分析及利用景观的制作方法

文档序号:11531347阅读:238来源:国知局
分析及利用景观的制造方法与工艺

相关申请案的交叉参考

本申请案主张2014年11月25日申请的第62/083,891号美国临时专利申请案及2015年1月6日申请的第62/100,384号美国临时专利申请案的权益,所述临时专利申请案以全文引用方式并入本文中。

本发明涉及计量领域,且更特定来说,涉及减少或消除叠加光学计量中的不准确度。



背景技术:

光学计量技术通常要求造成计量信号的不对称的工艺变化远小于某一阈值,使得其部分不对称信号远小于由叠加造成的信号不对称。然而实际上,此类工艺变化可相当大(尤其在芯片开发的研究及开发阶段中)且其可引发由计量报告的叠加中的相当大误差。光学计量技术具有可大到几纳米的准确度预算。此适用于全部类型的光学叠加计量,其包含基于成像、基于散射测量(其中将检测器放置于光瞳或场中)的光学叠加计量及其衍生物。然而,来自工艺变化的误差可达到纳米范围,借此消耗叠加计量预算的显著部分。

光学叠加计量是归因于两个光刻步骤之间的叠加的由计量信号载送的不对称的计量。此不对称存在于电磁信号中,这是因为所述电磁信号反映电场对载送叠加信息的相对相位的干扰。在叠加散射测量(光瞳散射测量或场散射测量)中,叠加标记通常是光栅覆光栅结构,且叠加信息载送于下部光栅与上部光栅的相对相位中。

在并排类型的叠加散射测量中(例如,参见第2014062972号wipo公开案,其以全文引用方式并入本文中),叠加标记(即,计量目标)可包括光栅毗邻光栅的结构,且叠加信息也可载送于下部光栅与上部光栅的相对相位中。

在叠加成像中,叠加标记(即,计量目标)由用于分离层的分离标记组成,且叠加信息载送于每一个别标记在检测器上的位置中,所述叠加信息又是所述个别标记的不同衍射阶之间的干扰的结果。

用于降低测量不准确度的当前方法论涉及针对准确度及tmu(总测量不确定度)执行大尺度配方及目标设计优化,此最小化信号中的叠加引发的不对称及由其它工艺变化造成的不对称。举例来说,可呈近详尽搜索的形式从各种各样的选项中选取配方与目标的最佳组合。在另一实例中,从计量信号或从外部校准计量导出优化度量。



技术实现要素:

下文是提供本发明的初步理解的简化概述。所述概述既不一定识别关键要素,也不限制本发明的范围,而仅作为以下描述的介绍。

本发明的一个方面提供一种方法,其包括:通过模拟或以预备测量导出至少一个计量度量对至少一个配方参数的至少部分连续相依性;分析所述导出的相依性;根据所述分析确定计量配方;及根据所述确定的配方进行至少一个计量测量。

本发明的这些、额外及/或其它方面及/或优点在随后的详细描述中陈述;可能可从详细描述推论;及/或可通过本发明的实践学习。

附图说明

为了更好地理解本发明的实施例及为了展示可如何实行所述实施例,现将纯粹通过实例参考附图,其中相似的元件符号始终指定对应元件或部分。

在附图中:

图1呈现根据本发明的一些实施例的模拟的每像素叠加敏感度中的轮廓线的实例。

图2a及2b说明根据本发明的一些实施例的指示谐振的示范性模拟结果。

图3a及3b说明根据本发明的一些实施例的指示信号及不准确度的额外示范性模拟结果。

图4是根据本发明的一些实施例的描绘在对称工艺变化下使描述计量度量对参数的相依性的景观移位的模拟结果的示范性说明。

图5说明根据本发明的一些实施例的示范性准确度提高算法的模拟结果。

图6a及6b是根据现有技术(图6a)及根据本发明的一些实施例(图6b)的相对于计量参数计算的计量度量的高级示意性说明。

图6c是根据本发明的一些实施例的零敏感度轮廓及其利用的高级示意性说明。

图7a及7b示意性地说明根据本发明的一些实施例的在光刻半导体工艺中印刷的在具有中间层的不同层处具有两个周期结构(例如平行光栅)的目标单元。

图8示意性地说明根据本发明的一些实施例的具有相反偏移的两个单元的光瞳信号及差分信号。

图9是示意性地说明根据本发明的一些实施例的从用于单元相反设计的偏移的光瞳函数之间的拟合曲线计算保真度度量的图式。

图10是例示根据本发明的一些实施例的对具有由工艺变化引发的不准确度的堆叠执行的模拟的指示围绕光瞳平面的中心的不对称叠加估计的结果的图式。

图11是说明根据本发明的一些实施例的方法的高级流程图。

具体实施方式

在陈述详细描述之前,陈述下文中将使用的某些术语的定义可为有用的。

如本文中在此申请案中所使用的术语“计量目标”或“目标”被定义为在用于计量目的的晶片上设计或制造的任何结构。明确来说,叠加目标经设计以实现制造于晶片上的膜堆叠中的两个或多于两个层之间的叠加的测量。示范性叠加目标是通过散射测量在光瞳平面处及/或在场平面处测量的散射测量目标,及成像目标。示范性散射测量目标可包括两个或多于两个周期或非周期结构(以非限制性方式称为光栅),所述周期或非周期结构定位于不同层处且可经设计及制造为彼此堆叠(称为“光栅覆光栅”)或从垂直视角观看彼此邻近的(称为“并排”)。共同散射测量目标被称为scol(散射测量叠加)目标、dbo(基于衍射的叠加)目标等等。共同成像目标被称为盒中盒(bib)目标、aim(先进成像计量)目标、aimid目标、blossom目标等等。应注意,本发明并不限于这些特定类型中的任何者,但可相对于任何目标设计实施。某些计量目标展现如本文中在此申请案中所使用作为目标的周期结构之间的有意移位或叠加的“引发的偏移”,也称为“设计的偏移”或“设计的未对准”。目标元件,例如周期结构的特征、周期结构的特征之间的元件(例如,光栅条之间的区域)及背景中的组件(即,下部层或上部层),可经分段(针对特征)或虚设(针对特征之间的间隙),即,经设计及/或制造以具有以小于周期结构的特征的尺度且通常相对于周期结构的特征在不同定向处(例如,垂直于周期结构的特征)的周期或非周期特征。

如本文中在此申请案中所使用的术语“景观”、“性能景观”、“景观特征图”或“ls”被定义为一或多个计量度量(例如,散射测量叠加(scol)度量)对一或多个参数的相依性。如本文中在此申请案中所使用的术语“敏感度景观”、“准确度景观”及“准确度特征图”是分别涉及敏感度或准确度度量的景观的实例。贯穿描述所使用的实例具有依据过程参数、测量参数及目标参数而变化的叠加及光瞳3s变化。使用叠加变化仅作为非限制性实例,其可由任何其它计量度量取代。景观或特征图应理解为可视化度量对参数的相依性的方式且并不限于连续相依性、分析相依性(可表示为函数)或(例如,以实验方式、通过模拟或以分析方式)导出相依性的特定方式。应注意,参数中的任何者可理解为具有离散值或连续值,这取决于特定测量设置。在某些实施例中,景观包括至少一个计量度量对至少一个配方参数的至少部分连续相依性或密集取样相依性。

现明确详细参考图式,应强调所展示的细节仅作为实例且仅出于对本发明的优选实施例的说明性论述的目的,且是为了提供被认为是本发明的原理及概念方面的最有用且易于理解的描述的内容而提出。就此而言,未进行尝试以展示本发明的结构细节比本发明的基础理解所需更详细,所述图式所采取的描述使所属领域的技术人员明白可如何在实践中体现本发明的若干形式。

在详细解释本发明的至少一个实施例之前,应理解,本发明并不使其应用限于以下描述中所陈述或图式中所说明的组件的构造及布置的细节。本发明可应用于其它实施例或可以各种方式实践或实施。此外,应理解,本文中所采用的语法及术语是出于描述的目的且不应被视为具限制性。

上文所描述的用于降低测量不准确度的当前方法论具有以下缺点,即,(i)使用传统配方优化很难可靠估计训练中的计量的不准确度且在运行时间几乎不可能如此做。举例来说,可在开封(decap)之后使用cdsem校准测量,但此步骤可仅偶尔进行且sem不准确度预算也可能处于纳米级;(ii)如下定义的对称的工艺变化(例如,叠加标记的某一层的厚度的变化)的存在可使配方优化过时,这是因为尽管在训练中配方a展示为最佳,而在运行(或研究及开发)中发现工艺变化使其较差执行。此问题也可跨越晶片发生(例如,配方a对于晶片中心为最佳但在边缘处非常差地执行);及(iii)明确来说在叠加场散射测量的上下文中存在基础问题:所述计量技术的本质是由硬件参数平均化光瞳信号(这是因为所述计量技术在场平面中执行测量)。此与用算法平均化每光瞳像素叠加的光瞳叠加散射测量相反。光瞳信号的直接硬件参数平均化导致叠加敏感度显著损耗的许多情形。特定来说,因为不同照明角具有不同叠加敏感度且因为这些敏感度经常在其符号及不仅振幅方面改变,所以光瞳信号的硬件参数平均化经常将光瞳叠加敏感度平均化到零。尽管每像素敏感度通常在绝对值方面极佳,且因此在用算法处理时(如其由光瞳叠加散射测量处理那样),此问题消失。

有利的是,下文揭示的某些实施例通过使用硬件调整及算法来克服光瞳叠加散射测量中的这些困难,且用硬件调整克服场叠加散射测量中的这些困难。所揭示方法论改进计量叠加敏感度及叠加性能(其包含准确度)且在光学计量中实现优越准确度及在运行时间及训练两者中提供非常小不准确度。

参考三种常见类型的叠加目标(光栅覆光栅散射测量目标、并排散射测量目标、成像目标),本发明人注意到,信号的敏感度(即,叠加影响信号不对称所达到的程度)主要受这些信号中的干扰项的大小的变化影响。举例来说,在散射测量目标中,干扰相位中的一些项取决于从下部光栅散射的光与从上部光栅散射的光之间的光学路径差,所述光学路径差在将下部光栅与上部光栅分离的膜堆叠的厚度上为线性的且在波长方面成反比。因此,干扰项也取决于其它参数(如入射角或反射比),且取决于入射光及反射光的偏光性质,还取决于目标属性及堆叠及光栅的电磁特性。在成像目标中,干扰相位在工具的焦点方面也为线性的且取决于其它参数(例如入射角)。

所揭示的解决方案是指“准确度景观”或“性能景观”,其描述准确度特征图对工具配方(如光的波长、偏光角及变迹函数)的相依性,所述相依性由决定堆叠的准确度景观的基础物理学所造成。本发明分析据发现在许多特定情况中决定准确度景观的普遍结构。相比而言,当前优化程序并未由与准确度景观有关的任何系统性规则引导。

观察计量工具的敏感度如何取决于呈连续形式的工具参数,且特定来说取决于许多计量特性的各种差分(例如对波长、焦点、偏光等等的敏感度的一阶、二阶及更高阶导数)揭示与任何标称堆叠有关的性能景观的形式。本发明人使用模拟及理论发现,此景观在很大程度上独立于许多类型的工艺变化(其包含使叠加标记的对称性破坏及造成不准确度的全部工艺变化)的意义上为普遍的。虽然工具性能也包含依据定义强烈取决于如下定义的不对称工艺变化的不准确度,但本发明人已发现,用来确定在景观的哪些子区段处准确度对工艺变化的敏感度最强且在哪些子区段处准确度对工艺变化的敏感度最弱及一般可如何特性化敏感度的是准确度景观。本发明人已发现,在很大程度上,对某一类型的工艺变化敏感的相同区域也对如由对“标称”堆叠(即,不具有不对称工艺变化的堆叠)的叠加的敏感度确定的全部其它类型的工艺变化敏感。

提供通过模拟或以预备测量导出至少一个计量度量对至少一个配方参数的至少部分连续相依性、分析所述导出的相依性、根据所述分析确定计量配方及根据所述确定的配方进行至少一个计量测量的方法。可在所述计量度量对所述参数的所述相依性中识别极值。所述相依性可以其中以分析方式、以数字方式或以实验方式检测具有低敏感度的区域及/或具有低或零不准确度的点或轮廓的景观(例如敏感度景观)的形式进行分析,且用于配置测量、硬件及目标的参数以实现高测量准确度。工艺变化可在其对所述敏感度景观的效应方面进行分析,且这些效应可用于进一步特性化所述工艺变化以优化所述测量且使所述计量对于不准确度源更稳健且相对于晶片上的不同目标及可用测量条件更灵活。进一步提供通过跨越晶片使用不同目标设计或配方设计来调谐不准确度及工艺稳健性的技术。还提供控制归因于跨越晶片的工艺变化的不准确度及通过适当配方选择提高工艺稳健性的方法。

图6a及6b是根据现有技术(图6a)及根据本发明的一些实施例(图6b)的相对于计量参数计算的计量度量的高级示意性说明。在现有技术中,根据一或多个计量度量在一或多个参数设置下的计算来选择计量配方。计量配方与一组计量参数p1到pn有关(在下文更详细例示参数的类型)。相对于通常在晶片上的多个位点(x1到xl)上的一或多个参数pi(1≤i≤n≤n)的一或多个值测量一或多个计量度量m1到mk,使得根据在图6a中示意性地说明为多个离散点的一组度量值mj(pi,x1到xl)(1≤j≤k)选择配方。在某些实施例中,可相对于参数中的一或多者至少部分连续测量至少一个度量,如图6b中示意性地说明。所述部分连续性是指一或多个参数的某一范围。所述度量对所述参数的相依性可包括不连续点且可相对于在小范围内的较大数目个离散参数予以定义。用于参数的实例可包括离散波长、一组离散照明及集光偏光方向、一组离散光瞳坐标、一组离散变迹等等以及其组合。本发明人通过使用算法方法分析此类离散测量组能够揭示被称为计量准确度及性能的景观的基础物理连续性。应注意,离散测量的取样密度可通过模拟及/或数据确定且取决于相应基础物理连续函数的平滑度。可在相依性的至少部分连续部分上识别极值(例如,最大值、最小值)。完整组的参数值(p1到pn的值),及测量配方可根据至少一个度量(m1到mk)对至少一个参数(p1到pn,1≤n≤n)的至少部分连续相依性的分析予以定义。

“准确度景观”可理解为相应堆叠的“准确度特征图”,其在存在不对称工艺变化时出现且通过相应配方参数的空间中的消失叠加信号或“叠加敏感度”的轮廓线(或更一般来说轨迹)的出现来确定。更明确来说且举非限制性实例,在散射测量的情况中(在场平面中的使用检测器的暗场散射测量及光瞳散射测量两者中),这些轮廓含有随着散射辐射的如其波长及偏光定向的其它参数(所述参数可为离散或连续的)连续改变的一组经连接角分量。检测数据中的这些轮廓,以理解决定所述轮廓的基础物理学及所述轮廓在不对称及对称工艺变化的空间中的普遍行为,此为设计利用这些角群组或从检测到的信息移除这些角群组的算法方法及硬件方法提供机会,借此使计量更准确。类似地,在基于成像的叠加计量的情况中可在波长及焦点的空间中识别对应轮廓。

图1呈现根据本发明的一些实施例的经模拟的每像素叠加敏感度中的轮廓线的实例,即,光栅覆光栅系统。以由于双光及膜系统中的干扰效应而含有光瞳中的“零敏感度轮廓”的波长呈现用于前端堆叠的二维每像素敏感度函数a(x,y),所述“零敏感度轮廓”可被视为广义伍兹异常。单位是任意正规化单位(达到20的高值在所说明光瞳的左侧处,达到-20的低值在所说明光瞳的右侧处,且零轮廓略微偏离中心靠向左侧),且x轴y轴是照明光瞳的正规化轴;即,x=kx/(2π/λ)且y=ky/(2π/λ)(kx及ky为波向量的分量且λ为波长)。

本发明人已发现相当普遍地,遍及不同测量条件及测量技术,景观中存在可以实验方式或凭借模拟确定的某些特殊点,其中(遍及由另一参数跨越的空间,例如,遍及光瞳)归因于不对称工艺变化的信号污染及反映叠加信息的“理想”信号完全解除耦合及解相关,此导致景观中的其中不准确度为零的特殊点。此事件在以下意义上为普遍的:在这些点处与多种工艺变化(例如,侧壁角不对称或底部倾斜)相关联的不准确度在景观中的完全相同的点处大致地且在一些实例中非常准确地变为零。这些观察适用于光瞳叠加散射测量、并排光瞳散射测量以及成像叠加计量,其中差为在这些不同情况中确定景观长轴的主要配方参数。举例来说,在光瞳叠加散射测量中,参数主要为波长、偏光及入射角,而在成像叠加计量中,参数主要为焦点、波长、偏光及入射角,以上参数中的任一者取决于特定设置可理解为离散或连续的。

本发明人已通过观察对景观的计量性能的一阶或更高阶导数的行为来从数据及模拟识别这些点。举例来说,在光瞳叠加散射测量中,举非限制性实例,定义叠加的光瞳可变性varovl,可展示在使用用于每像素信息的特定光瞳权重之后,不准确度在某一波长λr下遵守等式1:

其中发生等式1中所例示的现象所处的点λr将因以下解释的原因而被称为谐振点。

本发明人已进一步查明,不准确度也可在其它参数中呈现谐振(其可类似于等式1予以表示),所述其它参数例如散射计的进口或出口处的偏光角、遍及光瞳的偏光角的变化及/或确定硬件参数及/或算法参数的调谐及/或每像素/每特征模式或主分量/每配方信息的加权的任何其它连续参数(其可处于叠加或信号级)。

其它类型的实例涉及由计量的其它度量(如敏感度或第62/009476号美国专利申请案中所提及的任何其它信号特性化度量,所述美国专利申请案以全文引用的方式并入本文中)取代varovl。本发明人还已发现,在通过测量跨越谐波(可将成像信号分解为所述谐波)的叠加结果的可变性的量取代光瞳上的散射计varovl之后及通过由成像计量焦点取代等式1中的连续波长参数,在成像叠加计量的上下文中发生等式1。

本发明人强调,据发现等式1在varovl的最小值及最大值两者及上文所论述的varovl的其它实现中有效。此外,本发明人已使在散射测量上下文中以最小值及最大值成为等式1的基础的物理学与使目标单元中的两个光栅分离的膜堆叠(即,中间膜堆叠至少部分作为光学振腔,所述光学谐振腔具有作为其(衍射)镜的光栅)内部的(在信号中或敏感度中的)不同类型的干扰现象有关。本发明人注意到,这些干扰现象可视为类似于膜堆叠中的fabri-perot谐振。明确来说,本发明人已观测模拟中的现象且已开发解释理想信号的行为及其归因于不对称工艺变化的污染的模型以展示这些类fabri-perot谐振的干扰确定跨越光瞳点的信号的相依性,所述相依性又造成所述信号与光瞳上的工艺变化引发的不准确度造成的污染解相关,且因此导致零不准确度(一旦在光瞳上适当加权每像素信息)。举例来说,此类类fabri-perot谐振反映以下事实:载送关于底部及顶部光栅的叠加的信息的电场分量之间的相位差为特定波长及入射角的π的整数倍(π×n)。此相位差主要由使顶部光栅与底部光栅分离的光学路径差控制。此造成在光瞳信号上出现其中叠加敏感度为零或最大(此取决于整数n)的特殊轮廓的出现,此指示上文所描述及提到的谐振。通过某一光瞳平均化,可展示不准确度与等式2中表示的在归因于不对称工艺变化的信号污染与每像素敏感度之间的相关性成比例:

其中对集光光瞳坐标求积分。本发明人已发现在发生类fabri-perot谐振时,等式2中的积分消失。举例来说,当零敏感度的轮廓出现于光瞳上时,可经设计以与零交叉而并未与零交叉,且此造成取消光瞳上的每像素不准确度到零。此在其中存在varovl的最大值的波长下发生。在其中varovl最小且其中交换角色(即,与零交叉但并未与零交叉)的点处发生类似情形,从而仍造成积分消失,这是因为相对较平坦,而信号污染可变且因此等式2消失达到良好准确度(参见下文图3b中的论证)。

图6c是根据本发明的一些实施例的零敏感度轮廓及其利用的高级示意性说明。图6c示意性地说明相对于各种参数的度量的值的n维空间(由多个轴说明),所述参数例如光瞳参数(例如,光瞳坐标)、照明参数(例如,波长、带宽、偏光、变迹等等)、算法参数(例如,计算方法及所使用的统计量)及目标设计参数(例如,目标结构、目标配置、层参数等等)。应注意,所述参数中的任一者可为离散或连续的,这取决于特定设置。零敏感度轮廓被示意性地说明,如图1、2a、2b及3a(参见下文)中更详细例示。本发明人已发现虽然零敏感度轮廓上的不准确度可非常大且甚至发散,但从围绕所述零敏感度轮廓的区域(示意性地说明为方框)处的加权平均化导出的度量值可非常小或甚至消失。应注意,加权平均化度量所在的区域可相对于参数(例如,一或多个光瞳坐标及/或一或多个照明参数及/或一或多个目标设计参数等等)的任何子集予以定义。此惊人结果可用于改进准确度及测量程序,如由本文中所揭示的实施例所例示。

图2a及2b说明根据本发明的一些实施例的指示谐振的示范性模拟结果。图2a及2b说明如√(varovl)的光瞳3s且展示不准确度在(由图2b中的虚线明确指示的)varovl的极值处消失。经模拟的特定不对称是用于不同前端工艺的“侧壁角”不对称类型。针对其它不对称类型观测到相同现象。

图3a及3b说明根据本发明的一些实施例的指示信号及不准确度的额外示范性模拟结果。图3a说明前端先进工艺中的光瞳散射测量对波长的不准确度及光瞳3s(其指示不准确度在最大变化处消失,类似于图2a、2b),且图3b说明都用于来自中间频带(|ypupil|<0.05)的光瞳信号的横截面的每像素理想信号(a)及信号污染(10·δa),其中y轴用任意单位。应注意,在图3b中理想信号(a)与零交叉接近于谐振,而称为δa的信号污染保持具有相同符号。

在下文中,相对于工艺变化效应的对称性分析不准确度景观。叠加计量技术通常测量信号的对称性破坏。归因于工艺变化(pv)的一些缺陷除了归因于叠加的不对称之外也可引发待测量的目标中的不对称。此导致在满足由工艺要求的叠加计量预算规格时可为关键的叠加测量中的不准确度。虽然克服那些问题的现有技术方法论是建置在训练中将用特定配方(波长、偏光及变迹)测量的工艺稳健目标设计,但本发明的某些实施例提出分析及实验性方法以识别不准确度景观中的其中不准确度预期消失的点或线且大体理解所述景观以特性化不准确度源。

举例来说,包括光栅覆光栅结构的目标可被视为具有特定性质及定义其景观的波长光谱中的特征图的光学装置。此景观对不对称工艺变化(使所述目标内部的对称性破坏的pv,例如单元对单元变化或单元间变化、光栅不对称等等)以及对称工艺变化(并不使相同目标内部的对称性破坏但导致不同目标之间的变化的pv,例如不同厚度、不同目标之间的层的n&k变化等等)敏感。跨越晶片的不同对称工艺变化可导致景观以使得经测量目标设计在晶片的边缘处可不再工艺稳健的方式移位,与所述晶片的中心比较在晶片的所述边缘处预期重要pv(对称及不对称两者)。由这些因子中的任一者造成以及由取决于工作循环、间距等等的目标设计自身造成的不准确度可以具有波长光谱中的独特特征图的信号为特征。此特征图或景观可由敏感度g及敏感度的任何光瞳矩及/或敏感度的任何单调函数、由光瞳3s(λ)(光瞳平面处)度量或由其它度量揭示。光瞳3s(λ)的景观可大概划分成两个区域:其中不准确度表现为dpupil3s(λ)/dλ的峰值的区域及峰值之间的平坦区域,如图2a中所展示。那些不同区域拥有光瞳中的确定不同准确度行为的明确定义的性质。

目标的特征图可由以下各项予以定义:峰值及平坦区域的数目及顺序性;峰值之间的距离;及在其它度量中由其在光瞳图像中的转换方式定义的峰值的复杂度。本发明人注意到,光瞳3s或不准确度的不同强度并不定义不同景观(或目标特征图)但定义相同不对称工艺变化的不同强度。此观测被称为“ls不变性”。

此外,本发明人注意到,工艺变化可被划分成对于相同目标将不同地影响其景观的两个类别,即,对称工艺变化及不对称工艺变化。

对称工艺变化并不使相同目标的两个单元之间的对称性破坏,及/或并不引入超出叠加及经引发的偏移的任何单元间不对称。举实例,一或多个层的厚度在晶片的位点的目标中相对于经定位于不同位点中的相同目标改变。来自那两个不同目标的散射波之间的光学路径差(opd)将导致景观全局移位(高达数十纳米),从而在一阶近似中保持本文上文定义的相同性质。图4是根据本发明的一些实施例的描绘在对称工艺变化下使景观移位的模拟结果的示范性说明。图4说明光瞳3s及不准确度景观仅在使对称工艺变化(pv,在所说明的情况中为层厚度变化)的量值从0经由3nm及6nm改变到9nm之后移位。图2a、2b及3a中所说明的光瞳3s及不准确度的消失点的对应性在景观移位之后被维持,且仅在不同波长下发生。也应注意,几纳米尺度的工艺变化造成景观数十纳米尺度的移位。对任何给定波长的结果表示相应配方结果。进一步应注意,工艺变化使景观从其中不准确度为低的平坦区域移位到其中不准确度可为高的谐振区域,且可因此将大不准确度引入到配方中,所述配方根据现有技术考虑被视为具有低不准确度。

不对称工艺变化是使目标内的对称性破坏的工艺变化。这些可以非限制性方式划分成不同主要类别,例如单元对单元变化、光栅不对称、算法不准确度、非周期工艺变化。单元对单元变化表示目标的两个单元之间的变化(例如,两个单元之间的厚度变化、单元之间的不同cd(临界尺寸)等等),所述变化也可使景观与其强度成比例地移位,但相较于对称pv通常在显著较少程度上移位。归因于单元对单元变化的景观的不准确度及移位也取决于叠加。光栅不对称是与目标的光栅具有相同周期的不对称(例如,光栅的swa(侧壁角)不对称、不对称表面构形变化等等),所述不对称在一阶近似中并不取决于叠加。算法不准确度是归因于对信号行为的特定数目个假设,且其景观行为与不对称工艺变化的情况相同。非周期工艺变化使目标单元中的周期性(例如,来自边缘的衍射、归因于单元的有限大小的周围环境的光污染、引发跨越单元的光栅分布变化的单元间工艺变化等等)破坏,且可有效地视为先前提及的工艺变化的组合。

这些区别可以不同方式用于改进计量测量的准确度。举例来说,在(例如,使用测量数据或模拟)遍及晶片映射预期工艺变化(例如,在ls不变量方面)之后,遍及晶片的目标设计可经设计以通过使景观相对于工艺变化的移位在适当方向上移位来适应所述工艺变化(参见图4)。在另一实例中,晶片的不同位置中的不同目标可在训练中被分类,且接着就ls特征方面进行比较。某些实施例包括调整不同位点上方的照明的波长(或其它合适物理或算法参数)以便保持在景观的相同位置处,即,通过对应光学(照明)变化来补偿工艺变化。在某些实施例中,可选取景观的特定区域以以最大准确度来进行测量,例如,通过调整照明波长或照明的光谱分布或另一物理或算法参数以优化如由给定度量定义的计量准确度。本发明人注意到,分析及使用对景观的理解能够改进计量对于工艺变化的效应的恢复性及优化测量配方。

某些实施例包括根据导出的景观来指派及优化像素权重以降低不准确度。假设至少两个叠加散射测量,散射测量单元中的一者具有经设计的偏移f1,且散射测量单元中的另一者具有经设计的偏移f2。在线性型态中,理想散射测量信号呈现仅归因于(例如,光栅覆光栅单元中的光栅之间的)偏移的光瞳不对称d,且遵守d(x,y,of)~of,其中所述单元的总偏移of针对两个散射测量单元分别等于f1+ovl及f2+ovl,且ovl指示叠加。

使用全部照明像素表示晶片的电磁响应的独立分量的事实,可在每像素基础上测量叠加。所述每像素叠加对应地由ovl(x,y)指示,(x,y)为像素坐标。虽然在缺乏目标缺陷及噪声的情况下每一像素具有相同叠加值,但不同像素对叠加的敏感度改变且可由两个单元d1(x,y)及d2(x,y)中的每一者上的差分信号之间的每像素差近似计算。为获得叠加的最终估计,使用优化的每像素权重平均化从许多个别像素获得的值以改进准确度。下文解释每像素权重的导出,其可以分析方式表示且可通过训练或以模拟实施。

例如,通过识别以下类型的景观区域可导出及特性化特定敏感度景观:(i)(例如,如图2a中所说明在峰值之间的)平坦区域,其具有平坦光瞳每像素叠加相依性且因此具有叠加相对于相应变量(例如照明波长)的小导数,平坦区域也主要为准确的;(ii)简单种类的谐振区域,其含有跨越波长的光瞳叠加可变性的简单零敏感度光瞳轮廓及简单峰值,具有不准确度的零交叉(例如,如图2b中所说明)。本发明人注意到,在(如(ii)中定义的)具有定义为的同奇偶性的任何两个谐振区域之间,存在“良好”平坦区域,即,含有(如(i)中定义的)不准确度的零交叉。因此,沿着两个同奇偶性谐振区域(ii)之间的平坦区域(i)求叠加值的积分导致准确叠加的非常良好估计,即,沿着两个同奇偶性谐振区域之间的区间的不准确度的波长积分非常接近零。可通过在多个波长下执行多个测量来执行识别这些区域以导出及改进每像素权重以及用于选择最准确景观区域。在某些实施例中,其它照明变量(例如,偏光及变迹)可用于特性化不准确度景观。此方法可在其遍及变量值的范围分析敏感度行为以将光瞳算法调谐到具有准确报告的叠加值的点以及在变量值范围中对任何点提供准确度测量的意义上特性化为全局性的。

此求积分可经一般化以包括在景观中的任何连续轴(如波长)上方的不同加权或未加权的积分及/或执行等式2到4中论述的形式的信号的拟合,其中将光瞳坐标(x,y)一般化为包含其它参数(如波长、偏光、目标设计、变迹等等)的经一般化的坐标集合。

除了使用如上所述的景观的局域性质之外,在某些实施例中也通过考虑经延伸的连续景观区域的性质及甚至考虑景观的全局特征来获得更多信息。可使用景观的在各种稀疏分散的点中的已知性质(例如敏感度)以便确定所述景观中哪些区域需要较密集取样且哪些不需要。本文中提供确定景观的不同区域所需的取样密度的算法。谐振及/或峰值的存在可用于决定哪些区域必须以较高密度取样且对于哪些区域较低密度足够以实现各种度量的景观的有效测量。某些实施例包括通过测量尽可能少的点来绘制景观的适应性算法。应注意,根据本文中所揭示的原理,只要适当实施取样,景观甚至不能部分连续。

景观的满足某些性质的连续区域的尺寸可用作相应量度以量化这些区域对于对称工艺变化的稳健性。用于此类性质的实例包括(例如)低于或高于阈值的某一计量度量;计量度量的导数的大小或甚至相对于跨越景观的连续参数的叠加的导数的大小等等。可使用峰值区域及平坦区域的相对大小定义对称工艺稳健性测量。

(例如,叠加或叠加变化值的)景观的在连续峰值(例如,谐振)处的斜率的相对符号可用于确定所述连续峰值之间的相应中间平坦区域是否为准确平坦区域。举例来说,本发明人已查明,某些度量(例如,光瞳平均每像素敏感度)的符号翻转的数目对于工艺变化为稳健的、几乎不变且因此可用作进行关于景观的稳健陈述的方法。举例来说,在每一简单谐振中,光瞳平均每像素敏感度的符号改变。此可用于检测谐振是否为双谐振而非简单谐振或谐振是否已由稀疏景观取样算法而缺失。本发明人已使用此信息来检测定位成相对远离谐振的测量点之间的谐振的存在。可根据计量度量的符号翻转的数目识别峰值,且可能根据所述计量度量的符号翻转的所述数目将所述峰值特性化为简单或复杂峰值。

可遍及相应区域类型求具有经确定为在景观的平坦或谐振区域中振荡的不准确度的某些计量度量的积分以以良好准确度获得值。可遍及一或多个指定景观区域求计量度量(例如,叠加)的积分以提高测量准确度。

在某些实施例中,某些计量度量在跨越晶片上的位点的景观的不同、可能相距较远的区域中或遍及其它参数的相关性用于预测度量中的独立性的程度,即,所述度量在对称工艺变化及不对称工艺变化两者下是否不同地表现。某些实施例利用经推论的独立区域,借此评估计量度量或对其测量的叠加的有效性。

在不需要景观的全面分析的意义上某些实施例包括更多特定方法。举例来说,可通过优化光瞳像素的数目及位置及权重来平均化每光瞳像素叠加值以找出所述每光瞳像素叠加值的可变性的最大值及最小值。例如,为实现优化,可检测光瞳中的零敏感度轮廓线且可相对于这些线以某一方式定义光瞳中的所关注区域(roi)以实现最大值及避免获得最小值。应注意,保持用于平均化的像素的区域可或不可形成光瞳上的经连接分量。如果所述分量未连接,那么其位置可由每像素敏感度的值及所述敏感度的符号确定,可通过观测经测量的差分信号之间的差来实时(onthefly)检测所述符号。在某些实施例中,可通过将优化成本函数定义为遍及光瞳的平均敏感度的单调递减函数及/或每像素敏感度的单调递增偶函数来优化像素选择。模拟及理论展示两个方法论在景观的不同部分中可成功,这是因为不准确度趋于在具有拥有相对符号的敏感度的像素中取消,优化取消通常由每像素可变性及/或成本函数的极值指示。应注意,选择待平均化的像素可在运行中或在训练中及由算法或硬件(如同第7,528,941号及第8,681,413号美国专利以及第13/774025号及第13/945352号美国专利申请案中所论述的光透射调制器,所述专利申请案以全文引用的方式并入本文中)来实施。在后者情况中,优化也可在场叠加散射测量中实施。

某些实施例包括通过分级信号及/或物理激发的像素群组(如具有入射k向量的共同x分量的那些像素群组)的叠加值且接着非一致地平均化这些频格以补偿一方面(通过选择照明光瞳几何结构及/或振幅传输确定的)照明光瞳透射函数与另一方面ovl信息内容遍及物理光瞳的分布之间的失配,从而在几何学上来分配光瞳权重。举非限制性实例,在光栅覆光栅scol目标的许多情况中,ovl信息主要在光栅周期性的方向上遍及光瞳改变。某些实施例包括适当选取的几何权重以适应此。

某些实施例包括准确度改进算法,其相对于两个或多于两个测量点内插及/或外插景观(信号及每像素叠加值)以产生取决于控制新信号连接到所收集的原始信号所借助的方式的连续参数的连续人工信号。接着,可探究参数的连续空间作为可相对于内插/外插参数优化的对应预选择的成本函数的景观。接着,优化点定义人工信号,从所述人工信号计算准确叠加。优化函数可由与所述人工信号有关的任何度量(例如其平均化的敏感度、敏感度的均方根(rms)、叠加光瞳可变性、叠加的经估计的精确度(依据工具的噪声模型)及以全文引用的方式并入本文中的第62/009476号美国专利申请案中所论述的其它光瞳标志及/或其相应逆度量)组成。在成像叠加计量的上下文中,可应用类似方法论,其中由跨越谐波的叠加可变性及/或图像对比度及/或测量的经估计的精确度取代优化的函数。这些算法报告的最终叠加是对应于未实际测量但准确的景观中的特殊点上的叠加或其一般化的经近似计算的人工信号的叠加。

此外,在某些实施例中,景观可包括从两个或多于两个测量导出的更复杂信号,举两个非限制性实例,例如组合可通过使用一或多个参数加权或调谐的多个测量的参数景观或具有来自在信号的不同维度下的不同测量的贡献的多维信号。所述多个测量可为光瞳平面中及/或场平面中的相对于目标的原始测量或经处理的测量。在参数景观的情况中,可调整参数以(i)产生具有指定特性(例如谐振峰值的数目、位置及特性)的景观,(ii)相对于指定度量优化所述参数景观及/或(iii)提高叠加测量的准确度。所述调整可利用现象学模型。所述景观可视为通过可能根据指定参数组合(光瞳平面中或场平面中的)多个原始信号及/或经处理的信号来计算的人工信号。所述经产生的人工信号可通过改变参数来修改。所述人工信号可根据某些度量优化且用于进行准确叠加测量。(光瞳平面中或场平面中的)原始信号及/或人工信号可拟合到现象学模型以获得用作拟合参数的叠加及其它计量度量。举例来说,通过使用信号与理想信号的偏差的现象学模型,经测量信号可拟合到所述模型。在拟合中,拟合参数可包括叠加及描述与理想信号的偏差的参数,且可从所述拟合获得准确叠加及信号与理想信号的所述偏差。

某些实施例包括准确度改进算法,其以全部由一或几个参数的变化控制的不同方式处理单个信号。举例来说,每像素权重可以连续方式改变,且在使其总是为每像素敏感度的连续递增函数时,使定义此函数的n个参数跨越空间且使此空间中的原点为外插所到的(但其中归因于工具问题不可测量的)特殊点。举例来说,那个点可对应于其中仅图像中的最敏感像素确定ovl的点。本文所描述的方法论将叠加的结果外插到v的原点且报告叠加的所述结果为所述经外插点处的叠加,例如,在通过集中围绕光瞳中的具有最大敏感度且与作为可变参数的半径r有关的点的光瞳取样测量叠加时,表达式ovl(r)=a+b×r+c×r2+…可经计算并拟合到所述结果,且接着外插到r=0,这意味着将新叠加引述为等于“a”。

某些实施例包括准确度改进算法,其执行将数据拟合到受基础物理模型及/或经测量层及/或具有类似性质的层的模拟结果启发的模型。可使用至少一个配方参数通过模拟或以预备测量来实施至少一个计量度量的至少一个测量。接着,所述至少一个测量可拟合到描述至少一个计量度量(在非限制性实例中为叠加)对至少一个配方参数的相依性的现象学模型(参见下文实例),且至少一个相应校正的计量度量可从所述拟合导出且用于确定计量配方且根据所述经确定的配方进行计量测量。所述至少一个测量可包括至少一个计量度量对至少一个配方参数的至少部分连续相依性(例如景观),但也可包括单个或离散测量。如上所述,模型预测非理想信号应如何随叠加及描述导致不准确度的因子的其它参数而表现,且通过拟合,叠加以及决定不准确度的所述参数可从测量导出。

在某些实施例中,现象学模型可描述信号类型(例如指定光瞳平面测量(例如,光瞳图像)或指定场平面测量)对至少一个计量度量及对至少一个偏差因子(例如促成可与配方参数有关的不准确度的各种因子)的相依性。在实施与信号类型有关的至少一个测量之后,现象学模型可用于拟合所述至少一个测量以便导出至少一个相应校正的计量度量(例如,经校正的叠加)及对应偏差因子。

在某些实施例中,可根据至少一个导出的经校正计量度量确定计量配方且可根据所述经确定的配方进行至少一个(额外)计量测量。

可从通过模拟或以预备测量导出的至少一个计量度量对至少一个配方参数的至少部分连续相依性(例如,所揭示的景观中的任一者)导出现象学模型。

举例来说,可将差分信号的拟合执行为形式

d(x,y,of)=a(x,y)×of+h(x,y;p1,p2,p3,...)×f(of)等式3

其中在描述如每像素敏感度、沿着景观(例如,沿着可能基于模拟及/或沿着景观的额外信号测量的变量,例如偏光、角度、波长)的每像素敏感度的导数及每像素敏感度的光瞳矩(例如,光瞳平均值、光瞳rms等等)的经测量属性的函数的线性空间v中,f(of)为偏移of的函数且h(x,y;p1,p2,p3,...)为光瞳坐标(x,y)与经拟合参数pi的函数。包含于空间v中的所述函数可从模拟及/或进一步研究确定。举例来说,本发明人已发现,如果空间v含有以上实例,那么在很大程度上改进前端工艺中的特定层中的不准确度,如图5中所论证。图5说明根据本发明的一些实施例的示范性准确度提高算法的模拟结果。图5说明使用及不使用拟合改进算法的先进工艺的前端层中的不准确度。

使用成本函数实施图5中所论证的拟合,所述成本函数一般为用于信号的模型与信号的对应数据之间的距离的递增函数。可按使用情况确定用于定义所述成本函数的范数(在数学意义上),在非限制性实例中为l2(欧几里得(euclidean)范数)、l1及/或l∞(最大范数)。成本函数一般可为跨越像素的平均值且可用均匀权重或用上文所描述的每像素权重中的任一者进行计算。特定来说,所述权重可由下文定义的形成空间v的基础的函数组成。为避免成本函数具有与所关注的拟合参数(其为ovl且在单元的移位中编码ofcell=((设计偏移)cell+ovl))无关的平坦方向的情形,可使用奇异值分解或执行各种此类拟合,且对于每一拟合,计算作为拟合的稳定性及预期精确度的估计的单调递增函数的拟合保真度(给定计量工具的噪声模型)。可根据通常最小平方法通过拟合参数的变化的单调递增函数来确定所述拟合稳定性。接着,用于ovl的最终结果是经计算的拟合的平均值且根据拟合保真度予以加权。所述拟合可在实际信号或其任何有用变换的空间中实施。举例来说,可拟合dcell(x,y)为线性ofcell加上在h(x,y)×f(of)中线性的项及/或可拟合为单元独立加上在中线性的项。

在某些实施例中,任一个或多个参数及明确来说并非必要或并非排他地光瞳坐标可用于分析,例如,照明参数及/或目标设计参数可取代等式2到4中的x及/或y。这些等式中的及(x,y)可用一组自由度取代,所述组自由度可相对于参数中的每一者连续及/或离散且包含例如波长、偏光、变迹的参数、测量配方的其它参数及目标设计的参数。

有利的是,实现了算法及硬件改进,以及改进叠加准确度性能的较佳目标设计。此外,通过使用不同目标设计及/或不同计量配方及/或所揭示的算法使计量对工艺变化对景观产生的效应更具恢复性。

某些实施例提供通过不准确度跨越工具配方的空间改变的方式、将光学叠加转变成有效准确度规尺来从堆叠的准确度特征图导出叠加的真实数据的方法。某些实施例能够使用具有相同配方的不同目标设计或在训练中跨越晶片使用具有相同目标设计的不同配方或使用目标与配方的组合,利用敏感度景观及相应叠加行为的知识。

某些实施例提供使用光瞳信号且更明确来说使用光瞳中(及在非散射测量技术的情况中在通用参数空间中)的零叠加敏感度的轮廓以设计可改进对于叠加的整体计量敏感度、叠加结果的准确度及工艺稳健性的算法的方法。

某些实施例提供通过根据波长的连续或密集取样函数模拟计量准确度或光瞳特性来将叠加计量准确度特性化为照明波长或照明光谱分布的函数的方法。

某些实施例提供通过根据波长的连续或密集取样函数模拟叠加计量准确度或光瞳特性来选择计量配方的方法。

某些实施例提供通过根据波长的连续或密集取样函数模拟计量准确度或光瞳特性的叠加计量目标设计的方法。

某些实施例提供通过根据波长的连续或密集取样函数模拟计量准确度或光瞳特性的配方选择或优化的方法。

某些实施例包括描述景观的部分及景观中的准确度尤其缺乏区域的多次散射模型,所述多次散射模型可用于识别这些景观特征且在相应算法及计量方法论中实施,以及选择提供如上文所解释的低不准确度的测量参数。下文提出的模型已通过模拟结果验证。举例来说,在非限制性实例中,由对应于逻辑14nm节点的参数,λr=477nm的光瞳中心处的轮廓可用于显示产生低不准确度的照明波长。在来自简单分析模型的结果与完整rcwa(严格耦合波分析)模拟的比较中,后者显示λ=500nm为低不准确度照明波长,这与来自单次散射模型的结果吻合。

本发明人已研究照明光的带宽的效应且发现对于光瞳叠加散射测量,可使用照明带宽作为额外硬件参数以控制景观、改变信号特性(例如,叠加方差)的景观导数及视需要使敏感度平滑。

在成像上下文中,此行为与信号污染与理想信号之间的相关性在某一焦点片段处消失的方式有关,且描述此的等式保持与上文等式2相同(通过适当映射参数)。

某些实施例可通过使用上文提及的度量将硬件调谐到谐振点及改变确定与所述谐振点的接近度的硬件参数(如波长、偏光、四分之一波片定向、焦点等等)来利用这些结果。

某些实施例包括以确定与谐振的接近度的硬件参数的不同值测量,及将叠加值及优化度量(例如,varovl或敏感度)外插或内插到谐振点。

从在硬件参数的不同值下的信号、测量像素或光瞳信号的主分量的线性组合产生新信号。所述线性组合由算法参数决定且找出最佳算法参数,此找出上文提及的度量的极值。本发明人发现在算法参数等于其中经优化的度量具有极值的值时,可通过比较在算法调谐之前及之后的经优化的量的值来确定不准确度相较于其从原始信号导出的值是否较小。

某些实施例使用信号特性(如varovl及敏感度)的差分以如上文所解释及根据景观上的梯度(等式1的左侧)在景观中的不同区域之间区分及识别景观中的有用区域以应用所揭示方法。举例来说,本发明人发现varovl自身的值、相对于硬件参数的ovl导数及varovl相对于硬件参数的导数是用于分割景观的良好指数。所揭示的方法论可在运行时间应用以用于配方优化,及也用以补偿(例如)归因于对称工艺变化的实时景观移位。景观中的谐振点为尤其有价值的指示项,这是因为其允许实时有效调谐。本发明人已进一步发现在从单个膜层(在底部光栅与硅衬底之间缺乏块状材料)构造叠加标记时上文现象变得尤其稳健。计量目标可因此经设计以通过使用(例如)目标的底部光栅下面及/或目标的底部光栅内的金属沉积的虚设(小尺度结构)及分段来最小化到底部光栅下面的电磁穿透。

本发明人已发现在存在类fabri-perot现象的情况下在等式4、5中表示的以下关系式可成立。

其中c(λ)及b(λ)是纯量且d(x)、e(x)、f(x)及g(x)是一些已知函数,例如,f(x)=x3。在某些实施例中,等式4可用于通过基于等式4将实验varovl拟合到varovl的估计中来提供来自数据的信号污染的每像素估计。因为许多零不准确度谐振的景观是通过标称堆叠及目标设计表现的方式而非通过不对称工艺变化确定,所以某些实施例提供产生含有不准确度的此类零交叉且可易于由varovl的极值识别(例如,通过调谐目标参数以控制沿着相关参数轴的ls移位)的景观的目标设计。在非限制性实例中,可通过增加半间距到经引发的偏移来在ls中移动谐振。

某些实施例包括使工艺变化与叠加分离的以下方法论。给定每像素差分信号d1(pxl)及d2(pxl),以下x及y可定义为:不同类别的信号污染(如条不对称或从目标的垫1到垫2的膜厚度变化)如等式6中所表示进入信号:

xideal→xideal(pxl)+∑mδpm×fx,m(pxl)等式6

其中δpm为来自标称(理想)堆叠的工艺变化的像素独立量值,且fx,m、fy,m是可(例如)从模拟推断的工艺变化如何影响x及y的对应光瞳相依性。接着,通过每位点优化,等式7的成本函数,

χ2≡<((x-∑mδpm×fx,m(pxl))-∈×(y-∑mδpm×fy,m(pxl)))2>等式7

其中∈≡ovl/f0,参数∈及δpm可从拟合提取。

有利的是,某些实施例允许实时及在训练中调谐到景观中的零不准确度点及提供工艺稳健方法,所述方法在存在工艺变化的情况下不失效且并不一定需要用于配方优化的模拟或用于配方优化的较大努力。所揭示方法可应用于成像、散射测量及/或μdbo(μdbo是基于微衍射的叠加,如第8,411,287号美国专利中所描述)。

图11是说明根据本发明的一些实施例的方法100的高阶流程图。方法100可至少部分由(例如)计量模块中的至少一个计算机处理器实施。某些实施例包括计算机程序产品,所述计算机程序产品包括计算机可读存储媒体,所述计算机可读存储媒体具有与其一起体现且经配置以实施方法100的相关阶段的计算机可读程序。某些实施例包括通过方法100的实施例设计的相应目标的目标设计文件。

方法100可包括导出及分析一或多个计量度量对一或多个配方参数的至少部分连续相依性(阶段105)及根据所述经分析的至少部分连续相依性确定一或多个计量配方(阶段128)。方法100可包括:根据至少一个计量度量(例如,叠加变化测量)对测量的至少一个相应参数的相依性中的至少一个经识别的极值选择用于执行至少一个计量测量(例如,叠加测量)的至少一个参数值(阶段130);及使用所述所选择的参数值执行计量测量(阶段350)。方法100可进一步包括通过模拟或以预备测量导出相依性(例如,离散点、景观及/或连续函数,其中的任一者可能多维)(阶段110),例如,通过导出或测量一或多个计量度量对一或多个测量参数的相依性。方法100可进一步包括识别相依性或景观中的极值(阶段120),例如,通过使度量相对于参数的函数相依性的导数为零以分析方式识别所述极值(阶段122),或根据测量及/或模拟结果以实验方式来识别所述极值(阶段124)。在某些实施例中,方法200可包括(例如)在测量之前实时实施识别120(阶段126)。在某些实施例中,方法200可包括根据经识别的极值可能实时地调整例如测量参数的参数(阶段132)。

在某些实施例中,方法100可进一步包括在景观中或一般在经导出或测量的相依性中识别区域及将区域分类。方法100可包括通过区分平坦区域与峰值来特性化敏感度景观(阶段170)及/或根据相应景观相对于测量参数量化敏感度变化的量值(阶段171)。

方法100可进一步包括使用连续峰值(例如,谐振)处的景观的斜率的相对符号以确定所述连续峰值之间的相应中间平坦区域是否为准确平坦区域(阶段172)。方法100可包括根据景观中的峰值位置确定用于景观的不同区域的所需取样密度(阶段173)。举例来说如,方法100可包括在峰值区域处以高密度取样景观及在平坦区域处以低密度取样景观(阶段174)。

方法100可包括使用峰值区域与平坦区域的相对尺寸来测量对称工艺稳健性(阶段175)。

方法100可包括根据计量度量的符号翻转的数目来识别峰值(阶段176),且任选地根据所述计量度量的符号翻转的所述数目,将所述经识别峰值特性化为简单或复杂峰值(阶段177)。

方法100可进一步包括遍及景观区域求计量度量的积分(阶段178),及可能使多个计量度量遍及指定景观区域相关,以验证计量测量(阶段179)。

方法100可包括以下各项中的任一者:识别景观中的零敏感度的点及/或轮廓(阶段160);识别(尤其分层的)目标结构之间的中间膜堆叠中的谐振(阶段162);及使用单次或多次散射模型以识别景观中的零敏感度的点及/或轮廓(阶段164)。方法100可包括(例如)在连续测量之前不久实时识别点或轮廓及分别调整参数(阶段165)。

方法100可进一步包括根据景观中的零敏感度的经识别的点及/或轮廓来分级来自光瞳的部分或相对于指定参数(例如,测量配方参数)的信号(阶段166)。方法100可进一步包括选择不准确度消失时的照明波长及/或光谱分布(阶段168)。

在某些实施例中,叠加计量测量可对光栅覆光栅散射测量目标或并排散射测量目标,且至少一个参数可与光栅之间的光学路径差有关,且包括以下各项中的至少一者:光栅之间的中间层的厚度、测量波长、入射角、反射角、入射光及反射光的偏光性质、目标几何结构参数,以及光栅及光栅之间的中间层的电磁特性。在某些实施例中,所述至少一个参数可包括以下各项中的至少一者:测量波长、入射光及/或反射光的偏光,及入射角及/或反射角。

在某些实施例中,叠加计量测量可对成像目标,且至少一个参数可与目标结构之间的光学路径差有关,且包括以下各项中的至少一者:目标结构之间的中间层的厚度、测量波长、入射角、反射角、入射光及反射光的偏光性质、目标几何结构参数,以及目标结构及目标结构之间的中间层的电磁特性,及测量工具焦点。在某些实施例中,所述至少一个参数可包括以下各项中的至少一者:测量工具焦点、测量波长、入射光及/或反射光的偏光,及入射角及/或反射角。

在某些实施例中,方法100可包括应用一或多个权重函数,以跨越光瞳像素平均化度量,以实现低不准确度(阶段150)。举例来说,方法100可包括相对于景观(例如,敏感度景观)来确定所述权重函数(阶段152)。方法100可进一步包括根据跨越光瞳的权重函数来计算叠加或其它度量(阶段154)。

方法100可进一步包括通过模拟或测量不对称工艺变化及对称工艺变化对导出的相依性的效应来使所述不对称工艺变化与所述对称工艺变化分离(阶段140)。某些实施例包括量化由对称工艺变化造成的景观移位(阶段190),及根据预期景观移位来选择测量设置(阶段192)。举例来说,方法100可包括:选择所述测量设置以呈现对于预期景观移位的低敏感度(阶段194);通过造成景观的相反移位的对应目标或测量设计来抵消预期景观移位(阶段196);根据相应位点中的预期景观移位将测量参数拟合到不同目标位点(阶段198);及/或根据所述预期景观移位来选择照明波长及/或光谱分布(例如,带宽)(阶段200)。

方法100可包括使用一或多个测量,相对于一或多个参数,导出作为参数景观的景观(阶段180),且可能(例如,使用现象学模型)调整所述参数,以相对于指定度量来优化所述参数景观,及/或提高叠加测量准确度(阶段182)。

在某些实施例中,方法100可包括:根据离散测量或数据内插或外插连续人工信号景观(阶段184);通过将离散测量或数据拟合到基础物理模型来构造所述连续人工信号景观(阶段186);及将成本函数应用于所述人工信号景观(阶段188)。

方法100可进一步包括根据景观(例如,敏感度景观)优化计量配方及/或硬件设置以实现低不准确度(阶段210)及/或将硬件参数调谐到景观中的零敏感度的点及/或轮廓(阶段212)。

在某些实施例中,方法100可包括通过比较度量的估计与测量数据来估计每像素信号污染(阶段220)。

方法100可进一步包括设计计量目标以产生低不准确度(阶段230),举例来说,根据经模拟景观(例如,经模拟的敏感度景观)设计所述计量目标(阶段232)。在某些实施例中,方法100可包括配置中间膜堆叠以以指定测量参数产生谐振(阶段234)及/或最小化在目标的下部结构下面或目标的下部结构处的电磁穿透(阶段240),例如,通过设计目标以在其下层处或下层以下具有虚设填充或分段(阶段242)。

方法100可进一步包括:围绕低或零不准确度点或轮廓测量叠加及其它计量结果(阶段360);在敏感度景观的平坦区域处执行计量测量(阶段362);及/或执行设计目标的计量测量(阶段364)。方法100的额外步骤在下文解释。

在下文中,提供与经测量衍射信号有关的方法及保真度度量,所述经测量衍射信号在计量工具的光瞳平面处包括至少正负一阶衍射且从包括至少两个单元的目标导出,每一单元具有拥有相反设计的偏移的至少两个周期结构。使用在光瞳像素(其在每一单元处相对于彼此旋转180°)处测量的相反阶数的信号强度之间的差从所述单元的所述经测量的衍射信号计算目标的叠加。可通过求跨越光瞳的差分信号的积分及通过量化跨越光瞳的各种不对称来从光瞳函数之间的经估计拟合导出保真度度量。可在预备阶段应用所述保真度度量以优化计量配方及在运行时间期间应用所述保真度度量以指示发生生产误差。

提出涉及数学方法及统计方式的用于散射测量叠加计量的保真度定量优点。保真度度量可具有纳米单位以量化测量的不准确度相关的不确定度,及允许优化选择配方及目标设置、运行中的标志不准确度问题及提高的准确度。

本发明人已查明,经引入的保真度度量优于量化可重复性估计(“精确度”)及工具不对称贡献(‘工具引发的移位’)的现有技术tmu(总测量不确定度)度量。

经提出的度量可应用于散射测量叠加目标及测量程序及配方。示范性目标包括每叠加方向(例如,x方向、y方向)两个或多于两个单元。图7a及7b示意性地说明根据本发明的一些实施例的印刷于光刻半导体工艺中的在具有中间层93的不同层处具有两个周期结构(例如平行光栅91、92)的目标单元90。图7a是俯视图而图7b是横截面侧视图。在图7a及7b中将叠加、偏移或经组合的叠加及偏移指示为ovl。应注意,单元可具有多个周期结构且所述周期结构可定位于单个物理层处(例如,通过多个图案化步骤制造且接着称之为并排目标单元)。单元通常为按阶数成对的,一对中的每一单元具有指示为±f0的相反设计(引发)的偏移,每一偏移在上部周期结构(通常称为当前层)与下部周期结构(先前层)之间。一对中的一个单元保持+f0纳米偏移且另一单元保持–f0纳米偏移。在下文提出的非限制性实例中,假设目标包括四个单元且类似程序可应用于任何散射测量叠加目标。进一步应注意,度量涉及计量工具的光学系统的光瞳平面处的目标测量。单元的衍射信号经测量且在光瞳像素处测量相对衍射阶(例如,+1衍射阶及-1衍射阶)的信号强度之间的以下差,所述光瞳像素在每一单元处相对于彼此旋转180°。这些差称之为“差分信号”且说明于图8中,图8示意性地说明从单元(图8的左上角及右上角)中的每一者收集的光瞳信号及在下文定义的来自单元(图8的左下角及右下角)中的每一者的差分信号。

差分信号被定义为一阶型态中的像素p的信号强度减去在负一阶型态中的经180°旋转的像素-p的对应强度。每像素信号差分由d(p,偏移)指示且可由等式8中表示的线性形式近似计算:

即,

差分信号d的指数1、2指示其上测量信号的具有等于±f0的经引发的偏移的单元。a(p)在光瞳范围内定义且在下文更详细分析。

图8示意性地说明根据本发明的一些实施例的具有相反偏移的两个单元的光瞳信号及差分信号。光瞳图像95a及95b是分别具有+f0及-f0的经设计偏移的单元90的经模拟测量。每一光瞳图像说明中心零阶衍射信号及标记为正负一阶的两个一阶衍射信号。单位是任意的且箭头指示暗区对应于两个尺度极值中的任一者。nax及nay指示光瞳平面相对坐标。差分信号252a、252b对应于如等式8中定义的d1及d2,具有类似尺度表示。

使用等式8中的定义,通过等式9给定每像素叠加(ovl),其中指示成像元件(例如,ccd,即,电荷耦合装置)的光瞳像素:

等式9因此定义每像素叠加光瞳图像。

光瞳保真度度量经设计以量化成为如下文解释的散射测量叠加(scol)范例的基础的假设的有效性,且可希望找出最佳测量条件连同最佳目标设计以用于产生准确叠加值且希望于运行时间(run)中或在预备阶段(train)期间提供对不准确度引发(非tmu)的叠加可信度水平的估计。

在完美准确度或零不准确度的情况中,通过等式8指示差分信号,其中a(p)为用于两个单元的相同每像素向量。在某些实施例中,保真度度量可通过使用等式10导出a1至a2的每像素拟合来比较与相应单元有关的a1(p)与a2(p):

即,

其中由d1,2指示差分信号的原始光瞳图像且由ovl指示叠加的估计。用于叠加的一种估计可为(例如)标称叠加算法的结果。

图9是示意性地说明根据本发明的一些实施例的从用于单元相反设计的偏移的光瞳函数之间的拟合曲线254b计算保真度度量的图式254。光瞳函数a1及a2在轴上表示,且个别值表示为曲线254b拟合到的圆点254a。在其中遍及整个光瞳a1=a2的理想情况中,曲线254b将为恒等拟合。保真度度量可通过测量(例如)曲线254b的斜率(越接近1越佳)、r2(越接近1越佳)、截距(越小越佳)以及a1与a2遍及光瞳像素的对应性的任何统计参数来量化与恒等的偏差。所述拟合可为可或不可予以加权的最小平方拟合。

在某些实施例中,光瞳保真度度量可从上文关于图5所描述的拟合导出,其中可相对于曲线到测量的拟合的质量来计算保真度度量,举例来说,从所述拟合获得的叠加提供可与标称叠加算法结果比较的替代叠加值。较大差反映两个算法的至少一者的现有不准确度。此外,所得叠加对经选取的每像素权重的敏感度的水平可以[nm]为单位量化以产生额外光瞳保真度度量。

替代地或互补地,拟合测量的优度可用作测量中的噪声(意味着低质量光瞳图像)的指示。额外保真度度量可包括函数h的参数及所述函数h与零的距离。

在某些实施例中,可通过跨越光瞳平均化信号(即,使用如上文关于图5中所描述的量的平均值)及执行与此类平均值的拟合以获得叠加来导出保真度度量。在某些实施例中,可跨越光瞳分析信号的较高统计矩。信号的较高光瞳矩可用于避免此取消及从一阶矩提取符号(如果失去)。新获得的ovl值可与标称ovl比较且所述差可作为光瞳保真度度量。此外,以[nm]为单位量化所得叠加对经选取的每像素权重的敏感度的水平导致额外光瞳保真度度量。

在某些实施例中,光瞳噪声可用作组合若干不同叠加计算方法以估计叠加计算的不确定度的保真度度量,如下文所例示。

可如下计算光瞳噪声度量。可选择一组叠加计算方法,例如,标称scol算法、经修改拟合(参见上文)、光瞳积分法(参见上文)等等。可定义用于每一叠加计算方法的一组对应特性参数。一个特定实例将为选取不同权重(例如,标称权重及其q次幂或阈值)。接着,可使用每一方法及每一参数值计算叠加,针对来自0°晶片旋转的数据计算一次及针对来自180°晶片旋转的数据计算一次。计算两个定向是所要但非必要步骤。接着计算经接收的每一叠加值的统计误差的估计。举例来说,可用作估计。可丢弃此步骤,例如,并不在180°定向中计算叠加。最后,可探究通过修改权重获得的叠加值,且可定义对应度量以表示变化的空间中的叠加值的可变性。举例来说,可仅使用具有低统计误差的值计算经接收的最高叠加值与最低叠加值之间的差。光瞳噪声度量产生每一测量点的以纳米为单位的不确定度。

在应用中,可在配方优化阶段中跨越晶片分析保真度度量(例如上文提出的统计量)。这些统计量可帮助制造者选择最佳测量设置及导致准确叠加值的每层的最佳目标设计。也可在操作期间、在运行中检测所述保真度度量(例如上文提出的统计量)且可从所述保真度度量导出标志以指示不稳定工艺效应。

在某些实施例中,保真度度量可反映围绕k=0(光瞳平面的中心)的每像素叠加中的梯度。模拟已展示,由围绕k=0的在某一方向上具有叠加的显著梯度的每像素叠加呈现的不对称结构指示显著不准确度。图10是例示根据本发明的一些实施例的指示用于对具有由工艺变化引发的不准确度的堆叠执行的模拟的围绕光瞳平面的中心的不对称叠加估计258a的结果的图式258。模拟了在硅上方具有光阻剂的堆叠。所述图表针对不具有工艺变化的堆叠(底部,细线)及具有工艺变化的堆叠(顶部,粗线)展示在-0.1与0.1之间的na(数值孔径)下在光瞳的中心的每像素ovl轮廓。不对称堆叠呈现由箭头258a指示的围绕k=0的不对称。因此图10说明在光瞳的中心处获得的每像素叠加的轮廓,且展示在堆叠中的不准确度引发工艺变化的情况中,光瞳的中心呈现围绕k=0的每像素叠加的较大不对称。

在某些实施例中,可在上文提出的保真度度量的计算中的任一者中对像素指派权重。在某些实施例中,每像素权重可在共轭于光瞳空间的空间中予以定义。明确来说,可选择提高光瞳中(每像素叠加图中或每像素差分信号图中或两者中)的具有拥有特定大小的光瞳长度尺度的特征的权重。为实现此,可执行每像素叠加图(或信号自身)的傅里叶(fourier)分解,及修改分布的处于光瞳傅里叶(共轭)空间的特定范围中的傅里叶分量的权重。

每像素权重的此类修改可产生叠加的不同计算,所述计算可又被比较且用于导出额外保真度度量,且这些计算之间的差可用作不准确度的标志。

在某些实施例中,可导出保真度度量以指示相应分布的三个西格玛(σ)的区域。理论上,每像素光瞳图像内的每一像素应报告相同叠加值,这是因为每一像素表示从单个目标单元反射的不同角。实际上不同像素归因于不准确度报告不同叠加值。像素之间或像素群组(其不像单个像素一样满足精确度准则)之间的变化的量值可被量化且用作保真度度量。应注意,归因于在光瞳平面中进行测量,叠加及其它测量针对跨越光瞳的不同像素或像素群组独立,因此为产生测量不准确度的准确估计以指示工艺变化因子提供机会。

举例来说,光瞳3s度量可在等式11中予以定义:

其中且其中p=像素,ovl(p)=每像素叠加且w(p)=每像素权重。

在一些情况中,等式14中提出的光瞳3s的经加权的估计可与准确度具有小相关性,这是因为区域3s是跨越仅在平均化的像素群组之间的每像素光瞳的变化的度量而非每像素可变性的度量。此类情况的实例是在光瞳遭受源自工具(孔径尺寸)上或晶片(目标尺寸)上的已知物理结构的干扰效应。另一实例是在垂直于光栅的方向上存在不对称。在下文中,提出允许归因于此特定不对称减小光瞳3s的度量。所述结构在光瞳上保持小长度尺度使得在跨越光瞳平均化时波动抵消。解除此效应的度量是下文导出的区域3s度量,其可用作保真度度量。以将光瞳划分成若干区域,其中λ是运行测量所用的波长且l是造成所述现象的物理长度尺度。

每一区域的叠加可使用每像素权重进行计算且根据等式12予以平均化:

其中r是区域且

仅满足统计误差的以下条件的区域被用于计算:所述区域的光瞳西格玛的估计被计算为以在等式13中产生区域3s保真度度量的定义:

针对多种长度尺度l重复以上算法允许定义一系列保真度度量,所述保真度度量又能够精确指出造成不准确度的长度尺度。举例来说,如果造成不准确度的物理过程对应于晶片上的长度尺度l1,那么每像素叠加及每像素信号预期具有按λ/l1的尺度的每像素波动。接着,通过针对l<l1考虑区域3s,求波动的积分,且区域3s保真度并不含有任何不准确度信息。因此,区域3s与不准确度的相关性针对l=l1显著增加,因此指示干扰源的大小。

某些实施例包括使用在垂直于周期结构的方向上的不对称度量作为保真度度量。在下文中,在不限制所提出的方法及度量的一般性的情况下周期结构(例如,光栅)的周期性的方向由x指示且正交于x的方向指示为y。可跨越光瞳图像检测在光栅的方向(x)上的对称性破坏且用于指示叠加误差。然而,在垂直于叠加的方向(y)上的对称性破坏可指示需要考虑的不同误差。这种对称性破坏指示可能工艺变化(例如,y方向上的物理侧壁角、在顶部中的分段与顶部光栅之间的在y方向上的如ovl的目标缺陷)或y方向上的任何其它对称性破坏(例如,沿着y轴的来自目标的边缘/目标周围环境的光的衍射/散射效应)。以下保真度度量称之为y不对称度量且希望指示及量化可在半导体晶片上发生的后三种误差。更普遍来看:对于在“a”方向上测量ovl的scol目标,使用检查相对于b方向反射的像素的光瞳图像中的对称性的b不对称(basymmetry)标志且所述b正交于a的方向。

在某些实施例中,可通过产生光瞳图像(差分信号或每像素叠加)、将光瞳翻转到正交于叠加的方向的方向中及跨新的经翻转光瞳计算平均值及3σ来导出指示正交不对称的保真度度量。

可从可应用于差分信号光瞳或叠加光瞳图像的每像素计算导出y不对称度量。虽然y不对称针对叠加光瞳图像以纳米为单位产生,但其在差分信号光瞳图像上具有百分比形式。在后者形式中,可将y不对称精确指向其上工艺变化更显著的特定单元。

y不对称度量可实时计算且可用作在不同测量设置、目标设计、晶片上或场内的特殊区之间区分的精选参数或质量量度。其跨越晶片的行为及统计量可揭示工艺变化及可帮助设置每层、每晶片及/或每目标设计的最佳测量条件。

若干算法可应用于光瞳平均化,但也存在报告每像素y不对称的选项。用于光瞳平均化的算法中的一者在下文提出。将两个差分信号d1(px,py)及d2(px,py)(如等式8中,d1属于具有经引发的偏移+f0的单元且d2属于具有经引发的偏移-f0的单元)及每像素叠加ovl(px,py)视为起始点。(px,py)指示屏蔽或光瞳平面中的像素坐标;px在测量ovl所沿着的方向上且py在正交方向上。针对单元i=1及单元i=2的ovl中的不对称(以纳米为单位)及差分信号中的每像素相对不对称百分比可通过比较光瞳图像与其在垂直方向上的反射来计算,即,如等式14中所描述比较(px,py)与(px,-py):

其是仅针对py>0定义的每像素量。

无y不对称的每像素叠加可以下方式计算:

每像素叠加经对称化。遵循等式13,可计算消除y不对称的光瞳3s。此允许取消归因于y不对称问题的光瞳3s上的不准确度的部分。

可通过定义量的经加权光瞳平均值来计算标志,但现在权重随着i=1、2改变且平均值中的总和仅针对py>0。所述标志经定义为如等式15中所表示:

tasym(ovl)≡<yasympp(ovl)>w0,等式15

用于光瞳平均化算法的另一实例如下:y不对称对叠加(在正交方向上)的相依性可几乎通过使用等式16中表示的以下度量来取消:

其中δd1=d1(kx,ky)-d1(kx,-ky),δd2=d2(kx,ky)-d2(kx,-ky)。

应注意,上文提出的导数作为在垂直于叠加的方向的方向上的偏移的函数而线性增加。进一步应注意,y不对称度量可用于识别跨晶片的离群点(outlier)。y不对称度量在其实施例中的任一者中可在省略位于平均值±3s的统计边界之外的测量时进行计算。因为y不对称度量是每像素度量,所以其也可用作像素级中的离群点移除。可将y不对称度量应用于光瞳图像,计算y不对称测量的平均值及3s以及将有效限制设置为平均值±3s。位于所述两个限制之间的有效范围之外的全部像素可从用于每像素叠加计算或最终叠加计算的光瞳省略。所述两种类型的ovl计算(具有及不具有经省略的像素)之间的差可作为用于正交方向上的对称性破坏对于ovl测量质量产生的效应的额外量值。

为估计y不对称计算中的不确定度的量,可增加验证阶段,在所述验证阶段中以标准方式计算y不对称度量,接着通过像素向左的移位及像素向右的另一移位来计算。所述三种测量之间的变化可产生y不对称度量计算所需的不确定度的量。

对不同类型的y不对称破坏(如两个层中的正交间距)的模拟已展示,对于给定波长,存在从确实造成显著不准确度的正交间距尺寸到未造成显著不准确度的正交间距尺寸的相当急剧交越行为。举例来说,对于蓝光范围中的波长,观察到此交越行为围绕间距~250nm。对分段间距的此不准确度相依性可用于限制计量目标设计参数空间搜索中的竞争者列表。

在某些实施例中,y不对称度量可用于识别晶片上的经损坏的目标或目标内的单元、较差测量设置及工艺变化。y不对称度量也可用于识别在统计范围外的测量点(如离群点)及也省略对应像素。在某些实施例中,y不对称度量可用于量化对称性破坏及指示目标缺陷(直到单元级)、有偏测量设置或不同工艺变化。y不对称单位在应用于叠加光瞳图像时可为纳米且在应用于原始信号光瞳图像时可为百分比。以纳米为单位的y不对称度量可用于估计工艺问题对叠加不准确度产生的效应。y不对称度量可在测量叠加时在工具上实时计算。y不对称度量可用作在测量设置、不同目标设计、不同场、晶片或批次之间区分的跨越晶片或场的精选参数或品质测量。

返回参考图11,方法100可至少部分由(例如,计量模块中的)至少一个计算机处理器实施。某些实施例包括计算机程序产品,所述计算机程序产品包括非暂时性计算机可读存储媒体,所述非暂时性计算机可读存储媒体具有与其一起体现且经配置以实施方法100的相关阶段的计算机可读程序。

方法100可包括:测量在计量工具的光瞳平面处包括至少正负一阶衍射的衍射信号,所述信号从包括至少两个单元的目标导出,每一单元具有拥有相反设计的偏移±f0的至少两个周期结构(阶段250);及使用在光瞳像素(其在每一单元处相对于彼此旋转180°)处测量的相反阶数的信号强度之间的差从至少两个单元的经测量的衍射信号计算目标的叠加(阶段260)。

在某些实施例中,叠加可计算为其中表示光瞳像素,f0指示经设计的偏移且其中d1及d2指示对应于相反设计的偏移,在相对于彼此旋转180°的光瞳像素处测量的相反阶数的信号强度之间的差。

方法100可进一步包括从由相对于彼此旋转180°的光瞳像素处测量的相反阶数的信号强度之间的差导出的相反设计的偏移的光瞳函数之间的经估计拟合导出至少一个保真度度量(阶段270)。例如,所述至少一个保真度度量可从的线性拟合导出。

方法100可包括通过比较标称叠加值与通过跨越光瞳求在相对于彼此旋转180°的光瞳像素处测量的相反阶数的信号强度之间的差的积分而导出的叠加值来导出至少一个保真度度量(阶段280)。在某些实施例中,可通过跨越光瞳求的积分来计算所述导出的叠加值,其中表示光瞳像素,且d1及d2指示对应于相反设计的偏移,在相对于彼此旋转180°的光瞳像素处测量的相反阶数的信号强度之间的差。求积分280可包括求此类差的一阶及/或更高阶矩的积分(阶段285)。举例来说,可相对于如上文所阐释的的平均值来执行求积分,及/或可相对于的二阶或更高阶矩来执行求积分。

方法100可进一步包括在实施例中的任一者中加权光瞳像素以导出至少一个保真度度量(阶段310)。举例来说,在涉及将曲线拟合到(例如,对应于不同像素的)多个点的实施例中,至少一个保真度度量可包括经估计的拟合的经加权的卡方测量。在某些实施例中,权重可在共轭于光瞳的空间(例如傅里叶共轭平面)中予以定义(阶段315)。

在某些实施例中,方法100可包括使用至少两个叠加值导出至少一个保真度度量,所述至少两个叠加值与对应参数相关联且通过以下各项中的至少对应两者导出:(i)使用散射测量算法(即,使用现有技术方法)导出标称叠加值;(ii)估计用于从相对于彼此旋转180°的光瞳像素处测量的相反阶数的信号强度之间的差导出的相反设计的偏移的光瞳函数之间的拟合(例如,通过阶段270);及(iii)比较标称叠加值与通过跨越光瞳求在相对于彼此旋转180°的光瞳像素处测量的相反阶数的信号强度之间的差的积分而导出的叠加值(例如,通过阶段280)。所述至少一个保真度度量可经定义以在不同参数值下量化对应于导出的至少两个叠加值之间的差的可变性的光瞳噪声(阶段300)。举例来说,所述参数包括光瞳平面像素的不同权重。在某些实施例中,可相对于在相对于彼此旋转180°的光瞳像素处的叠加差来执行光瞳噪声的量化300(阶段305)。

方法100可包括从光瞳像素群组之间的经计算的叠加的变化导出至少一个保真度度量(阶段320),其中根据与计量工具的光学系统中的预期干扰源有关的指定长度尺度选择所述群组的大小。可按λ/(l/2)的尺度选择所述群组的所述大小(阶段325),其中λ为照明波长且l为预期干扰源的大小。

在某些实施例中,方法100可进一步包括根据至少一个保真度度量选择及优化测量配方(阶段330)。

在某些实施例中,方法100可包括相对于光瞳平面的中心计算叠加的不对称度量(阶段290)。

方法100可进一步包括在垂直于周期结构的方向上计算不对称度量(阶段340),例如,相对于经测量的衍射信号及/或叠加及通过应用在与(px,-py)比较的垂直方向-(px,py)上反射的光瞳图像的统计分析来计算所述不对称度量。

有利的是,光瞳保真度度量提供用于估计光瞳在其原始形式(作为差分信号)及其最终每像素叠加形式中的有效性的若干方法。所述量值中大多数以纳米为单位,此简化其解释且提供不确定度的测量。光瞳保真度度量中的有些量化了散射测量叠加算法假设保持的水平。所述度量提供用于使用情况的理论检查,在所述使用情况中工艺变化造成目标单元损坏甚至达到不允许将理论指派到晶片上的物理结构的程度。所述度量可在单个测量级及晶片级中使用,以帮助制造者找出晶片上的经损坏区、最佳测量设置及每层的目标设计以用于实现准确叠加结果。可实时计算光瞳保真度度量,以提供每测量点质量测量及晶片统计测量,所述测量将通过报告准确叠加值来陈述用于最大化制造者的产量的最佳测量设置及目标设计。

在以上描述中,实施例是本发明的实例或实施方案。“一个实施例”、“实施例”、“某些实施例”或“一些实施例”的各种表示并不一定全部指代相同实施例。

尽管本发明的各种特征可以单个实施例为背景内容而进行描述,然所述特征也可单独提供或以任何合适组合提供。相反地,尽管为清楚起见本发明可在本文中以单独实施例为背景内容而描述,然本发明也可实施于单个实施例中。

本发明的某些实施例可包含来自上文揭示的不同实施例的特征,且某些实施例可并入有来自上文揭示的其它实施例的要素。在特定实施例的上下文中的本发明的元件的揭示内容不应被视为将其使用仅限于特定实施例中。

此外,应理解,本发明可以各种方式实施或实践,且本发明可在除上文描述中概述的实施例以外的某些实施例中实施。

本发明并不限于那些图式或对应描述。举例来说,流程无需移动通过每所说明的框或状态或以与所说明及描述完全相同的顺序移动通过。

除非另有定义,否则应通常按本发明所属的领域的技术人员的理解来理解本文中所使用的技术及科学术语的意义。

虽然已参考有限数目个实施例描述本发明,但这些实施例不应解释为限制本发明的范围而解释为一些优选实施例的示范。其它可能变化、修改及应用也在本发明的范围内。因此,本发明的范围不应由目前为止已描述的内容限制,而由所附权利要求书及其合法等效物限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1