所述可变电阻器的电阻值,以得到第一和第二发光器件的混合光的色度对应于所需的白色。
与第一发光器件相比,对于流过的电流量的变化,所述第二发光器件的波长最好有较大的改变。
最好使所述第一发光器件主要发射蓝色光,而第二发光器件主要发射绿色光。
所述光发射装置最好还包括调制电路,用以通过控制流过第一和第二发光器件中每一个的电流的ON/OFF状态,调整第一和第二发光器件中每一个的点亮时间,以得到所需的第一和第二发光器件的混合光强度。
所述光发射装置最好还包括恒流电路,用以给第一和第二发光器件提供恒定的电流;色度检测及运算单元,用以实行第一和第二发光器件的混合光的色度与规定色度的比较,并将色度比较结果输出给所述恒流电路;以及平均电流测量电路,用以实行流过所述第一和第二发光器件电流平均值与规定电流值的比较,并将电流比较结果输出给所述调制电路。所述恒流电路接收色度比较结果,使提供给第一和第二发光器件中每一个的电流从0增大,直至所述第一和第二发光器件的混合光的色度与规定的色度一致。所述调制电路接收电流比较结果,调整所述第一和第二发光器件中每一个的点亮时间,使流过第一和第二发光器件中每一个的电流平均值与规定的电流值一致。
所述色度检测及运算单元最好包括第一滤波器,用以透过第一和第二发光器件的混合光中来自第一发光器件的光;第二滤波器,用以透过第一和第二发光器件的混合光中来自第二发光器件的光;第一光电变换器件,用以把透过第一滤波器的来自第一发光器件的光变换成电流;第二光电变换器件,用以把透过第二滤波器的来自第二发光器件的光变换成电流;第一电流-电压变换放大器,用以把第一光电变换器件输出的电流变换成电压,并放大该电压;第二电流-电压变换放大器,用以把第二光电变换器件输出的电流变换成电压,并放大该电压;以及运算电路,用以接收从所述第一和第二电流-电压变换放大器中每一个输出的电压,使所述电压与规定的色度进行比较,并把色度比较结果输出给所述恒流电路。
所述光发射装置最好还包括第三发光器件,用以发射第一和第二发光器件的混合光的互补色。
所述各发光器件最好为发光二极管。
按照本发明的另一方面,一种通过混合多种振荡波长的光产生白光的光发射装置,它包括发光器件,用以发射多种不同振荡波长的光;以及电源接点,用以给所述发光器件提供电压。使从电源接点流入发光器件的电流值逐渐变化,以调整由所述发光器件的多种不同波长所得混合光的色度,得到所需的白色。
最好调整所述电源接点的电压值,以得到由所述发光器件的多种不同波长所得混合光的色度对应于所需的白色。
所述光发射装置最好还包括可变电阻器,用以调整流过发光器件的电流值。调整可变电阻器的电阻值,以得到由所述发光器件的多种不同波长所得混合光的色度对应于所需的白色。
与所述发光器件的第一振荡波长相比,对于流过电流量的变化,所述发光器件的第二振荡波长最好具有较大的变化。
所述第一振荡波长最好主要对应于蓝色,而所述第二振荡波长最好主要对应于绿色。
所述光发射装置最好还包括调制电路,用以通过控制流过发光器件的电流的ON/OFF状态,调整发光器件的点亮时间,以得由所述发光器件的多种不同波长造成的所需混合光强度。
所述光发射装置最好还包括恒流电路,用以给所述发光器件提供恒定的电流;色度检测及运算单元,用以实行所述发光器件多种不同波长所得混合光的色度与规定色度的比较,并将色度比较结果输出给所述恒流电路;以及平均电流测量电路,用以实行流过所述发光器件电流平均值与规定电流值的比较,并将电流比较结果输出给所述调制电路。所述恒流电路接收色度比较结果,使提供给所述发光器件的电流从0增大,直至所述发光器件多种不同波长所得混合光的色度与规定的色度一致。所述调制电路接收电流比较结果,调整所述发光器件的点亮时间,使流过所述发光器件的电流平均值与规定的电流值一致。
所述色度检测及运算单元最好包括第一滤波器,用以透过所述发光器件的多种不同波长所得混合光中第一振荡波长的光;第二滤波器,用以透过所述发光器件的多种不同波长所得混合光中第二振荡波长的光;第一光电变换器件,用以把透过第一滤波器的第一振荡波长的光变换成电流;第二光电变换器件,用以把透过第二滤波器的第二振荡波长的光变换成电流;第一电流-电压变换放大器,用以把第一光电变换器件输出的电流变换成电压,并放大该电压;第二电流-电压变换放大器,用以把第二光电变换器件输出的电流变换成电压,并放大该电压;以及运算电路,用以接收从所述第一和第二电流-电压变换放大器中每一个输出的电压,使所述电压与规定的色度进行比较,并把色度比较结果输出给所述恒流电路。
所述发光器件最好还发射第三振荡波长的光,所述对应于第三振荡波长所述第一和第二振荡波长所得混合光的互补色。
所述发光器件最好为发光二极管。
按照本发明,不需要与各发光器件或振荡波长同样数量的单独调整装置,也不需要对每种振荡波长调整色度。
从以下结合附图对本发明的详细描述,将使本发明的前述以及其它目的、特点、方案和优点变得愈为清晰。


图1是表示本发明第一实施例光发射装置10电路结构的电路图;图2是因蓝色发光二极管11和绿色发光二极管12振荡波长不同所致对于每个电流量,光的相对强度变化曲线;图3表示对应于各种电流量蓝色发光二极管11和绿色发光二极管12振荡波长值的变化;图4是表示本发明第一实施例光发射装置10的一种改型例光发射装置10A电路结构的电路图;图5是表示本发明第二实施例光发射装置20电路结构的电路图;图6是表示本发明第二实施例光发射装置20的一种改型例光发射装置20A电路结构的电路图;
图7是表示本发明第三实施例光发射装置30电路结构的电路图;图8以示意的方式表示振荡多种波长的发光二极管31的器件结构举例;图9是表示本发明第三实施例光发射装置30的一种改型例光发射装置30A电路结构的电路图;图10是表示本发明第四实施例光发射装置40电路结构的电路图;图11表示按照来自恒流电路41和PWM电路16的控制,流过蓝色发光二极管11和绿色发光二极管12电流的变化;图12是表示普通色调调整电路100的一种具体电路结构的电路图。
具体实施例方式参照图1,第一实施例的光发射装置10包括蓝色发光二极管11、绿色发光二极管12、可变电阻器13、14、晶体管15和PWM电路16。蓝色发光二极管11、可变电阻器13和晶体管15串联连接在电源接点Vcc与接地点之间。绿色发光二极管12和可变电阻器14串联连接在电源接点Vcc与晶体管15的集电极之间。PWM电路16与晶体管15的基极相连,并对所述基极加给具有调制脉宽的驱动电压。
对应于PWM电路16所加给的驱动电压的高电平(HIGH)/低电平(LOW),所述晶体管15被导通(ON)/截止(OFF)。于是,可以通过调节PWM电路16所加给的驱动电压的脉冲宽度,控制蓝色发光二极管11和绿色发光二极管12的点亮时间。
图2是因蓝色发光二极管11和绿色发光二极管12振荡波长不同所致对于每个电流量,光的相对强度变化曲线。图3表示对应于各种电流量蓝色发光二极管11和绿色发光二极管12振荡波长值的变化。图2中为了测量方便,用连续曲线表示蓝色发光二极管11和绿色发光二极管12的曲线。
如图2和3所示,当电流的量为5mA时,蓝色发光二极管11的振荡波长为452.4nm,而当电流的量为40mA时,随着电流量的增大,振荡波长减小一个较小的量,成为450.0nm。当电流的量为5mA时,绿色发光二极管12的振荡波长为552.8nm,而当电流的量为40mA时,随着电流量的增大,振荡波长减小一个较大的量,成为537.8nm。
如上所述,当对于电流量的变化,蓝色发光二极管11的振荡波长有较小的变化时,绿色发光二极管12的振荡波长对于电流量的变化有较大的变化。这主要是因为蓝色发光二极管和绿色发光二极管材料的不同或者材料的比例不同,这导致相对于光的发射,能级变化的比率不同。
按照图1所示第一实施例的光发射装置10的结构,其中蓝色发光二极管11振荡波长对于电流量的变化有较小的变化,它与绿色发光二极管12并联连接,而绿色发光二极管12的振荡波长对于电流量的变化有较大的变化。绿色发光二极管12也可以是黄-绿色、黄色或橙色发光二极管,只要它是一种波长有较大变化的二极管即可。
通过改变可变电阻器13的电阻值,以改变所述电流的量,调整蓝色发光二极管11的色度。通过改变可变电阻器14的电阻值,以改变所述电流的量,调整绿色发光二极管12的色度。应予说明的是,也可以通过使电源电压Vcc变化,而改变流过蓝色发光二极管11和绿色发光二极管12中每一个的电流的量。另一方面,通过改变加给晶体管15基极的驱动电压的脉冲宽度,调整蓝色发光二极管11和绿色发光二极管12的发光强度。
在本发明第一实施例的光发射装置10中,在把相同电流量的电流或以恒定的比率加给每个发光器件的同时,由对于流过的电流量的变化分别具有较大和较小波长变化的发光器件的组合,产生所需的色度。相反,在现有技术中,是通过调整流过每个发光器件的电流的量产生所需色度的。
具体地说,把相同量的电流或以恒定的比率加给具有较小波长变化的蓝色发光二极管11和具有较大波长变化的绿色发光二极管12的组合中的每一个。由此,当所加给的电流量增大时,具有较大波长变化的绿色发光二极管12的振荡波长从长波长侧变到短波长侧,并与具有较小波长变化的蓝色发光二极管11的蓝色混合,作为整体,使色度渐变。当得到所需的色度时,使电流的量固定。
如上所述,由于是采用多个发光器件的组合,其中在把相同量的电流或以恒定的比率加给每个发光器件的同时,对于电流量的变化而言,所述多个发光器件分别有较大的波长变化和较小的波长变化,因而无需对多个发光器件中的每一个设置控制电路,所以能够以足够低的造价得到小型光发射装置,并可还能得到以高密度布置。应予说明的是,通过调整由PWM电路16加给晶体管15的基极的驱动电压的脉冲宽度,以改变蓝色发光二极管11和绿色发光二极管12的点亮时间,使发光强度得到调整。
在第一实施例的光发射装置10中,分别对蓝色发光二极管11和绿色发光二极管12设置可变电阻器13、14。因此,通过调整可变电阻器13、14各自的阻值,预先获得蓝色发光二极管11的蓝色和绿色发光二极管12的绿色的混合比,使其接近所要的白色,并在这之后,最终由PWM电路16调整流过蓝色发光二极管11和绿色发光二极管12的电流的量,从而能够有效地得到高质量的白光源。
虽然由蓝色光源和绿色光源的组合所得的白色光源在实用中是足够的,但由于缺少作为光的原色之一的红色光源,所得白色略带浅蓝色,所以,并非理想的白光源。因此,下面就将描述除图1所示的光发射装置10外,具有红色光源的光发射装置。
图4是表示本发明第一实施例光发射装置10的一种改型例光发射装置10A电路结构的电路图。
参照图4,光发射装置10A的结构中,给图1所示的光发射装置10添加了红色发光二极管18和固定电阻器19。红色发光二极管18和固定电阻器19串联连接在电源接点Vcc与晶体管15的集电极之间。红色发光二极管18与串联连接的蓝色发光二极管11和绿色发光二极管12并联连接。
在上述光发射装置10A中,通过红色发光二极管18以恒定的电流发光,并改变流过蓝色发光二极管11和绿色发光二极管12中每一个的电流的量,以调整色度,可以使图1的光发射装置10所产生的白光更接近理想的白色。
如上所述,按照第一实施例,由于采用多个发光器件的组合,所述各发光器件对于电流量的变化各自具有较大和较小的波长变化,并且在把相同量的电流或以恒定的比率加给每个发光器件的的同时调整电流的量,因此就不需要与发光器件或振荡波长相同数量的单独调整装置,也无需对每种振荡波长调整色度。
在第一实施例的每个光发射装置10和10A中,蓝色发光二极管11对于电流量的变化有较小的波长变化,它与对于电流量的变化有较大波长变化的绿色发光二极管12并联。因此,对于蓝色发光二极管11和绿色发光二极管12分别需要可变电阻器13、14。
虽然分开设置可变电阻器13、14有其优点,使得可以预先分开设定流过蓝色发光二极管11和绿色发光二极管12中每一个的电流的量,但这需要对每个可变电阻器的调节操作,另外,根据可变电阻器的数目,使电路的面积加大。于是,在第二实施例中,将详细描述光发射装置20和20A,它们克服了这些问题。
参照图5,第二实施例的光发射装置20包括蓝色发光二极管11、绿色发光二极管12、可变电阻器13、晶体管15和PWM电路16。所述蓝色发光二极管11、绿色发光二极管12、可变电阻器13和晶体管15串联连接在电源接点Vcc与接地点之间。PWM电路16与晶体管15的基极相连,并对所述基极提供具有调制脉宽的驱动电压。
第二实施例的光发射装置20与第一实施例光发射装置10的不同在于蓝色发光二极管11和绿色发光二极管12是串联连接的。由此,可以简单的电路结构,使流过蓝色发光二极管11的电流与流过绿色发光二极管12的电流相等。
随着流过蓝色发光二极管11和绿色发光二极管12的电流增大,有较大波长变化的绿色发光二极管12的振荡波长从长波长侧变到短波长侧,并与具有较小波长变化的蓝色发光二极管11的蓝色混合,作为整体,使色度渐变。当达到所需的色度时,就将电流的量固定。
如上所述,由于多个发光器件串联连接,流过相同的电流,以对于电流量的变化分别具有较大和较小波长变化的发光器件的组合调整色度,所以,不需要对多个发光器件中的每一个设置控制电路,而只需要一个可变电阻器。因此,与第一实施例相比,可以更低的造价得到更为简单的光发射装置,还能够以更高的密度布置。
图6是表示本发明第二实施例光发射装置20的一种改型例光发射装置20A电路结构的电路图。
参照图6,光发射装置20A的结构中,给图5所示的光发射装置20添加了红色发光二极管18和固定电阻器19。红色发光二极管18和固定电阻器19串联连接在电源接点Vcc与晶体管15的集电极之间。红色发光二极管18与串联连接的蓝色发光二极管11和绿色发光二极管12并联连接。
在上述光发射装置20A中,通过红色发光二极管18以恒定的电流发光,并改变流过蓝色发光二极管11和绿色发光二极管12中每一个的电流的量,以调整色度,可以使图5的光发射装置20所产生的白光更接近理想的白色。
如上所述,按照第二实施例,由于使多个发光器件串联连接,流过相等的电流,并且由多个发光器件的组合调整电流的量,所述各发光器件对于流过的电流量的变化各自具有较大和较小的波长变化,因此就不需要与发光器件或振荡波长相同数量的单独调整装置,也无需对每种振荡波长调整色度。
在第一和第二实施例的每个光发射装置10和20中,蓝色发光二极管11对于电流量的变化有较小的波长变化,它与对于电流量的变化有较大波长变化的绿色发光二极管12组合。
虽然采用分开设置的蓝色发光二极管11和绿色发光二极管12在造价方面有优势,因为每个二极管通常都是廉价的,但是,根据发光二极管的数目,使电路的面积加大。于是,在第三实施例中,将详细描述光发射装置30和30A,它们克服了这个问题。
参照图7,第二实施例的光发射装置30包括振荡多种波长的发光二极管31、可变电阻器13、晶体管15和PWM电路16。所述振荡多种波长的发光二极管31、可变电阻器13和晶体管15串联连接在电源接点Vcc与接地点之间。PWM电路16与晶体管15的基极相连,并对所述基极提供具有调制脉宽的驱动电压。
图8以示意的方式表示振荡多种波长的发光二极管31的器件结构举例。
参照图8,振荡多种波长的发光二极管31包括发光二极管芯片32、引线35、36和外部电极37、38。所述引线35、36比如由Au(金)制得。发光二极管芯片32具有半导体多层结构并包含内电极33、34。采用从外部电极37、38分别经引线35、36给内电极33、34加给电压,发光二极管芯片32发射多种不同振荡波长的光,分别对应于蓝色和绿色,它们混合,产生白光。
图7所示第三实施例的光发射装置30与第一和第二实施例的光发射装置10和20的不同在于,把蓝色发光二极管11和绿色发光二极管12放置在一个发射多种振荡波长的发光二极管31中。由此,可由一个发光二极管发射多种波长的光。
随着流过振荡多种波长的发光二极管31的电流增大,与有较大波长变化的绿色相应的振荡波长从长波长侧变到短波长侧,并与具有较小波长变化的蓝色混合,作为整体,使色度渐变。当达到所需的色度时,就将电流的量固定。
如上所述,由于通过逐渐改变流过一个发射多种不同振荡波长光的发光器件的电流量,使色度得到调整,所以,只需要一个发光器件和一个可变电阻器。因此,与第二实施例相比,可以得到更为简单的光发射装置,还能够以更高的密度布置。
图9是表示本发明第三实施例光发射装置30的一种改型例光发射装置30A电路结构的电路图。
参照图9,光发射装置30A与图7所示的光发射装置30的不同在于,以发射蓝色、绿色和红色三种颜色光的发光二极管31A代替发射蓝色和绿色两种颜色光的发光二极管31。
在上述光发射装置30A中,通过改变流过振荡多种波长的发光二极管31的电流的量,通过适当平衡所发射的蓝、绿和红色,调整色度,可以使图7的光发射装置30所产生的白光更接近理想的白色。
如上所述,按照第三实施例,由于逐渐改变流过一个发射多种不同振荡波长的发光器件的电流的量,以调整色度,因此就不需要与发光器件或振荡波长相同数量的单独调整装置,也无需对每种振荡波长调整色度。
在第四实施例中,描述光发射装置40,除去第一到第三实施例的每个光发射装置10、20和30外,它还附加有监视从发光二极管发射的光的色度和发光强度并反馈结果的功能。以下将描述把这种功能加给第二实施例光发射装置20的举例,同样也可以把这种功能加给第一和第三实施例的光发射装置10和30。
参照图10,第四实施例的光发射装置40包括蓝色发光二极管11、绿色发光二极管12、恒流电路41、电流检测用的电阻42、平均电流测量电路43、晶体管15、PWM电路16、光检测用的光电二极管51、52、透射蓝色谱用的滤波器53、透射绿色谱用的滤波器54、电流-电压变换放大器55、56和运算电路57。
蓝色发光二极管11、绿色发光二极管12、电流检测用的电阻42和晶体管15串联连接在恒流电路41与接地点之间。恒流电路41给蓝色发光二极管11和绿色发光二极管12提供恒定电流。平均电流测量电路43根据流过电流检测用的电阻42的电流和脉冲调制程度,检测电流平均值,并将检测值输出到PWM电路16。所述PWM电路16与晶体管15的基极相连,并对所述基极提供具有与平均电流测量电路43的输出电流值相应之调制脉宽的驱动电压。
透射蓝色谱用的滤波器53只透过蓝色发光二极管11和绿色发光二极管12发射的光中的蓝色光。光检测用的光电二极管51与电源接点Vcc相连,并将透过用于透射蓝色谱的滤波器53的蓝色光变换成电流。透射绿色谱用的滤波器54只透过蓝色发光二极管11和绿色发光二极管12发射的光中的绿色光。光检测用的光电二极管52与电源接点Vcc相连,并将透过用于透射绿色谱的滤波器54的绿色光变换成电流。
电流-电压变换放大器55把光检测用的光电二极管51输出的电流变换成电压,并放大该电压。电流-电压变换放大器56把光检测用的光电二极管52输出的电流变换成电压,并放大该电压。运算电路57接收从电流-电压变换放大器55、56中每一个输出的电压,实行所述电压与蓝色发光二极管11和绿色发光二极管12中每一个的预先设定的色度设定值之间的求差运算,并把结果输出给恒流电路41。
以下描述光发射装置40的工作过程。
首先,使从恒流电路41输出给蓝色发光二极管11和绿色发光二极管12的电流值从0逐渐增大。对于电流的每一次增大,运算电路57都进行自电流-电压变换放大器55、56中每一个输出的电压值与蓝色发光二极管11和绿色发光二极管12中每一个的预先设定的色度设定值之间的比较运算,并把结果输出给恒流电路41。
恒流电路41不断增大输出给蓝色发光二极管11和绿色发光二极管12的电流值,直至从运算电路57输出的比较结果表明一致为止。当从运算电路57输出的比较结果表明一致时,也即当蓝色发光二极管11和绿色发光二极管12达到所需的色度时,从恒流电路41输出的电流值停止增大,并以这个电流值驱动蓝色发光二极管11和绿色发光二极管12。
无论恒流电路41输出的电流值被固定之前或之后,平均电流测量电路43始终根据流过电流检测用的电阻42的电流值和脉冲调制程度连续检测电流平均值,并把结果输出给PWM电路16。PWM电路16调制驱动电压的脉冲宽度,使所述平均电流值与以前设定的电流值一致,并将最终的电压加到晶体管15的基极。由此,使点亮时间受到控制,以得到所需的流过蓝色发光二极管11和绿色发光二极管12的电流平均值。于是,就能得到所需的发光强度。
应予说明的是,将蓝色发光二极管11和绿色发光二极管12的波谱比率用于运算电路57中,以计算色度。于是,运算电路57计算色度,而没有因PWM电路16所致光量变化的影响,并与为了得到所需发光强度的驱动电压脉宽调制无关。
图11表示对应恒流电路41和PWM电路16的控制,流过蓝色发光二极管11和绿色发光二极管12电流的变化。
参照图11,假设与所需发光强度相应的平均电流值为10mA。当与所需色度相应的电流值为20mA时,流过蓝色发光二极管11和绿色发光二极管12的电流有如P1所示。也就是说,恒流电路41控制导通期间流过的电流为20mA,并且PWM电路16控制电流的脉冲宽度T1,以将电流的占空比(T1/T0)设定为0.5。
当与所需色度相应的电流值为40mA时,流过蓝色发光二极管11和绿色发光二极管12的电流有如P2所示。也就是说,恒流电路41控制导通期间流过的电流为40mA,并且PWM电路16控制电流的脉冲宽度T2,以将电流的占空比(T2/T0)设定为0.25。
如上所述,按照第四实施例,通过附加调整发光期间导通期间流过的电流值以设定色度然后再改变电流的占空比以调整发光强度的功能,可将第一至第三实施例每一个中的发光二极管发光的色度和发光强度设定成所需要的。
虽然已经详细描述和表示了本发明,但应清楚地理解,这只是说明和举例的方式而非限定的方式,本发明的精髓和范围只由所附各权利要求的内容限定。
权利要求
1.一种通过混合多种振荡波长的光产生白光的光发射装置,它包括第一发光器件;具有与第一发光器件不同振荡波长的第二发光器件;以及给第一和第二发光器件提供电压的电源接点;其中,从所述电源接点流入第一和第二发光器件中每一个的电流值逐渐变化,以调整第一和第二发光器件的混合光的色度,从而得到所需的白色。
2.如权利要求1所述的光发射装置,其中,调整所述电源接点的电压值,以得到第一和第二发光器件的混合光的色度对应于所需的白色。
3.如权利要求1所述的光发射装置,其中,使所述第一和第二发光器件与电源接点并联连接,而且所述光发射装置还包括调整流过所述第一发光器件电流值用的第一可变电阻器;和调整流过所述第二发光器件电流值用的第二可变电阻器;调整所述第一和第二可变电阻器中每一个的电阻值,以得到第一和第二发光器件的混合光的色度对应于所需的白色。
4.如权利要求1所述的光发射装置,其中,使所述第一和第二发光器件串联连接,以使流过所述第一和第二发光器件中每一个的电流相等,并且所述光发射装置还包括调整流过所述第一和第二发光器件电流值用的可变电阻器;调整所述可变电阻器的电阻值,以得到第一和第二发光器件的混合光的色度对应于所需的白色。
5.如权利要求1所述的光发射装置,其中,与第一发光器件相比,对于流过的电流量的变化,所述第二发光器件的波长有较大的改变。
6.如权利要求5所述的光发射装置,其中,所述第一发光器件主要发射蓝色光,而第二发光器件主要发射绿色光。
7.如权利要求1所述的光发射装置,其中,还包括调制电路,通过控制流过第一和第二发光器件中每一个的电流的ON/OFF状态,调整第一和第二发光器件中每一个的点亮时间,以得到所需的第一和第二发光器件的混合光强度。
8.如权利要求7所述的光发射装置,其中,还包括恒流电路,它给第一和第二发光器件提供恒定的电流;色度检测及运算单元,把第一和第二发光器件的混合光的色度与规定色度比较,并将色度比较结果输出给所述恒流电路;以及平均电流测量电路,把流过所述第一和第二发光器件每一个的电流的平均值与规定电流值比较,并将电流比较结果输出给所述调制电路;所述恒流电路接收色度比较结果,使提供给第一和第二发光器件中每一个的电流从0增大,直至所述第一和第二发光器件的混合光的色度与规定的色度一致;所述调制电路接收电流比较结果,调整所述第一和第二发光器件中每一个的点亮时间,使流过第一和第二发光器件中每一个的电流平均值与规定的电流值一致。
9.如权利要求8所述的光发射装置,其中,所述色度检测及运算单元包括第一滤波器,它透过第一和第二发光器件的混合光中来自第一发光器件的光;第二滤波器,它透过第一和第二发光器件的混合光中来自第二发光器件的光;第一光电变换器件,它把透过第一滤波器的来自第一发光器件的光变换成电流;第二光电变换器件,它把透过第二滤波器的来自第二发光器件的光变换成电流;第一电流-电压变换放大器,它把第一光电变换器件输出的电流变换成电压,并放大该电压;第二电流-电压变换放大器,它把第二光电变换器件输出的电流变换成电压,并放大该电压;以及运算电路,用以接收从所述第一和第二电流-电压变换放大器中每一个输出的电压,使所述电压与规定的色度进行比较,并把色度比较结果输出给所述恒流电路。
10.如权利要求1所述的光发射装置,其中,还包括第三发光器件,它发射第一和第二发光器件的混合光的互补色。
11.如权利要求1所述的光发射装置,其中,所述发光器件为发光二极管。
12.一种通过混合多种振荡波长的光产生白光的光发射装置,它包括发光器件,发射多种不同振荡波长的光;以及电源接点,给所述发光器件提供电压;其中,使从电源接点流入发光器件的电流值逐渐变化,以调整由所述发光器件的多种不同波长所得混合光的色度,得到所需的白色。
13.如权利要求12所述的光发射装置,其中,调整所述电源接点的电压值,得到由所述发光器件的多种不同波长所得混合光的色度对应于所需的白色。
14.如权利要求12所述的光发射装置,其中,还包括可变电阻器,用以调整流过所述发光器件的电流值;调整可变电阻器的电阻值,以得到由所述发光器件的多种不同波长所得混合光的色度对应于所需的白色。
15.如权利要求12所述的光发射装置,其中,与所述发光器件的第一振荡波长相比,对于流过电流量的变化,所述发光器件的第二振荡波长具有较大的变化。
16.如权利要求15所述的光发射装置,其中,所述第一振荡波长主要对应于蓝色,而所述第二振荡波长主要对应于绿色。
17.如权利要求12所述的光发射装置,其中,还包括调制电路,通过控制流过发光器件的电流的ON/OFF状态,调整发光器件的点亮时间,以得到由所述发光器件的多种不同波长所得混合光的所需强度。
18.如权利要求17所述的光发射装置,其中,还包括恒流电路,它给所述发光器件提供恒定的电流;色度检测及运算单元,它将所述发光器件多种不同波长所得混合光的色度与规定色度的比较,并将色度比较结果输出给所述恒流电路;以及平均电流测量电路,它将流过所述发光器件的电流的平均值与规定电流值的比较,并将电流比较结果输出给所述调制电路;所述恒流电路接收色度比较结果,使提供给所述发光器件的电流从0增大,直至所述发光器件多种不同波长所得混合光的色度与规定的色度一致;所述调制电路接收电流比较结果,调整所述发光器件的点亮时间,使流过所述发光器件电流的平均值与规定的电流值一致。
19.如权利要求18所述的光发射装置,其中,所述色度检测及运算单元包括第一滤波器,它透过所述发光器件的多种不同波长所得混合光中第一振荡波长的光;第二滤波器,它透过所述发光器件的多种不同波长所得混合光中第二振荡波长的光;第一光电变换器件,它把透过第一滤波器的第一振荡波长的光变换成电流;第二光电变换器件,它把透过第二滤波器的第二振荡波长的光变换成电流;第一电流-电压变换放大器,它把第一光电变换器件输出的电流变换成电压,并放大该电压;第二电流-电压变换放大器,它把第二光电变换器件输出的电流变换成电压,并放大该电压;以及运算电路,它接收从所述第一和第二电流-电压变换放大器中每一个输出的电压,使所述电压与规定的色度进行比较,并把色度比较结果输出给所述恒流电路。
20.如权利要求12所述的光发射装置,其中,所述发光器件还发射第三振荡波长的光,所述第三振荡波长对应于所述第一和第二振荡波长所得混合光的互补色。
21.如权利要求12所述的光发射装置,其中,所述发光器件为发光二极管。
全文摘要
把相同量的电流或以恒定的比率加给具有较小波长变化的蓝色发光二极管(11)和具有较大波长变化的绿色发光二极管(12)的组合中的每一个。由此,当所加给的电流量增大时,具有较大波长变化的绿色发光二极管(12)的振荡波长从长波长侧变到短波长侧,并与具有较小波长变化的蓝色发光二极管(11)的蓝色混合,作为整体,使色度渐变。在得到所需的色度时,使电流的量固定。
文档编号H01L33/00GK1716074SQ200510076320
公开日2006年1月4日 申请日期2005年6月15日 优先权日2004年6月21日
发明者竹川浩, 加藤正明 申请人:夏普株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1