在线后端处理中形成悬空传输线结构的方法

文档序号:6866288阅读:288来源:国知局
专利名称:在线后端处理中形成悬空传输线结构的方法
技术领域
本发明一般涉及半导体制造工艺,尤其涉及在半导体器件的线后端(BEOL)处理中形成悬空传输线结构的方法。
背景技术
半导体集成电路通常由MOS(金属氧化物半导体)或由集成在硅芯片的顶部平坦主表面处的双极型晶体管制成。各种各样晶体管之间,以及某些晶体管与位于芯片周围的接入引脚之间的电互连线通常采取两(或多)“层面”互连线,即,具有沿着相互平行取向以及通过适当绝缘层相互绝缘并且还与芯片的顶部平坦表面绝缘的两个(或多个)基本平坦表面的金属化带形式的导电线的形式。在绝缘层中,按照所需电路互连,在任何需要的地方配备互连通孔(窗口)。
尤其,微带结构主要用在布线不密集的射频(RF)CMOS/SiGe芯片中。一般说来,微带结构使信号与下面的有损耗基底材料相当好地隔离开。如图1(a)所示,典型的微带传输线结构10包括信号传输线12、用于屏蔽的底层接地面14、和在它们之间的层间介电材料(ILD)16。由于屏蔽14和信号传输线12被制造成标准互连部件,因此用介电材料16将它们包封起来。这样介电材料的例子包括,例如,二氧化硅(SiO2)、SiCOH、SiLK、FSG、USG等。这样介电材料的介电常数的范围一般从大约2.5到大约4.1。
另一方面,共面波导通常用在布线密度相对较高的地方,例如在CMOS芯片中,难以在信号线下面建立明显的返回路径的地方。可靠返回信号的唯一方式是,也使用与用于信号线的排布金属层面相同的排布金属层。因此,如图1(b),典型的共面波导传输线结构20包括信号传输线22、和与传输线22处在同一布线层面的两条相邻屏蔽线24。共面波导结构20与硅基底26相距固定距离。称为具备侧屏蔽的微带传输线的第三种结构(即,具有微带和共面结构两者的特性)也已经用在现有的传输线结构中。
如图1(c)所示,存在侧屏蔽的典型微带传输线结构30包括信号传输线32、用于屏蔽的接地面34、和在它们之间的层间介电材料36。但是,另外所述屏蔽还包括与信号传输线32处在同一布线层上的屏蔽线38。屏蔽线38通过导电填充的通孔40与接地面34电邻近。与微带结构10一样,传统的共面元件也用ILD材料围起来。
在每一种情况中,像上述那样使用ILD材料会造成介电损耗并降低了BEOL互连中传输线的Q因子。于是,希望建立与低介电常数材料结合的屏蔽传输线结构,以便提高传输线的性能。

发明内容
上述现有技术的缺点和缺陷通过一种形成半导体器件的传输线结构的方法来克服或缓和。在一个示范性实施例中,该方法包括形成在第一金属化层面之上的层间介电层;除去一部分层间介电层;和在通过除去一部分层间介电层形成的一个或多个空隙内形成牺牲材料。在层间介电层之上形成的第二金属化层面中形成信号传输线,信号传输线处在牺牲材料之上。除去包括在第二金属化层面内的一部分介电材料,以便使牺牲材料暴露出来,其中,一部分牺牲材料是通过穿过信号传输线形成的数个通道通孔暴露出来的。除去牺牲材料,以便在信号传输线下面形成气隙。
在另一个实施例中,半导体器件的线后端传输线结构包括形成在第一金属化层面之上的层间介电层;和形成在层间介电层中的一个或多个空隙。在第二金属化层面中形成信号传输线,该信号传输线处在一个或多个空隙之上。信号传输线进一步包括穿过其中形成的数个通道通孔,以提供用于限定一个或多个空隙的牺牲材料的除去通道,其中,一个或多个空隙限定信号传输线下面的气隙。
在又一个实施例中,线后端微带传输线结构包括形成在一个金属化层面上的信号传输线和形成在另一个金属化层面上的接地面。气隙处在信号传输线和接地面之间,该气隙是在层间介电层内形成的。信号传输线和接地面之一进一步包括穿过其中形成的数个通道通孔,以提供用于限定气隙的牺牲材料的除去通道。
在再一个实施例中,线后端共面波导传输线结构包括形成在第一金属化层面上的信号传输线;和第一金属化层面中与信号传输线相邻的一对共面屏蔽线。气隙处在信号传输线下面,该气隙是在层间介电层内形成的。信号传输线进一步包括穿过其中形成的数个通道通孔,以提供用于限定气隙的牺牲材料的除去通道。


参照在几个附图中用相同号码编号相同元件的示范性附图图1(a)是传统微带传输线结构的剖面图;图1(b)是传统共面波导传输线结构的剖面图;图1(c)是存在侧屏蔽的传统微带传输线结构的剖面图;图2(a)-2(i)是例示按照本发明的实施例,在线后端(BEOL)处理中形成悬空传输线结构的方法的一系列工艺流程图;图2(j)是在图2(a)-2(i)中形成的最后悬空传输线结构的设计和掩膜布局的平面(上下)图;图3是含有气隙电介质的微带传输线实施例的剖面图;图4是含有气隙电介质的反向微带传输线实施例的剖面图;图5是含有气隙电介质、并且接地面不在信号线正下方的共面传输线实施例的剖面图;图6是含有气隙电介质和没有任何底层接地面的共面波导传输线实施例的剖面图;图7(a)-7(g)是例示按照本发明的实施例,包封像在图2(a)-2(g)中形成那样的悬空传输线结构的一种可能方法的一系列工艺流程图;图8(a)-8(d)是例示按照本发明的实施例,包封像在图2(a)-2(g)中形成那样的悬空传输线结构的一种替代方法的一系列工艺流程图;
图9(a)-9(c)是例示在信号线下面含有气隙并且具有底层和顶层接地面的带状线传输线实施例的形成的一系列工艺流程图;和图10(a)-10(d)是描绘将微带气隙传输线结构(例如如图3所示)与带有SiO2电介质的传统微带结构相比较的各种各样模拟结果的图形。
具体实施例方式
本文公开了在线后端(BEOL)半导体处理中形成悬空传输线结构的方法,其中,该集成方案导致介电损耗低的铜EEOL传输线结构。但是,应该认识到,本文所述的方法实施例不局限于这样的铜EEOL,可以推广到利用各种材料制成的其它互连线,这些材料包括,例如,铝、钨、金等,但不限于这些。在一个实施例中,该集成方法导致在信号线和接地面之间形成气隙,以便降低互连介电常数,因此,降低在微波频率上可能特别高的电容性串扰的量值。此外,下文所使用的术语“气隙”未必局限于在信号线和接地面之间存在空气,也可推广到描述或指存在任何气相材料或真空。
现在一般性地参照图2(a)-2(i),图2示出了例示按照本发明的实施例,在线后端(BEOL)处理中形成悬空传输线结构的方法的一系列工艺流程图。从图2(a)开始,通过单镶嵌处理技术形成接地面102。尤其,使衬垫材料104(例如,氮化钽/钽)沉积在形成于绝缘层106中的开口内,此后通过(例如)电镀、溅射等,使BEOL金属108(例如,铜)沉积在衬垫材料之上,然后使之平整。如图2(b)所示,此后,通过凹蚀掉一部分BEOL金属108,沉积另外的衬垫材料和使之平整来形成上衬垫部分110,完全将接地面102包封起来。经过如此包封,接地面102就可以抵抗金属108的原子扩散,以及抵抗下文所述的后续处理步骤引起的氧化。
在一个示范性实施例中,布线108的上表面相对于介电层106的上层是凹进去的。使金属凹进去的一种方法是使用定时湿式蚀刻来获得所需深度。例如,应用由水、乙酸和过氧化氢(例如,分别为3升、15毫升和9毫升的浓度)组成的溶液达大约2.5分钟就可以获得大约600埃()到大约800埃()的深度。然后,沉积一层阻挡材料110,阻挡材料110用于将铜包封起来,以便在后续处理期间保护它。一个特定实施例包含一层100厚的钽,再加上400的氮化钽(TaN)。可替代地,阻挡材料110也可以由电介质或任意个其它的合适金属阻挡层构成。
包封金属的又一种方法是连同相反极性的光致抗蚀剂一起,使用用于限定导体的同一掩膜,然后从最上方的表面开始蚀刻阻挡材料,形成覆盖阻挡层110的图案。可以用于包封互连线的其它材料包括可以通过电镀和无电敷镀,以及其它方法沉积的钴-钨-磷(CoWP)和镍-金(Ni-Au)合金。
图2(c)例示了按照共面传输线实施例在层间介电材料(ILD)层114内形成通孔112。ILD层114可以包括,例如,氮化硅(Si3N4)层116,再加上此后为了限定通孔而用光刻术形成图案的较厚SiO2层118。随后,衬垫材料和金属材料以现有技术已知的方法形成在开口中并被平整化,以形成填充的通孔112。
参照图2(d),在ILD层114内在通孔112之间形成平行沟槽120。可替代地,可以在沟槽120的底部处保留原来的氮化物层116,以便像上面讨论过的那样,密封和保护接地面。将沟槽布置成在它们之间形成绝缘支承件122。可以将这个步骤中的光刻图案形成方法设计成使支承件122是沿着接地面102的长度的连续轨道,或者,可替代地,支承件是沿着接地面102的长度布置的数个分立支柱。换句话说,如果希望支承件122是支柱结构,那么,沟槽120沿着接地面102的长度(即,往图的里面看)在许多位置上相互“连接”。还应该认识到,也可以将支承件122配置成两条或多条平行轨道或两个或多个系列的分立支柱。然后,在图2(e)中,在沟槽内形成牺牲材料124并使之平整。牺牲材料124可以是,例如,选择成随后相对于ILD层和BEOL金属材料可被有选择地除去的有机低k介电聚合物。
可以用作牺牲材料124的一些示范性材料是SiLK、金刚石状碳(DLC)和聚降冰片烯(PNB)。SiLK是Dow化学公司制造的半导体电介质,可用在像Porous SiLK那样的产品的各种形成中。这种特定电介质是由γ-丁内酯、专用B阶聚合物和三甲基苯组成的聚合物树脂。可以用于这个目的的另一种材料是DLC,它是其中一部分碳原子以与金刚石相似的方式键合在一起的包含涂层的非晶碳。只要没有暴露的可氧化材料,可以通过暴露在氧等离子体下除去这些材料。如果存在将在除去有机材料期间暴露的可氧化材料,则可以使用H2/CO2/CO/N2型等离子体除去工艺。本领域的普通技术人员可将这些气体混合物用于活性离子蚀刻。聚降冰片烯是在大约400-500℃热分解的牺牲聚合物。因此,应用简单热处理就可以除去牺牲材料。
图2(f)例示了信号层金属结构的形成。如图所示,在ILD层114之上形成另一个介电层126,此后在其中限定开口,以便形成信号传输线128和共面屏蔽线130。但是,可以看出,信号传输线的图案形成是以保留介电层126的数个插塞132的方式实现的。因此,当为共面屏蔽线130和信号传输线128加上衬垫和金属材料时,所得信号传输线金属沿着它的长度不是完全连续的。
与接地面102的情况一样,凹蚀掉用于信号传输线128和共面屏蔽线130的一部分BEOL金属,为在上面形成包封信号层金属结构的上衬垫134作好准备。这显示在图2(g)中。在图2(h)中,实现另一个图案形成步骤,以便除去与信号传输线128的每一侧相邻的一部分介电层126,从而形成使牺牲材料124的外边缘暴露出来的空隙136。另外,现在也除去在信号传输线128的图案形成之后留下的介电插塞132,以便形成通道通孔138。如图2(i)所示,在沿着信号传输线的许多点处空隙136和通道通孔138的结合为释放牺牲材料124创造了条件(例如,通过O2等离子体蚀刻)。
当所选牺牲材料124是SiLK或DLC时,通过暴露在分解上述材料的氧或氢等离子体之下来释放所选牺牲材料124。有关这个工艺的其它细节可以在A.Joshi和R.Nimmagadda发表的文章“氧等离子体中金刚石薄膜和石墨的腐蚀”(A.Joshi and R.Nimmagadda,“Erosionof diamond films and graphite in oxygen plasma”,Journal of MaterialResearch,Vol.6,No.7,p.1484,1996,published by the MaterialsResearch Society)中找到,在此引用全文以供参考。对于聚降冰片烯,可以在425℃进行热处理以释放信号线。这个释放工艺的其它细节可以在Dhananjay Bhusari等人的论文“微流体、微机电、和微电子应用的气道结构的制造”(Dhananjay Bhusari et al,“Fabrication ofAir-Channel Structures for Microfludic,Microelectromechanical,andMicroelectroinic Applications,Journal of MicroelectromechanicalSystems,Vol.10,No.3,p.400,2001)中找到,在此引用全文以供参考。如此所得的传输线结构包括两个都在ILD层114中的在信号传输线128之下的低介电常数(气)隙140,以及信号层中与信号传输线128相邻(通过空隙136)的一对共面屏蔽线130。
图2(j)例示了悬空传输线结构的设计和布局的上下(平面)图。在通道通孔138的设计中,对小孔的排列作了特殊考虑,以便为信号的可靠传播创造条件。在图2(j)的实施例中,实现了通道通孔与导体边缘正交的布置,以便使电流干扰最小。另外,通道通孔138的尺寸应该足够大,以便使牺牲材料被横向蚀刻掉,但还应该足够小,以便使信号线电阻的增加最小。
在释放了牺牲材料之后,包封悬空传输线结构的一种可能方法是沉积一层polymide(聚酰亚胺)或kapton(聚酰亚胺)(未示出)以完全覆盖器件。然后,如果有必要作进一步的BEOL处理,可以使polymide/kapton层形成图案使其与测试垫片接触。
图7(a)-7(g)例示了可以实现(从在图2(g)中形成的结构开始)和也可用于描述如何包封悬空传输线结构的可替代处理实施例。在图7(b)中,在信号线结构上沉积了介电层142(最好是Si3N4)和ILD层144(最好是SiO2)。如图7(c)所示,利用光刻图案形成(构图)和蚀刻步骤在信号线128上方形成空腔146。在蚀刻这个空腔期间,还在信号线128附近和通过包含在信号线128中的释放孔从空腔区中除去介电材料。
随后,在图7(d)中,像前述那样用另外的释放材料148(例如,用SiLK或DLC)填充蚀刻区,然后使之平整。现在重新使用最初处在下面的相同牺牲材料,以便释放过程除去所有释放材料层。图7(e)例示了构图并蚀刻了通孔154的、在层150(层142和144的统称)上面的又一个介电层152的加入。然后,如图7(f)所示,在集成方案的最后步骤中,除去用于提供到达释放材料148的通道的这些通孔154。最后,图7(g)例示了最后包封步骤,该最后包封步骤涉及夹住(pinch off)小通孔154的另一个介电层158的沉积,从而气密地密封住悬空传输线结构。
现在参照图8(a)-8(d),示出了从图2(i))开始包封悬空传输线结构的又一个替换方法,其中,将载体基体用于这个包封过程。该载体基体可以包括Al2O3、玻璃、硅等,但不局限这些。如图8(b)所示,在这样的载体基体162上沉积层间介电材料160(例如,SiO2)。然后,如图8(c)所示,利用像低温键合,低共熔键合那样的许多已知标准工艺的任何一种将载体基体162与悬空传输线结构结合在一起。
然后,可以利用像湿式蚀刻、等离子体蚀刻、平面化、研磨等那样的许多工艺的任何一种除去载体基体162。如图8(d)所示,在任何情况下,载体除去过程都应该终止在ILD层160上。在这个包封过程之后,接着可以继续进行标准BEOL处理。
应该认识到,除了具有接地面和空气电介质的共面传输线结构之外,上述过程也适用于形成其它类型的传输线结构。例如,图3例示了包括包封的信号传输线302、包封的接地面304、和支承件306的微带传输线实施例300。通过以与上述相似的方式在ILD层和信号线层两者形成空隙,进一步形成气隙电介质。同样,信号传输线302包括有助于释放牺牲材料在ILD层上形成空隙的数个通道通孔310。图4例示了反向微带传输线实施例400,其中,在比接地面404更低的金属化层面上形成信号传输线402。于是,为了形成气隙电介质的空隙408,取代信号传输线402,首先在接地面404中形成通道通孔。
参照图5,图5示出了另一个共面传输线实施例500,其中,在信号传输线504的正下方不形成接地面。取而代之,使共面屏蔽线506相互电分离,但每一条通过通孔510与各自下层线508耦合。图6示出了共面波导结构600,其中,接地面只在与悬空信号线604相同的层上包括两条屏蔽线606,而没有与底层金属层面连接。
悬空信号线布局的又一个实施例是如图9(a)-9(c)中的工艺流程图所示的带状线传输线。在定义在图8(a)-8(d)中的包封过程结束时生成的结构上进行进一步的BEOL处理。在图9(b)中,利用单镶嵌集成制造通孔触点164,以便与两条屏蔽线130电接触。然后,在图9(c)中,利用单镶嵌集成制造接地面166,但是,也可以利用双镶嵌集成过程制造通孔触点164和接地面166。
在包括接地面的传输线实施例中,应该认识到,这样的接地面无需处在正好在信号传输线层下面(或上面)的金属化层面上。换句话说,可以将接地面布置在,例如,信号传输线下面的几个层上,以便提供可变的线阻抗值。如果该结构是也以接地面为特征的共面传输线,那么,可以使共面屏蔽线通过多层的互连线/通孔与接地面电耦合。
最后,图10(a)-10(d)反映了将微带气隙传输线结构(像图3所示那样)与带有SiO2电介质的传统微带结构相比较的各种模拟结果。正如图10(a)和10(b)所示的那样,与SiO2电介质结构相比,悬空互连线在宽广的微波频率范围内具有较低的损耗。具体地说,图10(a)中的图形画出了插入损耗的幅度(散射参数S21)与频率之间的关系,而图10(b)画出了衰减系数与频率之间的关系。正如图10(c)进一步所示的那样,悬空互连结构还具有较低的寄生电容,以及如图10(d)所示,具有较高的阻抗。
应该认识到,上述传输线结构实施例由于在信号线与返回路径之间形成了气隙,为衰减的减小和介电损耗(其在RF/微波频率上通常较高)的降低创造了条件。此外,由于有效互连介电常数的减小,以及由此引起的信号传播延迟的缩短,降低了电容性串扰电压。另一个优点是特性阻抗的可用范围的扩大引起的信号带宽增大。频率分量不同的信号在有损耗互连线中以不同的速度行进,因此,当使用空气电介质时,也使分散减少了。又一个优点归因于根据主要集中在空气中的电磁传播的更简单信号建模。从结构的观点来看,气隙配置的传输特性显著地更少受到半导体表面状况和大块基底特性的影响。
虽然通过参照一个或几个优选实施例已经对本发明进行了描述,但本领域的普通技术人员应该明白,可以作各种各样的改变和可以用等效物替代其中的元件而不偏离本发明的范围。另外,可以作出许多修改,以便使特定的状况或材料适应本发明的原理,而不偏离本发明的基本范围。因此,我们认为,本发明不局限于作为为实现本发明设想的最佳方式公开的特定实施例,而是,本发明将包括在所附权利要求书的范围内的所有实施例。
工业可应用性本发明影响半导体器件领域,尤其,包含悬空传输线结构的形成的半导体器件的领域。
权利要求
1.一种半导体器件的线后端传输线结构(300),包含在第一金属化层面之上形成的层间介电层;在所述层间介电层中形成的一个或多个空隙(308);和在第二金属化层面中形成的信号传输线(302),所述信号传输线(302)处在所述一个或多个空隙(308)之上,所述信号传输线(302)进一步包括穿过其中形成的数个通道通孔(310),以提供用于限定所述一个或多个空隙(308)的牺牲材料的除去通道,其中,所述一个或多个空隙(308)限定所述信号传输线(302)下面的气隙。
2.根据权利要求1所述的传输线结构(300),进一步包含在所述信号传输线(302)下面的支承结构(306),所述支承结构包含来自所述层间介电层的材料。
3.根据权利要求2所述的传输线结构(300),其中,所述支承结构进一步包含连续轨道。
4.根据权利要求2所述的传输线结构(300),其中,所述支承结构进一步包含数个分立支柱。
5.根据权利要求1所述的传输线结构(300),进一步包含在第一金属化层面内形成的接地面(304),所述接地面(304)进一步包含完全包封在衬垫材料内的线后端金属材料。
6.根据权利要求5所述的传输线结构(300),进一步包含在所述第二金属化层面中与所述信号传输线(302)相邻的一对共面屏蔽线。
7.根据权利要求6所述的传输线结构(300),其中,也用所述衬垫材料将所述一对共面屏蔽线和所述信号传输线(302)完全包封起来。
8.根据权利要求6所述的传输线结构(300),进一步包含将所述一对共面屏蔽线与所述接地面电连接的在所述层间介电层中形成的通孔。
9.根据权利要求1所述的传输线结构(300),其中,所述牺牲材料包含有机电介质。
10.根据权利要求1所述的传输线结构(300),其中,所述牺牲材料通过干式等离子体蚀刻除去。
全文摘要
形成半导体器件的传输线结构(300)的方法包括在第一金属化层面之上形成层间介电层,除去一部分层间介电层和在通过除去一部分层间介电层形成的一个或多个空隙(308)内形成牺牲材料。在层间介电层之上形成的第二金属化层面中形成信号传输线(302),信号传输线(302)处在牺牲材料之上。除去包括在第二金属化层面内的一部分介电材料,以便使牺牲材料暴露出来,其中,一部分牺牲材料是通过穿过信号传输线(302)形成的数个通道通孔(310)暴露出来的。除去牺牲材料,以便在信号传输线(302)下面形成气隙。
文档编号H01L21/768GK1947234SQ200580013452
公开日2007年4月11日 申请日期2005年4月28日 优先权日2004年4月29日
发明者阿尼尔·K.·奇恩萨肯迪, 罗伯特·A.·格洛维斯, 尤里·V.·特里迪亚科夫, 库纳尔·威地, 理查德·P.·沃朗特 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1