具有改善的寿命、钝化和/或效率的太阳能电池的制作方法

文档序号:11452949阅读:192来源:国知局
具有改善的寿命、钝化和/或效率的太阳能电池的制造方法与工艺

背景技术
:光伏(pv)电池(常被称为太阳能电池)是用于将太阳辐射转换为电能的装置。一般来讲,照射在太阳能电池基板表面上并进入基板中的太阳辐射在基板主体中形成电子和空穴对。电子和空穴对迁移至基板中的p掺杂区和n掺杂区,从而在掺杂区之间形成电压差。掺杂区连接到太阳能电池上的导电区,以将电流从电池引导至外部电路。当pv电池组合在诸如pv模块的阵列中时,从所有pv电池收集的电能可以按串联布置方式和并联布置方式组合,以提供具有某一电压和电流的电源。效率是太阳能电池的重要特性,因为其直接关系到太阳能电池的发电能力。因此,通常需要用于改进太阳能电池的制造工艺、降低其制造成本以及提高其效率的技术。附图说明图1示出了根据一些实施方案的制造太阳能电池的示例性方法的流程示意图;图2-图4示出了根据一些实施方案的在图1的制造过程期间的示例性太阳能电池的剖视图。图5示出了根据一些实施方案的示例性太阳能电池的剖视图。图6示出了根据一些实施方案的另一个示例性太阳能电池的剖视图。图7示出了根据一些实施方案的又一个示例性太阳能电池的剖视图。图8示出了根据一些实施方案的示例性表面钝化测量值的图表。图9示出了根据一些实施方案的示例性1/寿命测量值的图表。图10示出了根据一些实施方案的示例性效率测量值的图表。具体实施方式以下具体实施方式在本质上只是说明性的,而并非意图限制本申请的主题的实施方案或此类实施方案的用途。如本文所用,词语“示例性”意指“用作示例、实例或举例说明”。本文描述为示例性的任何实施方式未必理解为相比其他实施方式为优选的或有利的。此外,并不意图受前述
技术领域

背景技术
、技术实现要素:或以下具体实施方式中提出的任何明示或暗示的理论的约束。本说明书包括提及“一个实施方案”或“实施方案”。短语“在一个实施方案中”或“在实施方案中”的出现不一定是指同一实施方案。特定的特征、结构或特性可以任何与本公开一致的合适方式加以组合。术语。以下段落提供存在于本公开(包括所附权利要求书)中的术语的定义和/或语境:“包括”。该术语是开放式的。如在所附权利要求书中所用,该术语并不排除其他结构或步骤。“被配置为”。各个单元或部件可被描述或声明成“被配置为”执行一项或多项任务。在这样的语境下,“被配置为”用于通过指示该单元/部件包括在操作期间执行一项或多项那些任务的结构而暗示结构。因此,即使当指定的单元/部件目前不在操作(例如,未开启/激活)时,也可将该单元/部件说成是被配置为执行任务。详述某一单元/电路/部件“被配置为”执行一项或多项任务明确地意在对该单元/部件而言不援用35u.s.c.§112第六段。“第一”、“第二”等。如本文所用的这些术语用作其之后的名词的标记,而并不暗示任何类型的顺序(例如,空间、时间、逻辑等)。例如,提及“第一”发射极区并不一定暗示该发射极区为某一序列中的第一个发射极区;而是术语“第一”用于将此发射极区与另一个发射极区(例如,“第二”发射极区)相区分。在实施方案中,发射极区可以是用于收集正和负电荷载流子的太阳能电池的掺杂区。在示例中,发射极区可以是掺杂多晶硅区。在一个示例中,发射极区可以是p型掺杂多晶硅区或n型掺杂多晶硅区。“基于”。如本文所用,该术语用于描述影响确定结果的一个或多个因素。该术语并不排除可影响确定结果的另外因素。也就是说,确定结果可以仅基于那些因素或至少部分地基于那些因素。考虑短语“基于b确定a”。尽管b可以是影响a的确定结果的因素,但此类短语并不排除a的确定结果也基于c。在其他实例中,a可以仅基于b来确定。“耦接”-以下描述是指元件或节点或特征被“耦接”在一起。如本文所用,除非另外明确指明,否则“耦接”意指一个元件/节点/特征直接或间接接合至另一个元件/节点/特征(或直接或间接与其连通),并且不一定是机械连接。此外,以下描述中还仅为了参考的目的使用了某些术语,因此这些术语并非意图进行限制。例如,诸如“上部”、“下部”、“上方”和“下方”之类的术语是指附图中提供参考的方向。诸如“正面”、“背面”、“后面”、“侧面”、“外侧”和“内侧”之类的术语描述部件的某些部分在一致但任意的参照系内的取向和/或位置,通过参考描述所讨论的部件的文字和相关的附图可以清楚地了解所述取向和/或位置。这样的术语可包括上面具体提及的词语、它们的衍生词语以及类似意义的词语。在以下描述中,给出了许多具体细节,诸如具体的操作,以便提供对本公开的实施方案的透彻理解。对本领域的技术人员将显而易见的是,可在没有这些具体细节的情况下实施本公开的实施方案。在其他实例中,没有详细地描述熟知的技术,以避免不必要地使本公开的实施方案难以理解。本说明书首先描述了改善太阳能电池寿命、钝化和/或效率的太阳能电池制造技术,接着描述了根据所公开的技术制造的示例性太阳能电池。全文提供了各种实施方案,随后是所公开技术的示例性结果。现在转到图1,示出了根据一些实施方案的用于制造太阳能电池的方法。在各种实施方案中,图1的方法可包括与图示相比更多(或更少)的框。例如,在一些实施方案中,可以在步骤102之后但在框106的加热步骤之前,加热在框102处形成的硅区以形成多晶硅区。在100处,可以在太阳能电池的硅基板上形成电介质。在一些实施方案中,可在形成电介质区之前清洁、抛光、平面化和/或减薄或以其他方式处理硅基板。在实施方案中,硅基板可以是单晶或多晶硅基板。在实施方案中,硅基板可以是n型硅基板。在实施方案中,电介质可以是隧道氧化物。在一个实施方案中,电介质可以是二氧化硅。在实施方案中,电介质区可以通过热处理生长和/或形成。在102处,可以在电介质区上方形成发射极区。在实施方案中,发射极区可以是非晶硅区。在一些实施方案中,非晶硅区可以在电介质区上方生长。在实施方案中,发射极区可以是多晶硅。在实施方案中,发射极区可以通过热处理生长和/或形成。在示例中,非晶硅区可以在电介质区上方形成,并被加热以形成多晶硅区。可以通过沉积处理来将发射极掺杂物区沉积在发射极区上方。发射极掺杂物区可以包括掺杂物,诸如正型掺杂材料(诸如硼)或负型掺杂材料(诸如磷)。虽然电介质区和/或发射极区被描述为分别通过热处理生长或通过常规沉积处理沉积,但就此处描述或列举的任何其他形成、沉积或生长处理步骤而言,每个层或物质可使用任何合适的处理形成。例如,凡是述及形成的地方,均可使用化学气相沉积(cvd)过程、低压cvd(lpcvd)、常压cvd(apcvd)、等离子体增强cvd(pecvd)、热生长、溅射以及任何其他所需的技术。因此,并且类似地,可通过沉积技术、植入处理、溅射或印刷处理,诸如喷墨打印或丝网印刷来在基板上形成发射极掺杂物区。在实施方案中,可以进行加热处理以将掺杂物从发射极掺杂物区驱动到发射极区。在一个示例中,加热处理可将掺杂物从发射极掺杂物区驱动到多晶硅区,以形成掺杂多晶硅区。在实施方案中,掺杂多晶硅区可以掺杂有诸如硼的p型掺杂物或诸如磷的n型掺杂物。在一个示例中,掺杂多晶硅区可以形成在交替的p型和n型区中。在一些实施方案中,加热以将掺杂物从发射极掺杂物区驱动到发射极区可以在低于900摄氏度的温度下进行。在104处,掺杂物区可以形成在硅基板的表面上方。在实施方案中,掺杂物区可以通过热处理来生长和/或形成。在一个示例中,掺杂物区可以形成在表面上方,例如太阳能电池的正面上,并且随后可以进行加热处理以将掺杂物驱动到硅基板的一部分中。在实施方案中,如框106中所述,在加热处理之后,硅基板的部分可以具有大约小于或等于2×1018cm-3的掺杂物浓度。在一个实施方案中,掺杂物区可以是n型掺杂物,例如磷。在实施方案中,硅基板的在其上方形成掺杂物区的表面可以是太阳能电池的正面、背面或正面和背面两者。图2示出了具有上文所述的电介质区、发射极区和掺杂物区的示例性太阳能电池。虽然掺杂物区被描述为分别通过热处理生长或通过常规沉积处理沉积,但就此处描述或列举的任何其他形成、沉积或生长处理步骤而言,每个层或物质可使用任何合适的处理形成。例如,凡是述及形成的地方,均可使用化学气相沉积(cvd)过程、低压cvd(lpcvd)、常压cvd(apcvd)、等离子体增强cvd(pecvd)、热生长、溅射以及任何其他所需的技术。图2示出了根据一些实施方案的在形成电介质区、发射极区和掺杂物区之后的示例性太阳能电池。在实施方案中,电介质区210可形成在太阳能电池200的硅基板202上方。在实施方案中,电介质区210可以是隧道氧化物。在一个示例中,电介质区210可以是二氧化硅。在实施方案中,发射极区212可在电介质区210上形成。在实施方案中并如上所述,发射极区212可以是非晶硅或多晶硅。在实施方案中,发射极区212可以是掺杂多晶硅。在示例中,掺杂多晶硅可以是n型掺杂或p型掺杂多晶硅。在实施方案中,掺杂物区216可在硅基板202的表面204上形成。在实施方案中,可以形成掺杂物区216以掺杂表面204(例如,在下面的框106处),从而排斥电荷载流子,并防止和/或减少太阳能电池200的表面204处的复合。在示例中,表面204可以在太阳能电池的正面和/或背面上。在一个示例中,掺杂物区216可以是n型掺杂物区,诸如磷。在实施方案中,掺杂物区216可具有正或负型掺杂物222。在实施方案中,硅基板202可具有污染物和/或杂质220,例如金属污染物和/或金属杂质,诸如铁、镍和/或铬等。金属杂质可能不利于太阳能电池的导电,因为这些杂质可能是复合的来源,从而导致寿命不长、表面钝化和/或较低的太阳能电池效率。在实施方案中,杂质220可位于硅基板202的表面204处或附近。在实施方案中,杂质220可位于硅基板202内,如图所示。如全文所提及的,污染物和/或杂质可以互换使用。发射极区212(例如多晶硅区)可以是上述金属杂质220的良好的接收槽和/或捕集器。可以使用吸杂处理来捕集发射极区212中的金属杂质220,从而减少硅基板202内的复合并改善整个太阳能电池寿命。氧化物和/或隧道氧化物(诸如图2的电介质区210)可能是将金属杂质220吸到发射极区212的障碍。在一个示例中,在900摄氏度或更低的温度下加热可能不足以通过隧道氧化物使金属杂质扩散并进入多晶硅区中。因此,在实施方案中,在高于900摄氏度的温度下加热可包括通过电介质区210(例如隧道氧化物)将金属杂质220吸入发射极区212(例如多晶硅区域)中,如以下图1的106处所详述。在106处,可在高于900摄氏度的温度下加热太阳能电池。在实施方案中,加热可将掺杂物从掺杂物区驱动到硅基板的一部分。在一个实施方案中,加热可包括在硅基板上进行退火处理。在示例中,加热可将掺杂物驱动到硅基板的位于表面上方的部分,如图3所示。在一些实施方案中,该表面可在太阳能电池的正面、背面或正面和背面两者上。在实施方案中,加热可包括将污染物(例如金属杂质和/或金属污染物)从基板吸到发射极区。在示例中,金属杂质和/或金属污染物可以是铁、镍和/或铬等。在一个示例中,加热可包括将太阳能电池放置在热工具中,例如热炉或烘箱等,并将热工具中的温度升高到975摄氏度或更高。在实施方案中,加热可以是太阳能电池制造过程中最后的加热步骤。在一个实施方案中,加热可以是制造过程中唯一的加热步骤。在一些实施方案中,可以在框106的加热处理之前进行至少一个其他加热步骤。在一个示例中,除了框106的加热处理之外的其他加热处理可包括将太阳能电池加热到低于900摄氏度的温度。在示例中,可在106处的加热处理之前进行低于900摄氏度的加热处理。在实施方案中,在106处进行的加热可以在太阳能电池制造过程中进行的其他加热步骤中的最高温度下进行。图3示出了上文所述的加热处理。图3示出了根据一些实施方案加热图2的太阳能电池。在实施方案中,加热230可包括将太阳能电池200加热到900摄氏度以上。在示例中,加热可包括将太阳能电池200放置到热工具中,例如热炉或烘箱等,并将热工具内的温度升高到975摄氏度或更高。在实施方案中,加热230可将掺杂物222从掺杂物区216驱动234到硅基板202的一部分206。在示例中,硅基板202的部分206的掺杂物浓度在加热之后可以大约小于或等于2×1018cm-3。在实施方案中,硅基板202的部分206可以在硅基板202的表面204上方,如图所示。在实施方案中,加热230可将污染物220从硅基板202的表面204或附近和/或从硅基板202内吸到232发射极区212。在实施方案中,加热230可将污染物220通过电介质区210吸到232发射极区212。在108处,可在硅基板上方形成金属触点。在实施方案中,金属触点可形成在发射极区上。在一些实施方案中,可通过金属化处理来形成金属触点。在一个示例中,金属化处理可包括将金属触点镀覆和/或电镀到发射极区。在一些实施方案中,可通过印刷和/或箔基金属化技术来形成金属触点。图4示出了形成金属触点之后的示例性硅基板。图4还示出了例如可在太阳能电池的正面或背面上的单个金属触点。在实施方案中,可存在多个金属触点。在示例中,可以交叉图案形成正金属触点和负金属触点。参见图4,其示出了根据一些实施方案的形成金属触点之后的图3太阳能电池。在实施方案中,金属触点242可形成在发射极区212上,例如在硅基板202上方。在示例中,可通过电镀处理、印刷处理或箔基金属化处理等形成金属触点242。在实施方案中,金属触点242可以是正金属触点或负金属触点。如图4所示,示出了例如可在太阳能电池的正面或背面上的单个金属触点。在示例中,可存在多个金属触点,例如一些为正的,并且另一些为负的。在一个实施方案中,硅基板202可具有在图3的加热230之后剩余的一些杂质221。图5示出了根据一些实施方案的由图1-图4的方法形成的太阳能电池的一部分的横截面。太阳能电池300可具有在正常操作期间面向太阳的正面301和与正面301相背对的背面303。太阳能电池300可包括硅基板302。在实施方案中,硅基板302可以是n型硅基板。在实施方案中,硅基板302的一部分306可具有大约小于或等于2×1018cm-3的掺杂浓度322。太阳能电池300可具有在硅基板302上方形成的电介质区310。在实施方案中,电介质310可以是隧道氧化物。在一些实施方案中,电介质区310可以是二氧化硅。在实施方案中,太阳能电池300可具有第一发射极区和第二发射极区312,314。在示例中,第一发射极区和第二发射极区312,314可分别为p型掺杂多晶硅区和n型掺杂多晶硅区。在示例中,杂质和/或污染物320(例如金属杂质320和/或金属污染物)可位于如图所示的第一发射极区和第二发射极区312,314中。在一个实施方案中,硅基板302可具有在吸杂处理之后剩余的一些杂质321。在实施方案中,太阳能电池300可具有分别形成在第一发射极区和第二发射极区312,314上的第一金属触点和第二金属触点342,344。在一些实施方案中,可形成沟槽区305,其可分割第一发射极区和第二发射极区312,314。在实施方案中,太阳能电池300可以在正面301上具有纹理表面304。在示例中,纹理表面304可以是可提供附加光吸收的表面。在实施方案中,硅基板302的部分306可形成在纹理表面304上方,如图所示。在一些实施方案中,沟槽区305也可以纹理化,类似于纹理表面304,以便从太阳能电池300的背面303进行附加的光吸收。在一些实施方案中,可在太阳能电池300的纹理表面304上方形成抗反射区(arc)318。在一些实施方案中,抗反射区318可以是氮化硅。在实施方案中,太阳能电池300可以是背接触太阳能电池,例如,如图5和图7所示。参照图6,示出了根据一些实施方案的由图1-图4的方法形成的前接触太阳能电池。太阳能电池400可具有在正常操作期间面向太阳的正面401和与正面401相背对的背面403。太阳能电池400可包括硅基板402。在实施方案中,硅基板402可以是n型硅基板。在实施方案中,硅基板402的一部分406可具有大约小于或等于2×1018cm-3的掺杂浓度422。太阳能电池400可具有形成在硅基板402上方的电介质410。在实施方案中,电介质410可以是隧道氧化物。在一些实施方案中,电介质410可以是二氧化硅。在实施方案中,太阳能电池400可具有第一发射极区和第二发射极区412,414。在一些实施方案中,第一发射极区412可以形成在太阳能电池400的背面403上,并且第二发射极区414可以形成在太阳能电池400的正面401上。在示例中,第一发射极区和第二发射极区412,414可以是p型掺杂多晶硅区和/或n型掺杂多晶硅区。在实施方案中,太阳能电池400可具有分别形成在第一发射极区和第二发射极区412,414上的第一金属触点和第二金属触点442,444。在实施方案中,太阳能电池400可以在正面401上具有纹理表面404。在示例中,纹理表面404可以是可提供附加光吸收的表面。在实施方案中,硅基板402的部分406可以在纹理表面404上方,如图所示。在一些实施方案中,可在太阳能电池400的纹理表面404上方形成抗反射区(arc)418。在一些实施方案中,抗反射区418可以是氮化硅。在示例中,杂质和/或污染物420(例如金属杂质和/或污染物)可位于第一发射极区和第二发射极区412,414中。在一个实施方案中,硅基板402可具有在吸杂处理之后剩余的一些杂质421。图7示出了根据一些实施方案的由图1-图4的方法形成的另一个太阳能电池。太阳能电池500可具有在正常操作期间面向太阳的正面501和与正面501相背对的背面503。太阳能电池500可包括硅基板502。在实施方案中,硅基板502可以是n型硅基板。在实施方案中,硅基板502的部分506可具有大约等于或小于2×1018cm-3的掺杂浓度522。太阳能电池500可具有在硅基板502上方形成的电介质区510。在实施方案中,电介质510可以是隧道氧化物。在实施方案中,电介质区510可以是二氧化硅。在实施方案中,太阳能电池500可具有第一发射极区和第二发射极区512,514。在示例中,第一发射极区和第二发射极区512,514可分别为p型掺杂多晶硅区和/或n型掺杂多晶硅区。在一个实施方案中,第二发射极区514可以至少部分地形成在第一发射极区512上方,如图所示。在实施方案中,第二电介质区513可形成在第一发射极区512上方,例如,以将第一发射极区512与第二发射极区514绝缘。在一些实施方案中,第二电介质区513也可以是二氧化硅。在实施方案中,开口515可将第二发射极区514与第一金属触点542隔离。在一些实施方案中,可在太阳能电池500的背面501上方形成电介质区510和第二硅区514。在示例中,杂质和/或污染物520(例如金属杂质和/或污染物)可位于第二发射极区512中,如图所示。在示例中,金属杂质520可以是铁、镍和/或铬等。在一个实施方案中,硅基板502可具有在加热处理之后剩余的一些杂质521。在实施方案中,太阳能电池500可具有分别形成在第一发射极区和第二发射极区512,514上的第一金属触点和第二金属触点542,544。在一个实施方案中,太阳能电池500可具有正面501上的纹理表面504和/或背面503上的纹理表面550,如图所示。在示例中,纹理表面504,550可以是可提供附加光吸收的表面。在实施方案中,硅基板502的部分506可以在纹理表面504上方,如图所示。在一些实施方案中,抗反射区518可形成在太阳能电池500的纹理表面504上方。示例性工艺温度表面掺杂物浓度吸杂位置表面钝化寿命效率a≤900摄氏度2×1018cm-3非多晶硅2fa/cm2约3毫秒基线b≤900摄氏度4×1018cm-3非多晶硅5fa/cm2约10毫秒基线c>900摄氏度2×1018cm-3多晶硅2fa/cm2约10毫秒+0.5%绝对值d>900摄氏度4×1018cm-3多晶硅5fa/cm2约10毫秒基线表1.用于太阳能电池制造的示例性工艺现在转到表1,该表列出了温度和表面掺杂浓度以及输出结果,诸如吸杂位置、表面钝化、寿命和效率,例如制造太阳能电池的工艺。在表1的示例性工艺c中举例说明了图1-图4的方法,其中硅基板表面或该表面附近的掺杂量为大约小于或等于2×1018cm-3,并且示例性工艺c的太阳能电池被加热到高于900摄氏度的温度。示例性工艺c的结果是在硅基板的多晶硅区中吸杂,与其他太阳能电池相比,表面钝化提高了约5fa/cm2,延长了寿命,例如,典型值为约10微秒,并且效率增加了>0.5%(例如参考为基线效率)。相比之下,参考示例性工艺a,硅基板的表面或表面附近的部分的掺杂量大约小于或等于2×1018cm-3,将示例性工艺a的太阳能电池加热至低于900摄氏度的温度导致在太阳能电池的非多晶硅区中吸杂,表面钝化良好,为约2fa/cm2,寿命短,例如典型值为约3微秒,并且与基线相比,效率增加不显著,例如<0.5%。在另一个示例中,参考示例性工艺b,硅基板表面的掺杂量为大约4×1018cm-3,并且将示例性工艺b的太阳能电池加热至低于900摄氏度的温度导致在太阳能电池的非多晶硅区中吸杂,表面钝化差,为大约5fa/cm2,寿命良好,例如,典型值为大约10微秒,并且与基线相比,效率增加不显著,例如<0.5%。在另一个示例性比较中,在示例性工艺d中,硅基板表面的掺杂量为大约4×1018cm-3,将示例性工艺d的太阳能电池加热至高于900摄氏度的温度也导致在硅基板的多晶硅区中吸杂,但表面钝化差,为大约5fa/cm2,寿命长,例如典型值为大约10微秒,并且与基线相比,效率增加不显著,例如<0.5%。在所有示例性工艺a、b和d中,只有寿命或表面钝化中的任一者有所改善,而示例性工艺c导致表面钝化、寿命和效率均有所改善。参考图8-图10,其分别示出了使用表1的示例性工艺a和c的方法制造的太阳能电池的示例性表面钝化、1/寿命和效率测量值。图8-图10的结果显示,与示例性工艺a的太阳能电池相比,使用图1-图4的方法(例如示例性工艺c)制造的太阳能电池的表面钝化、寿命和效率具有改善的表面钝化、寿命和更高的效率测量值。图8示出了使用表1的示例性工艺a和c制造的太阳能电池的表面钝化测量值的图表。如图所示,与示例性工艺a相比,示例性工艺c具有更低的钝化结果。更低的表面钝化对于高效率太阳能电池而言是优选的。因此,与示例性工艺a相比,示例性工艺c具有改善的表面钝化结果。参考图9,其示出了使用表1的示例性工艺a和c制造的太阳能电池的1/寿命测量值的图表。如图所示,与示例性工艺a相比,示例性工艺c具有更长的寿命、更低的1/寿命结果。更长的寿命对于高效率太阳能电池而言是优选的。因此,与示例性工艺a相比,示例性工艺c具有改善的寿命结果。图10示出了使用表1的示例性工艺a和c制造的太阳能电池的效率测量值的图表。如图所示,与示例性工艺a相比,示例性工艺c具有更高的效率结果。更高的太阳能电池效率转换是优选的,以最大程度地从收集的光进行电转化。因此,与示例性工艺a相比,示例性工艺c具有改善的效率结果。图8-图10的结果证明,与其他技术(例如示例性工艺a、b和d)相比,图1-图4的太阳能电池制造技术导致表面钝化、寿命和效率的总体改善。尽管上面已经描述了具体实施方案,但即使相对于特定的特征仅描述了单个实施方案,这些实施方案也并非旨在限制本公开的范围。在本公开中所提供的特征的示例旨在为说明性的而非限制性的,除非另有说明。以上描述旨在涵盖将对本领域的技术人员显而易见的具有本公开的有益效果的那些替代形式、修改形式和等效形式。本公开的范围包括本文所(明示或暗示)公开的任何特征或特征组合,或其任何概括,不管其是否减轻本文所解决的任何或全部问题。因此,可以在本申请(或对其要求优先权的申请)的审查过程期间对任何此类特征组合提出新的权利要求。具体地讲,参考所附权利要求书,来自从属权利要求的特征可与独立权利要求的那些特征相结合,来自相应的独立权利要求的特征可以按任何适当的方式组合,而并非只是以所附权利要求中枚举的特定形式组合。在实施方案中,太阳能电池具有在正常操作期间面向太阳的正面和与正面相背对的背面,太阳能电池包括硅基板上方的电介质区,其中硅基板的一部分具有大约小于或等于2×1018cm-3的掺杂浓度;在电介质区上方形成的具有金属杂质的第一发射极区;以及在第一发射极区上方形成的第一金属触点。在一个实施方案中,第一发射极区和第一金属触点形成在太阳能电池的背面上。在一个实施方案中,第一发射极区和第一金属触点形成在太阳能电池的正面上。在一个实施方案中,硅基板的具有大约小于或等于2×1018cm-3的掺杂浓度的部分在太阳能电池的正面上。在一个实施方案中,第一发射极区为掺杂多晶硅区。在一个实施方案中,太阳能电池还包括在电介质区上方形成的具有金属杂质的第二发射极区,以及在第二发射极区上方形成的第二金属触点。在一个实施方案中,第二发射极区至少部分地形成在第一发射极区上方。在一个实施方案中,第一发射极区和第一金属触点形成在太阳能电池的正面上,并且第二发射极区和第二金属触点形成在太阳能电池的背面上。在实施方案中,提供了制造太阳能电池的方法,该太阳能电池具有在正常操作期间面向太阳的正面和与正面相背对的背面,该方法包括在硅基板上形成电介质区,在电介质区上方形成第一发射极区,在硅基板的表面上形成掺杂物区,以及在高于900摄氏度的温度下加热硅基板,以将污染物吸至发射极区并将掺杂物从掺杂物区驱动到硅基板的一部分。在一个实施方案中,该方法还包括在电介质区上方形成具有金属杂质的第二发射极区,其中第一发射极区和第二发射极区形成在太阳能电池的背面上,以及在第二发射极区上方形成第二金属触点。在一个实施方案中,形成第二发射极区包括至少部分地在第一发射极区上方形成第二发射极区。在一个实施方案中,该方法还包括在低于900摄氏度的温度下进行至少一个其他加热步骤。在一个实施方案中,在加热之前进行在低于900摄氏度的温度下的至少一个其他加热步骤。在一个实施方案中,形成第一发射极区包括形成多晶硅。在一个实施方案中,在硅基板表面上形成掺杂物区包括在硅基板的与第一发射极区相背对的表面上形成磷。在一个实施方案中,提供了制造太阳能电池的方法,该太阳能电池具有在正常操作期间面向太阳的正面和与正面相背对的背面,该方法包括在硅基板上形成电介质区,在正面上的电介质区上方形成具有金属杂质的第一发射极区,在太阳能电池背面上的电介质区上方形成具有金属杂质的第二发射极区,在硅基板的表面上形成掺杂物区,在高于900摄氏度的温度下加热硅基板,以将金属污染物吸至第一发射极区和第二发射极区并将掺杂物从第一掺杂物区驱动到硅基板的一部分,以及分别在第一发射极区和第二发射极区上方形成第一金属触点和第二金属触点。在一个实施方案中,该方法还包括在低于900摄氏度的温度下进行至少一个其他加热步骤。在一个实施方案中,在加热之前进行在低于900摄氏度的温度下的至少一个其他加热步骤。在一个实施方案中,形成第一发射极区包括形成多晶硅。在一个实施方案中,在硅基板表面上形成掺杂物区包括在硅基板表面上形成磷。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1