激光退火装置及激光退火方法与流程

文档序号:11161460阅读:1073来源:国知局
激光退火装置及激光退火方法与制造工艺

本发明涉及一种对基板上的特定区域照射激光而进行退火处理的激光退火装置、及使用了该激光退火装置的激光退火方法。



背景技术:

激光退火是通过激光照射所产生的热作用来引起半导体、金属晶格的转移的处理技术,具有能仅对必要的部分进行局部处理,并且能够通过以较高的能量密度进行的退火来缩短处理时间等优点。这种激光退火适用于各种用途,在走向高速化、大型化的液晶显示器的制造过程中成为必不可少的处理技术。当前主流的薄膜晶体管(TFT)式液晶显示器的高清面板中,低温多晶硅(LTPS)TFT被广泛使用,而激光退火被用于对TFT形成区域的非晶硅膜局部照射激光而进行多晶硅化的处理(例如,参考下述专利文献1)。

现有技术文献

专利文献

专利文献1:日本特开2010-283073号公报



技术实现要素:

发明所要解决的问题

带有激光退火处理的制造过程中,在稳定供应合格产品方面需要在处理之后确认是否正规地进行了该处理。尤其,在液晶显示器或有机EL显示器的TFT基板的制造过程中,要求在所有的存在于基板上的多个TFT形成区域均匀地生成结晶性高的多晶硅,液晶显示器或有机EL显示器的工作性能受该均匀性的影响较大,因此在进行制出的液晶显示器或有机EL显示器的品质管理方面,在各TFT形成区域确认是否适当地进行了激光退火处理的工序成为重要的工序。

以往,这种激光退火处理后的确认工序是通过测定薄膜晶体管的电气特征来进行的,但是为了使薄膜晶体管工作,还需要在激光退火处理之后进行多个工序。因此,在经过多个工序之后才检测出激光退火处理的不合格产品,存在导致浪费时间、材料等的损耗的问题。

本发明将解决这种问题作为课题的一例。即,本发明的目的是为了无需等到最终工序就能当场进行是否适当地进行了激光退火处理的确认工序、和由此有效地进行TFT基板的制造等。

用于解决问题的方案

为了实现这种目的,本发明的激光退火装置及激光退火方法具备以下方案。

一种激光退火装置,其特征在于,具备:激光源;激光照射光学系统,将从所述激光源射出的激光照射至处理对象基板的处理区域;照明光源,射出可见光区的照明光;照明光学系统,将从所述照明光源射出的光照射至所述处理区域;及光谱检测部,检测出在由所述激光进行了退火处理的所述处理区域反射的可见光区的光,并输出其光谱特征。

一种激光退火方法,其特征在于,具有:处理工序,对处理对象基板的处理区域照射激光而实施退火处理;及确认工序,对所述处理区域照射可见光区的照明光,在所述退火处理之后立刻检测出在所述处理区域反射的可见光区的光并输出其光谱特征,并通过其光谱特征来确认是否适当地进行了所述处理区域的退火处理。

发明效果

根据具有这种特征的激光退火装置及激光退火方法,能在对处理区域进行退火处理之后立刻通过在处理区域反射的可见光区的光的光谱特征来确认是否适当地进行了退火处理。由此,能够一边继续对整个处理对象基板进行激光退火处理,一边同时确认是否适当地进行了激光退火处理,能够在短时间内有效地进行该确认工序。并且,通过用这种激光退火装置及激光退火方法来制造TFT基板,能够谋求TFT基板的生产率的提高。

附图说明

图1为说明本发明的实施方式所涉及的激光退火装置及激光退火方法的工作原理的说明图。

图2为表示本发明的实施方式所涉及的激光退火装置的一例的说明图。

图3为表示本发明的实施方式所涉及的激光退火装置中的激光源的输出例的说明图。

图4为本发明的实施方式所涉及的激光退火装置的另一例的说明图。

具体实施方式

以下,对本发明的实施方式进行说明。本发明的实施方式所涉及的激光退火装置及激光退火方法,具备在进行激光退火处理之后立刻确认其处理区域是否被适当地进行了处理的系统或工序,而该系统或工序基于如下认知而发明:通过已处理的处理区域中的观察图像的色调能够判断出是否适当地进行了处理。

例如,对成膜于基板上的非晶硅膜的处理区域照射激光而局部生成结晶性高的多晶硅的退火处理中,当在可见光区的光源(例如白色光源)下观察退火处理后的区域时,能够通过色调的差异来确认结晶度。

并且,当用可见光区的光来照明退火处理后的区域,并测量其反射光的光谱特征时,如图1所示,在结晶性高而进行了适当的退火处理的情况下,如图示A所示,得到在特定波长带表现出高光谱强度的光谱特征。与此相对,在结晶性低而没有被进行适当的退火处理的情况下,如图示B所示,得不到在特定的波长带表现出高光谱强度的光谱特征。本发明的实施方式所涉及的激光退火装置及激光退火方法利用了该光谱特征的差异,通过取得由可见光区的光来照明处理区域后的反射光的光谱特征数据,确认是否进行了适当的退火处理。

并且,本发明的实施方式所涉及的激光退火方法中的退火处理的对象只要是通过激光退火处理所引发的结晶化,产生的白色反射光在特定的波长带表现出高光谱强度的材料即可,能够例举出通过真空成膜、涂布而形成的半导体膜(例如,通过气相生长法而形成的非晶硅、通过溅射法而形成的金属氧化物半导体、通过涂布而形成的包括硅微粒的薄膜、通过涂布而形成的包括金属氧化物的薄膜等)等(在此,涂布包括将颗粒分散于溶剂的溶液的涂布。)。

图2表示本发明的实施方式所涉及的激光退火装置的一个结构例。激光退火装置1具备激光源2、激光照射光学系统3、照明光源4、照明光学系统5及光谱检测部6。激光源2是射出进行激光退火处理的激光的光源,在此,具备波长λ1(=532nm)的脉冲激光源2A和波长λ2(=1064nm)的脉冲激光源2B。对于激光源2的输出而言,在对TFT基板的TFT形成区域中的非晶硅膜进行退火处理的情况下,以图3所示的脉冲间隔和强度使两个脉冲激光源同时输出。该例中,当对一个处理区域进行一次退火处理时,使波长λ1的脉冲激光源2A的输出以较短的脉冲间隔(20ns)且以较高的强度进行输出,并使波长λ2的脉冲激光源2B的输出以较长的脉冲间(80~1300ns)降低强度进行输出。该激光源2也可以是以固定的重复周期发射波长308nm或353nm的激光的准分子激光器。

激光照射光学系统3将从激光源2射出的激光照射至处理对象基板(例如TFT基板)W的处理区域(例如TFT形成区域)Sn。图示的例中,利用由反射镜30和分色镜31所构成的合成光学系统来合成从两个脉冲激光源2A、2B射出的激光,并使其入射至光束均匀器32,从而获得直径变大且空间上具有均匀强度的激光,由反射镜33将该激光偏转,并经由掩膜34和微透镜阵列35照射至处理对象基板W。对于这里的掩膜34和微透镜阵列35而言,与在处理对象基板W上呈点阵形状排列的多个处理区域Sn对应地排列有开口34a和微透镜35a,透射开口34a和微透镜35a的激光同时且独立地聚光至处理对象基板W上的多个处理区域Sn。在此,优选掩膜34的开口34a和处理区域Sn具有共轭关系(物和像的关系)。

照明光源4是射出可见光区的照明光的光源,能使用例如卤素灯等白色光源。照明光学系统5将从照明光源4射出的光照射至被照射激光的处理区域Sn。在此,由相对于从照明光源4射出的光的光轴倾斜配置的半反射镜50、和相对于照射至处理区域Sn的激光的光轴倾斜配置的半反射镜51构成了照明光学系统5。

光谱检测部6具备光谱仪6A和检测器6B,检测出在用激光进行了退火处理后的处理区域Sn反射的可见光区的光,并输出其光谱特征。相对于照射至处理区域Sn的激光的光轴倾斜配置的半反射镜51共用了将反射光引导至光谱检测部6的检测光学系统7。

具备这种结构的激光退火装置1经由激光照射光学系统3,将从激光源2射出的激光照射至处理对象基板W的处理区域Sn,由此,对处理区域Sn实施激光退火的处理。如图所示,在激光照射光学系统3具备光束均匀器32、掩膜34、微透镜阵列35的结构中,激光同时且独立地被照射至处理对象基板W的多个处理区域Sn,在各个处理区域Sn进行激光退火处理。

与此相对,对于被照射激光的处理区域Sn,经由照明光学系统5被照射从照明光源4射出的照明光。并且,在处理区域Sn被照射激光而进行激光退火处理之后,在该处理区域Sn反射的可见光区的光立刻经由检测光学系统7被光谱检测部6检测出来。如图所示,在激光照射光学系统3具备微透镜阵列35的结构中,在经由微透镜阵列35被照射激光的所有的处理区域Sn反射的可见光区的光都被光谱检测部6检测出来。

根据使用这种激光退火装置1的激光退火方法,能够在将激光照射至处理对象基板W的处理区域Sn而实施退火处理的处理工序之后,立刻通过光谱检测部6检测出在该处理区域Sn反射的可见光区的光并输出该反射光的光谱特征。由此,能够在将激光照射至处理区域Sn而实施退火处理的处理工序之后,立刻实施通过反射光的光谱特征来确认是否适当地进行了该处理区域Sn的退火处理的确认工序。

并且,通过在激光照射光学系统3和检测光学系统7中共用掩膜34和微透镜阵列35,从而确认工序的对象区域与激光的处理区域Sn成为相同区域,因此,来自没有被照射激光(未结晶化)的区域的反射光不会入射至光谱检测部。因此,即使不在光谱检测部进行特别的处理,也能够防止噪声混入光谱特征,能够简化装置的结构。另外,能实现由退火装置和检测装置的一体化带来的省空间化。

图2所示的例子中,在经由微透镜阵列35对多个处理区域Sn同时且独立地进行退火处理的情况下,能够在对多个处理区域Sn统一进行退火处理之后,立刻统一根据光谱检测部6的输出来确认是否对该多个处理区域Sn适当地进行了处理。此时的光谱检测部6的输出为统一进行了退火处理的多个处理区域Sn整体的光谱特征,而不进行对其中各个处理区域Sn的一一确认。

激光退火装置1具备对处理对象基板W上的处理区域Sn的位置进行扫描的处理区域扫描部8。图示的例中,处理区域扫描部8使处理对象基板W在与照射至处理区域Sn的激光的光轴交叉的二维平面内移动,但并不限定于此,也可以固定处理对象基板W并使激光照射光学系统3及照明光学系统5移动,使照射至处理区域Sn的激光及照明光对处理对象基板W进行扫描。并且,处理区域扫描部8的扫描可以是连续扫描,也可以是每进行一次退火处理就使处理对象基板W上的处理区域Sn的位置移动一次的间歇性扫描。通过处理区域扫描部8的扫描,配置于整个处理对象基板W的处理区域Sn随时被进行退火处理。

图4表示本发明的另一实施方式的激光退火装置。对于与图2所示的例子共通的部位赋予相同的附图标记并省略重复说明。本实施方式的激光退火装置1A在检测光学系统7中具备成像光学系统70和选择光透射部(百叶(blind))71。成像光学系统70与微透镜阵列35协作,使处理对象基板W的处理区域Sn的像成像至配置有选择光透射部71的光谱检测部6的前方位置。并且,选择光透射部71设置开口部而选择性地使反射光透射,所述开口部仅对应于成像至选择光透射部71的多个处理区域Sn的像中特定的处理区域Sn的像。

根据这种激光退火装置1A,与图2所示的例子相同,将从激光源2射出的激光照射至处理对象基板W的处理区域Sn,由此对处理区域Sn实施激光退火处理,并对该处理区域Sn照射从照明光源4射出的照明光,在进行激光退火处理之后,立刻通过光谱检测部6检测出在该处理区域Sn反射的可见光区的光,从而确认是否适当地进行了退火处理。

此时,图4所示的激光退火装置1A中,光谱检测部6从在经由微透镜阵列35被照射激光的所有的处理区域Sn反射的可见光区的光中,选择性地检测出在特定的处理区域Sn反射的光。由此,即使在经由微透镜阵列35对多个处理区域Sn统一进行退火处理的情况下,也能够独立地确认是否适当地进行了各个处理区域Sn的退火处理。

如以上所说明的,根据本发明的实施方式所涉及的激光退火装置1、1A及激光退火方法,能够在对处理区域Sn进行退火处理之后,立刻通过在处理区域Sn反射的可见光区的光的光谱特征来确认是否适当地进行了退火处理。由此,能够一边继续对整个处理对象基板W进行激光退火处理,一边同时确认是否适当地进行了激光退火处理,能够在短时间内有效地进行该确认工序。并且,通过使用这种激光退火装置1、1A及激光退火方法来制造TFT基板,能够谋求TFT基板的生产率的提高。

以上,参照附图对本发明的实施方式进行了详细说明,但具体的结构并不限定于这些实施方式,不脱离本发明的技术精神的范围的设计变更等也属于本发明。并且,对于上述各实施方式,只要其目的及结构等不存在特别大的矛盾、问题,就能够互用并组合技术方案。

附图标记说明

1、1A:激光退火装置;

2:激光源;2A、2B:脉冲激光源;

3:激光照射光学系统;

30、33:反射镜;31:分色镜;

32:光束均匀器;34:掩膜;35:微透镜阵列;

4:照明光源(白色光源);

5:照明光学系统;50、51:半反射镜;

6:光谱检测部;6A:光谱仪;6B:检测器;

7:检测光学系统;70:成像光学系统;71:选择光透射部(百叶);

8:处理区域扫描部;

W:处理对象基板;Sn:处理区域。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1