一种低寄生电感功率模块及双面散热低寄生电感功率模块的制作方法

文档序号:11252632阅读:809来源:国知局
一种低寄生电感功率模块及双面散热低寄生电感功率模块的制造方法与工艺

本发明涉及电力电子功率模块,尤其是一种低寄生电感功率模块及双面散热低寄生电感功率模块。



背景技术:

电力电子技术在当今快速发展的工业领域占有非常重要的地位,电力电子功率模块作为电力电子技术的代表,已广泛应用于电动汽车,光伏发电,风力发电,工业变频等行业。随着我国工业的崛起,电力电子功率模块有着更加广阔的市场前景。

现有电力电子功率模块封装体积大,重量重,不符合电动汽车、航空航天等领域的高功率密度、轻量化的要求。体积较大的电力电子功率模块,其寄生电感往往也比较大,这会造成过冲电压较大、损耗增加,而且也限制了在高开关频率场合的应用。sic电力电子器件具有高频、高温、高效的特性,但现有功率模块的寄生电感较大,限制了sic性能的发挥。另外,随着应用端功率密度的不断升级,现有功率模块的封装结构已经阻碍了功率密度的进一步提升,必须开发出更加有效的散热结构才能满足功率密度日益增长的需求

现有的双面散热功率模块如cn105161477a,由于芯片单层设置,电流的换流回路面积仍然较大,往往寄生电感也比较大,而且芯片单层设置,使得功率模块的体积相对较大,另外功率端子与控制端子只与第一衬板连接,设置不够灵活、衬板面积无法进一步减小,还会由于电流路径较长造成损耗增加。



技术实现要素:

发明目的:针对上述现有技术存在的缺陷,本发明旨在提供一种体积小、重量轻、寄生电感小的一种低寄生电感功率模块及双面散热低寄生电感功率模块。

技术方案:一种低寄生电感功率模块,包括输入功率端子、输出功率端子、顶部金属绝缘基板、底部金属绝缘基板和塑封外壳,所述输入功率端子包括正极功率端子、负极功率端子,顶部金属绝缘基板与底部金属绝缘基板叠层设置,顶部金属绝缘基板与底部金属绝缘基板在二者相对的面上均烧结有芯片,正极功率端子、负极功率端子以及与输出功率端子均与芯片电连接;所述输出功率端子包括焊接部和位于塑封外壳外部的连接部,所述焊接部位于顶部金属绝缘基板与底部金属绝缘基板之间。

进一步的,底部金属绝缘基板上烧结有上半桥开关芯片和上半桥二极管芯片,顶部金属绝缘基板上烧结有下半桥开关芯片和下半桥二极管芯片;所述上半桥开关芯片与下半桥二极管芯片叠层设置,下半桥开关芯片与上半桥二极管芯片叠层设置。

进一步的,正极功率端子烧结在底部金属绝缘基板上,负极功率端子烧结在顶部金属绝缘基板上;焊接部位于顶部金属绝缘基板上烧结的芯片和底部金属绝缘基板上烧结的芯片之间。

进一步的,正极功率端子烧结在底部金属绝缘基板上,负极功率端子烧结在顶部金属绝缘基板上,底部金属绝缘基板或顶部金属绝缘基板上设有输出局部金属层,输出功率端子通过输出局部金属层连接有芯片连接块,芯片连接块与底部金属绝缘基板上的芯片和顶部金属绝缘基板上的芯片电连接。

进一步的,顶部金属绝缘基板上烧结的芯片为下半桥二极管芯片和上半桥二极管芯片,底部金属绝缘基板上烧结的芯片为下半桥开关芯片和上半桥开关芯片,其中,下半桥二极管芯片与下半桥开关芯片叠层设置,上半桥二极管芯片与上半桥开关芯片叠层设置。

进一步的,正极功率端子和负极功率端子均烧结在顶部金属绝缘基板上,并且至少一个输入功率端子与底部金属绝缘基板通过金属连接柱相连;或者,正极功率端子和负极功率端子均烧结在底部金属绝缘基板上,并与顶部金属绝缘基板通过金属连接柱相连;或者,正极功率端子和负极功率端子与顶部金属绝缘基板和底部金属绝缘基板均烧结;所述焊接部位于顶部金属绝缘基板上烧结的芯片和底部金属绝缘基板上烧结的芯片之间。

进一步的,焊接部在面向底部金属绝缘基板的一面与上半桥开关芯片和上半桥二极管芯片烧结,在面向顶部金属绝缘基板的一面与下半桥开关芯片和下半桥二极管芯片烧结。

进一步的,底部金属绝缘基板上设有底部金属绝缘基板表面金属层,底部金属绝缘基板表面金属层上烧结有上半桥开关芯片和上半桥二极管芯片,当所述上半桥开关芯片为igbt时,正极功率端子与上半桥开关芯片的集电极以及上半桥二极管芯片的负极电连接,当所述上半桥开关芯片为mosfet时,所述正极功率端子与上半桥开关芯片的漏极以及上半桥二极管芯片的负极电连接;

所述顶部金属绝缘基板上设有顶部金属绝缘基板表面金属层、第一上半桥驱动局部金属层和第二上半桥驱动局部金属层,所述顶部金属绝缘基板表面金属层上烧结有下半桥开关芯片和下半桥二极管芯片,第一上半桥驱动局部金属层和第二上半桥驱动局部金属层分别连有一个上半桥驱动端子,上半桥开关芯片的门极与所述第一上半桥驱动局部金属层电连接,输出功率端子与第二上半桥驱动局部金属层电连接;

所述顶部金属绝缘基板上还设有下半桥驱动局部金属层,下半桥驱动局部金属层与所述下半桥开关芯片的门极相连,下半桥驱动局部金属层的另一端连接有一个下半桥驱动端子,所述顶部金属绝缘基板表面金属层也连接有一个下半桥驱动端子。

进一步的,芯片连接块在面向底部金属绝缘基板的一面与上半桥开关芯片和上半桥二极管芯片烧结,在面向顶部金属绝缘基板的一面与下半桥开关芯片和下半桥二极管芯片烧结。

进一步的,芯片连接块分为第一芯片连接块和第二芯片连接块,第一芯片连接块与第二芯片连接块均与输出局部金属层烧结;第一芯片连接块在面向顶部金属绝缘基板的一面与下半桥二极管芯片烧结,在面向底部金属绝缘基板的一面与上半桥开关芯片烧结;第二芯片连接块在面向顶部金属绝缘基板的一面与下半桥开关芯片烧结,在面向底部金属绝缘基板的一面与上半桥二极管芯片烧结。

进一步的,底部金属绝缘基板上设有上半桥表面金属层和输出局部金属层,上半桥表面金属层上烧结有上半桥开关芯片和上半桥二极管芯片,当所述上半桥开关芯片为igbt时,正极功率端子与上半桥开关芯片的集电极以及上半桥二极管芯片的负极电连接,当所述上半桥开关芯片为mosfet时,所述正极功率端子与上半桥开关芯片的漏极以及上半桥二极管芯片的负极电连接;

所述顶部金属绝缘基板上设有下半桥表面金属层、下半桥驱动局部金属层、第一上半桥驱动局部金属层和第二上半桥驱动局部金属层,下半桥表面金属层上烧结有下半桥开关芯片和下半桥二极管芯片,下半桥表面金属层和下半桥驱动局部金属层分别连有一个下半桥驱动端子,第一上半桥驱动局部金属层和第二上半桥驱动局部金属层分别连有一个上半桥驱动端子;

当下半桥开关芯片为igbt时,下半桥表面金属层与igbt芯片的发射极相连;当下半桥开关芯片为mosfet时,下半桥表面金属层与mosfet芯片的源极相连,下半桥驱动局部金属层与下半桥开关芯片的门极相连,第一上半桥驱动局部金属层与上半桥开关芯片的门极相连,第二上半桥驱动局部金属层与输出功率端子的焊接部相连。

进一步的,顶部金属绝缘基板包括与正极功率端子电连接的顶部金属绝缘基板正极金属层、与负极功率端子电连接的顶部金属绝缘基板负极金属层、与输出功率端子和一个上半桥驱动端子电连接的上半桥开关芯片发射极/源极局部金属层,以及与另一个上半桥驱动端子电连接的上半桥开关芯片门极局部金属层;

顶部金属绝缘基板正极金属层的表面烧结有上半桥二极管芯片,顶部金属绝缘基板负极金属层的表面烧结有下半桥二极管芯片,上半桥开关芯片门极局部金属层与上半桥开关芯片的门极电连接;

所述底部金属绝缘基板包括与正极功率端子电连接的底部金属绝缘基板正极金属层、与负极功率端子及一个下半桥驱动端子电连接的底部金属绝缘基板负极金属层,以及与另一个下半桥驱动端子电连接的下半桥开关芯片门极局部金属层;

底部金属绝缘基板正极金属层的表面烧结有上半桥开关芯片,底部金属绝缘基板负极金属层表面烧结有下半桥开关芯片;下半桥开关芯片门极局部金属层与下半桥开关芯片的门极电连接。

进一步的,输出功率端子还包括上半桥引出端,所述焊接部与上半桥开关芯片的发射极或源极连接、与下半桥开关芯片的集电极或漏极连接、与上半桥二极管芯片的正极连接、与下半桥二极管芯片的负极连接;上半桥引出端与顶部金属绝缘基板的上半桥开关芯片发射极/源极局部金属层连接。

进一步的,输出功率端子的焊接部在与芯片接触的位置为基体,在不与芯片接触的位置为三层结构,中间一层为基体,上下两侧为填充体。

进一步的,输出功率端子的焊接部与芯片之间填充有应力缓冲层。

进一步的,塑封外壳为传递模一体化成型工艺制作,顶部金属绝缘基板背面金属层上表面的中间部分以及底部金属绝缘基板背面金属层下表面的中间部分均露出在塑封外壳的外部,并且高出塑封外壳。

一种双面散热低寄生电感功率模块,包括如前所述的低寄生电感功率模块,且所述低寄生电感功率模块的下表面设有散热装置,上表面设有多个热管,散热装置上设有热管插入口,热管包括蒸发段,蒸发段在功率模块的边缘处向下折弯形成连接段,连接段插入散热装置的热管插入口并固定。

进一步的,还包括驱动端子,驱动端子连接有驱动板,所述驱动板和功率模块之间设有热管。

进一步的,热管的蒸发段烧结在顶部金属绝缘基板上;所述蒸发段被包裹在塑封外壳内;或者,所述蒸发段露在塑封外壳外部,且塑封外壳将顶部金属绝缘基板上表面的中间部分和底部金属绝缘基板下表面的中间部分裸露在外。

进一步的,底部金属绝缘基板下表面设有扰流结构,所述散热装置的上表面设有扰流孔,所述扰流结构通过扰流孔伸入散热装置内部并在扰流孔口处密封,在散热装置内部构成散热介质的换热通道。

有益效果:本发明的顶部金属绝缘基板与底部金属绝缘基板叠层设置,且在二者相对的面上均烧结有芯片,输出功率端子的焊接部也设置在顶部金属绝缘基板与底部金属绝缘基板之间,如此芯片及电极的堆叠设置可以大大降低回路寄生电感,减小了功率模块的体积,节约了成本,减轻了重量,尤其适合sic功率芯片的封装;同时,功率模块内部芯片的功率端全部采用大面积烧结结构,大大降低了使用键合线时因键合线失效造成的模块故障风险,充分提高了过流能力,提高了模块的可靠性。并且,功率模块的两侧均可设置热沉,可以减小功率模块的热阻,或在底部设置散热装置,顶部采用热管连接至散热装置进行双面散热,能够在保证功率模块散热效率的同时进一步简化散热装置结构、压缩散热装置体积。

附图说明

图1是实施例1整体外观结构图;

图2是实施例1主视图及局部放大图;

图3是实施例1内部示意图;

图4是实施例1内部主视图及局部放大图;

图5是实施例1底部金属绝缘基板组件示意图;

图6是实施例1顶部金属绝缘基板组件示意图;

图7是实施例1爆炸示意图;

图8是传统半桥功率模块拓扑结构及换流回路示意图;

图9是实施例1半桥功率模块拓扑结构及换流回路示意图;

图10是三相桥功率模块散热方案示意图;

图11是三相桥功率模块安装爆炸图;

图12是三相桥功率模块整体结构示意图;

图13是三相桥功率模块拓扑图;

图14是实施例2的结构示意图;

图15是实施例3的结构示意图;

图16是实施例4的内部示意图;

图17是实施例4的底部金属绝缘基板组件示意图;

图18是实施例4的顶部金属绝缘基板组件示意图;

图19是实施例4的爆炸示意图;

图20是实施例5的爆炸示意图;

图21是实施例5的顶部金属绝缘基板结构示意图;

图22是实施例5的底部金属绝缘基板结构示意图;

图23是实施例5的输出功率端子结构示意图;

图24是实施例6的底部金属绝缘基板组件示意图;

图25是实施例6的顶部金属绝缘基板组件示意图;

图26是实施例6的爆炸示意图;

图27是实施例7的结构示意图;

图28是实施例7的散热装置示意图;

图29是实施例7的一种散热方式示意图;

图30、31、32是实施例7的装配过程示意图;

图33是实施例8的结构示意图;

图34是实施例9的功率模块背面示意图;

图35是实施例9的设置有扰流结构的背面示意图;

图36是实施例9的流体方向示意图;

图37是实施例9的散热装置示意图。

具体实施方式

下面通过实施例并结合附图对本技术方案进行详细说明。

实施例1:

本发明通过将开关芯片与相对桥臂的续流二极管芯片堆叠设置,使得换流回路路径最短,从而大大减少回路寄生电感;通过在堆叠设置芯片的两侧设置散热通路,达到双面散热的目的,进一步降低功率模块的热阻。

如图1所示,一种低寄生电感双面散热功率模块,包括正极功率端子1、负极功率端子2、输出功率端子3、与正极功率端子1相连的底部金属绝缘基板5、与负极功率端子2相连的顶部金属绝缘基板4、上半桥驱动端子10、下半桥驱动端子11以及用于包封的塑封外壳15,本实施例中的正极功率端子1烧结在底部金属绝缘基板5上,负极功率端子2烧结在顶部金属绝缘基板4上,也可以将两个功率端子均烧结在同一基板上,再通过金属连接块或其他连接方式连接到另一基板,实现正极功率端子1与底部金属绝缘基板5上的芯片电连接,负极功率端子2与顶部金属绝缘基板4上的芯片电连接;并且,本实施例中顶部金属绝缘基板4与底部金属绝缘基板5所采用的金属绝缘基板均为dbc,即顶部金属绝缘基板4包括绝缘基板和基板两侧的金属层,面向底部金属绝缘基板5的一面上安装了芯片,未安装芯片的另一面则为顶部金属绝缘基板背面金属层41,同理,底部金属绝缘基板5也有相同的结构,未安装芯片一面为底部金属绝缘基板背面金属层51;本领域技术人员在实施时也可不采用dbc结构,也可以采用绝缘基板两侧覆铝,或者一侧覆铜一侧覆铝等金属覆盖在绝缘介质两侧的结构;塑封外壳15为传递模一体化成型工艺制作,即借助塑封压机将融化的热固性塑料注入到模腔内,模腔内放置有经过烧结的功率模块半成品,融化的热固性塑料达到固化温度后会快速固化成型,形成本发明设计方案所示的塑封外壳15。顶部金属绝缘基板背面金属层41上表面的中间部分以及底部金属绝缘基板背面金属层51下表面的中间部分均露出在塑封外壳15的外部,并且高出塑封外壳15,如图2所示,这种结构可以使金属绝缘基板背面金属层更好地与散热装置接触,可以实现更好的散热效果。

如图3所示,功率模块内部,顶部金属绝缘基板4与底部金属绝缘基板5叠层设置,为平行正对结构,本实施例中与负极功率端子2相连的金属绝缘基板为顶部金属绝缘基板4,与正极功率端子1相连的金属绝缘基板为底部金属绝缘基板5,也可以将顶部金属绝缘基板4组件与底部金属绝缘基板5组件位置对换,不影响本设计方案的效果。顶部金属绝缘基板4与底部金属绝缘基板5在二者相对的面上均烧结有芯片;所述输出功率端子3包括焊接部31和位于塑封外壳15外部的连接部32,本实施例中的连接部32设有安装孔;所述焊接部31位于顶部金属绝缘基板4上烧结的芯片与底部金属绝缘基板5上烧结的芯片之间;本实施例中的焊接部31是平面结构,焊接部31的一端弯折并向上延伸形成具有安装孔的连接部,具体应用时也可根据实际需要不进行弯折而是做成一整块平板结构。

功率模块内部芯片的布局如图4所示,芯片的布置为堆叠结构,本实施例中底部金属绝缘基板5在面向顶部金属绝缘基板4的一面上烧结有上半桥开关芯片6和上半桥二极管芯片7,顶部金属绝缘基板4在面向底部金属绝缘基板5的一面上烧结有下半桥开关芯片8和下半桥二极管芯片9。具体的:底部金属绝缘基板5上设置有上半桥开关芯片,输出功率端子3的焊接部31烧结在上半桥功率芯片的上表面,在输出功率端子3上烧结有下半桥二极管芯片9,上半桥开关芯片与下半桥二极管芯片9叠层设置,下半桥二极管芯片9位于上半桥开关芯片的上方,下半桥二极管的上表面烧结有顶部金属绝缘基板4;同理,底部金属绝缘基板5上还设置有上半桥二极管芯片7,输出功率端子3的焊接部31在面向底部金属绝缘基板5的一面与上半桥开关芯片6和上半桥二极管芯片7烧结,在面向顶部金属绝缘基板4的一面与下半桥开关芯片8和下半桥二极管芯片9烧结。具体的,输出功率端子3的焊接部31烧结在上半桥二极管芯片7的上表面,在输出功率端子3上还烧结有下半桥开关芯片,下半桥开关芯片8与上半桥二极管芯片7叠层设置,下半桥开关芯片8位于上半桥二极管芯片7的上方,下半桥开关芯片8的上表面也烧结有顶部金属绝缘基板4。

为了进一步说明芯片的位置及连接结构,对上半桥金属绝缘基板组件、下半桥金属绝缘基板组件的结构分别给予说明,如图5、图6所示。图5中,正极功率端子1烧结在底部金属绝缘基板5金属层表面,底部金属绝缘基板5上设有底部金属绝缘基板表面金属层52,底部金属绝缘基板表面金属层52上烧结有上半桥开关芯片6和上半桥二极管芯片7,当上半桥开关芯片为igbt时,正极功率端子1与上半桥开关芯片6的集电极以及上半桥二极管芯片7的负极电连接,当上半桥开关芯片6为mosfet时,所述正极功率端子1与上半桥开关芯片6的漏极以及上半桥二极管芯片7的负极电连接。

图6中,负极功率端子2烧结在顶部金属绝缘基板4金属层表面,顶部金属绝缘基板4上设有顶部金属绝缘基板表面金属层42、第一上半桥驱动局部金属层421和第二上半桥驱动局部金属层422,所述顶部金属绝缘基板表面金属层42上烧结有下半桥开关芯片8和下半桥二极管芯片9,第一上半桥驱动局部金属层421和第二上半桥驱动局部金属层422分别连有一个上半桥驱动端子10,上半桥开关芯片6的门极通过金属连接块与所述第一上半桥驱动局部金属层421电连接,输出功率端子3上设有的金属连接块与第二上半桥驱动局部金属层422电连接。

所述顶部金属绝缘基板4上还设有下半桥驱动局部金属层423,下半桥驱动局部金属层423与所述下半桥开关芯片8的门极相连,下半桥驱动局部金属层423的另一端连接有一个下半桥驱动端子11,所述顶部金属绝缘基板表面金属层42也连接有一个下半桥驱动端子11。

图7给出了功率模块内部各层的关系,本实施例中所述的烧结具体为通过焊接层16烧结,由于开关芯片的上、下表面通过电镀或者溅射或者蒸发有钛镍银的金属结构,因此焊接层16可以是锡铅等钎焊料通过烧结形成的焊接层16,也可以是银浆通过烧结形成的焊接层16。此外,图中上半桥开关芯片6的门极与第一上半桥驱动局部金属层421之间、输出功率端子3与第二上半桥驱动局部金属层422之间均采用了金属连接块实现电气连接,该金属块可以选用钼、钨铜等与芯片的热膨胀系数比较匹配的金属材料,若不采用金属连接块的连接方式,也可以使用键合线进行连接。

图8、图9分别为传统半桥拓扑结构及本发明半桥拓扑结构,传统的功率模块内部,开关芯片的集电极或漏极通过焊接层16与金属绝缘基板表面金属层连接,开关芯片的发射极或源极通过键合线与表面金属层相连,即上半桥开关芯片6与下半桥二极管芯片9之间通过键合线、金属层连接,图中的粗线表示续流回路路径;本发明将上半桥开关芯片与下半桥二极管芯片9叠层设置,省掉了中间的金属绝缘基板金属层与键合线,其连接路径最短,因此其换流回路也最短,从而大幅度降低了寄生电感。

图10、图11为功率模块与散热装置的连接示意图,顶部金属绝缘基板背面金属层41与底部金属绝缘基板背面金属层51上分别设有第一散热装置12和第二散热装置13,顶部金属绝缘基板背面金属层41与第一散热装置12通过导热硅脂或其它导热材料接触,底部金属绝缘基板背面金属层51也通过导热硅脂或其它导热材料与第二散热装置13接触;第二散热装置13的两侧安装有绝缘垫块121,绝缘垫块121与功率模块的正/负功率端子接触,便于安装母排。

如图12所示,本发明还可以应用在三相桥结构中,将三个本发明中记载的半桥功率模块结构一字排布,并封装在同一塑封外壳内部,便可以实现低寄生电感的三相桥功率模块,即一个功率模块包括三个正极功率端子1、三个负极功率端子2和三个输出功率端子3,其拓扑结构为三个半桥,如图13所示。

实施例2:如图14所示,本实施例与实施例1的结构基本相同,不同之处在于,本实施例中的输出功率端子3的焊接部31在与芯片接触的位置为基体311,在不与芯片接触的位置为三层结构,中间一层为基体311,上下两侧为填充体312;基体311为热膨胀系数较小的金属钼或钨铜,填充体312为导电性较好的金属银。

本实施例中功率芯片烧结在输出电极的钼基体311上,输出电极不与芯片接触的部位加工有槽,槽内填充有银。金属钼的热膨胀系数一般为铜的三分之一,与芯片比较接近,功率模块工作过程中,焊接层16的热应力较小,可靠性较高,但钼的电导率仅有铜的三分之一,因此在输出电极的局部做填充银结构能够减小输出电极的电阻。

实施例3:如图15所示,本实施例与实施例1的结构基本相同,不同之处在于,输出功率端子3的焊接部31与芯片之间填充有应力缓冲层14,所述输出功率端子3的焊接部31为金属铜,应力缓冲层14为金属钼或钨铜。

输出电极为纯铜材料,由于铜与芯片的热膨胀相差较大,为了提高焊接层16的长期可靠性,本实施例在芯片与输出电极之间增加了应力缓冲层14过渡,即在芯片的表面烧结金属钼或钨铜,然后再将钼或钨铜烧结在输出电极上。

实施例4:如图16-19所示,本实施例与实施例1的结构基本相同,不同之处在于,图17中,底部金属绝缘基板5上设有底部金属绝缘基板表面金属层52、第一局部金属层53和第二局部金属层54,所述第一局部金属层53和第二局部金属层54分别连有一个上半桥驱动端子10,输出功率端子3与第二局部金属层54电连接,从而实现对上半桥开关芯片的控制。

当所述上半桥开关芯片6为igbt时,正极功率端子1与上半桥开关芯片6的集电极以及上半桥二极管芯片7的负极电连接,上半桥开关芯片6的门极通过一根键合线与第一局部金属层53电连接。

当所述上半桥开关芯片6为mosfet时,所述正极功率端子1与上半桥开关芯片6的漏极以及上半桥二极管芯片7的负极电连接,上半桥开关芯片6的门极通过一根键合线与第一局部金属层53电连接。

图18中,顶部金属绝缘基板4上设有顶部金属绝缘基板表面金属层42和第三局部金属层43,第三局部金属层43的另一端连接有一个下半桥驱动端子11,所述顶部金属绝缘基板表面金属层42也连接有一个下半桥驱动端子11;

当所述下半桥开关芯片8为igbt时,负极功率端子2与下半桥开关芯片8的发射极以及下半桥二极管芯片9的正极的电连接,下半桥开关芯片8的门极与第三局部金属层43相连;

当所述下半桥开关芯片8为mosfet时,负极功率端子2与下半桥开关芯片8的源极以及下半桥二极管芯片9的正极的电连接,下半桥开关芯片8的门极与第三局部金属层43相连。

本发明作为形成半导体芯片的基础,可以使用硅衬底,可也以使用锗衬底或者iii-v半导体材料,例如,gan或sic;另外,对于包装、模塑或封装而言,可以使用塑料材料或陶瓷材料等。

实施例5:

本实施例与实施例1的结构基本相同,不同之处在于,

正极功率端子1和负极功率端子2均烧结在顶部金属绝缘基板4上,并且至少一个输入功率端子与底部金属绝缘基板5通过金属连接柱相连;

或者,正极功率端子1和负极功率端子2均烧结在底部金属绝缘基板5上,并与顶部金属绝缘基板4通过金属连接柱相连;

或者,正极功率端子1和负极功率端子2与顶部金属绝缘基板4和底部金属绝缘基板5均烧结。

塑封外壳15在顶部金属绝缘基板背面金属层41和底部金属绝缘基板背面金属层51的两侧均设有热沉。

如图20所示,顶部金属绝缘基板4上烧结的芯片为下半桥二极管芯片9和上半桥二极管芯片7,底部金属绝缘基板5上烧结的芯片为下半桥开关芯片8和上半桥开关芯片6,其中,下半桥二极管芯片9与下半桥开关芯片8叠层设置,上半桥二极管芯片7与上半桥开关芯片6叠层设置。

如图21所示,顶部金属绝缘基板4包括与正极功率端子1通过烧结的方式实现电连接的顶部金属绝缘基板正极金属层451、与负极功率端子2通过烧结的方式实现电连接的顶部金属绝缘基板负极金属层452、与输出功率端子3和一个上半桥驱动端子电连接的上半桥开关芯片6上半桥开关芯片发射极/源极局部金属层453,以及与另一个上半桥驱动端子电连接的上半桥开关芯片6上半桥开关芯片6门极局部金属层454;

顶部金属绝缘基板正极金属层451的表面烧结有上半桥二极管芯片7,并且与上半桥二极管芯片7的负极相对,顶部金属绝缘基板负极金属层452的表面烧结有下半桥二极管芯片9,并且与下半桥二极管芯片9的正极相对,上半桥开关芯片6门极局部金属层454与上半桥开关芯片6的门极电连接。

如图22所示,底部金属绝缘基板5包括与正极功率端子1通过烧结或超声波金属焊接的方式实现电连接的底部金属绝缘基板正极金属层551、与负极功率端子2及一个下半桥驱动端子电连接的底部金属绝缘基板负极金属层552,以及与另一个下半桥驱动端子电连接的下半桥开关芯片门极局部金属层553;正极功率端子1、负极功率端子2均可通过烧结或超声波金属焊接的方式分别连接至底部金属绝缘基板正极金属层551和底部金属绝缘基板负极金属层552;

底部金属绝缘基板正极金属层551的表面烧结有上半桥开关芯片6,并与上半桥开关芯片6的集电极或漏极正对,底部金属绝缘基板负极金属层552表面烧结有下半桥开关芯片8,并与下半桥开关芯片8的发射极正对;下半桥开关芯片门极局部金属层553通过烧结的方式与下半桥开关芯片8的门极电连接。

如图23所示,输出功率端子3包括设有连接孔的连接部32、用于与芯片连接的焊接部31,以及上半桥引出端33,所述焊接部31与上半桥开关芯片6的发射极或源极烧结,当上半桥开关芯片6为igbt时为发射极,当上半桥开关芯片6为mosfet时为源极、与下半桥开关芯片8的集电极或漏极烧结,当下半桥开关芯片8为igbt时为集电极,当下半桥开关芯片8为mosfet时为漏极、与上半桥二极管芯片7的正极烧结、与下半桥二极管芯片9的负极烧结;所述焊接部31与芯片之间均设有金属应力缓冲层,并通过该金属应力缓冲层连接。

实施例6:

本实施例与实施例1的结构基本相同,不同之处在于,

如图24所示,底部金属绝缘基板5上设有上半桥表面金属层561和输出局部金属层562,上半桥表面金属层561上烧结有上半桥开关芯片6和上半桥二极管芯片7;

如图25所示,顶部金属绝缘基板4上设有下半桥表面金属层461、下半桥驱动局部金属层462、第一上半桥驱动局部金属层463和第二上半桥驱动局部金属层464,下半桥表面金属层461上烧结有下半桥开关芯片8和下半桥二极管芯片9,下半桥表面金属层461和下半桥驱动局部金属层462分别连有一个下半桥驱动端子,第一上半桥驱动局部金属层463和第二上半桥驱动局部金属层464分别连有一个上半桥驱动端子;

当下半桥开关芯片8为igbt时,下半桥表面金属层461与igbt芯片的发射极相连;当下半桥开关芯片8为mosfet时,下半桥表面金属层461与mosfet芯片的源极相连,下半桥驱动局部金属层462与下半桥开关芯片8的门极相连,第一上半桥驱动局部金属层463与上半桥开关芯片6的门极相连,第二上半桥驱动局部金属层464与输出功率端子3的焊接部31相连。

结合图24、图25,如图26所示,输出功率端子3包括焊接部31和设有安装孔的连接部32,所述焊接部31位于底部金属绝缘基板5与顶部金属绝缘基板4之间,底部金属绝缘基板5或顶部金属绝缘基板4上设有输出局部金属层562,输出功率端子3通过输出局部金属层562连接有芯片连接块,芯片连接块与底部金属绝缘基板5上的芯片和顶部金属绝缘基板4上的芯片电连接。本实施例中的焊接部31是平面结构,焊接部31的一端弯折并向上延伸形成具有安装孔的连接部32,具体应用时也可根据实际需要不进行弯折而是做成一整块平板结构。

焊接部31上设有上半桥驱动连接端,上半桥驱动连接端与顶部金属绝缘基板4的第二上半桥驱动局部金属层464相连,第二上半桥驱动局部金属层464另一端连接一个上半桥驱动端子。本实施例中的上半桥驱动连接端可以采用单独的金属连接块,也可以与输出功率端子3为一体结构,上半桥开关芯片6门极与顶部金属绝缘基板4的第一上半桥驱动局部金属层463采用金属连接块实现电气连接,金属连接块选用导电类材料;芯片连接块可以选用钼、钨铜等与芯片的热膨胀系数比较匹配的金属材料,芯片连接块的热膨胀系数优选范围在2~8ppm/℃之间的金属材料,如此能够降低芯片与芯片连接块之间烧结层的热应力,避免烧结层过早开裂失效,提高了可靠性。另外,第一上半桥驱动局部金属层463也可以设置在底部金属绝缘基板5上,此时上半桥开关芯片6的门极与第一上半桥驱动局部金属层463可以使用键合线进行连接。

芯片连接块可以为一块整体,也可以根据芯片数量进行拆分,本实施例中芯片连接块分为第一芯片连接块361和第二芯片连接块362,第一芯片连接块361与第二芯片连接块362均与输出局部金属层562烧结;第一芯片连接块361在面向顶部金属绝缘基板4的一面与下半桥二极管芯片9烧结,在面向底部金属绝缘基板5的一面与上半桥开关芯片6烧结;第二芯片连接块362在面向顶部金属绝缘基板4的一面与下半桥开关芯片8烧结,在面向底部金属绝缘基板5的一面与上半桥二极管芯片7烧结。

实施例7:

本实施例与实施例1-6的结构基本相同,不同之处在于,如图27所示,本实施例在实施例1-6的功率模块下表面设置散热装置18并在功率模块上表面设置多个热管19。

如图28所示,散热装置18上设有热管插入口181,热管19包括蒸发段191,蒸发段191的始端连接在功率模块上,本实施例中多个蒸发段191在功率模块的上表面交错排布,蒸发段191在功率模块的边缘处向下折弯形成连接段192,连接段192插入散热装置18的热管插入口181并固定,本实施例中连接段192包括其延伸出的冷凝段,冷凝段插入散热装置18的热管插入口181并固定;多个蒸发段191也可以采用平行但不交错的方式,即始端不连接在功率模块上,其主体烧结在功率模块的上表面,热管19的两端均在功率模块的边缘处向下折弯形成连接段192,连接段192插入散热装置18的热管插入口181并固定。

散热装置18与热管19冷端可以通过软钎焊进行连接,或者通过其它介质进行连接,或者通过过盈配合进行连接。热管19冷端可以直接与液体散热介质接触,此时需做好散热器与热管19连接孔的密封。

如图29所示,散热装置18可以采用水冷、风冷或其他本领域常用的散热方式,本实施例中的散热装置18为风冷散热装置,热管19的冷端插入风冷散热器中。

如图30-32所示是本实施例中功率模块与热管19的装配部分流程,通过软钎焊的方式将热管19的一端焊接在功率模块内部顶部金属绝缘基板4的外表面;然后对模块进行注塑封装,再将完成注塑模块外部的热管19向底部金属绝缘基板5的方向进行折弯,本实施例中热管19的蒸发段191被包裹在塑封外壳15内,此时,为了方便与功率模块底部的散热装置接触散热,塑封外壳15将底部金属绝缘基板5下表面的中间部分裸露在外,而不需要与散热装置接触的顶部金属绝缘基板4上表面连同热管蒸发段191一起包封在塑封外壳15内部。

此时,功率芯片的热量通过顶部金属绝缘基板4传导到热管19的蒸发段191,热管19内部的填充介质由液相变为汽相,汽相散热介质到达热管19冷端后,又重新变为液相,并在毛细管虹吸的作用下到达蒸发段191,不断循环,实现了将模块顶部的热量传导至冷端的目的。为了减小热管19蒸发段191与顶部金属绝缘基板4的热阻,将蒸发段191通过软钎焊焊接在功率模块顶部金属上。为进一步优化散热效果,热管19的排列分为交错双向排列。

功率模块的驱动板17上有些元件在工作过程中也会产生大量热量,如果不及时散热,同样存在元件烧毁的风险。本发明功率模块由于在顶部金属绝缘基板4上布置有高导热的热管19,驱动板17可以通过散热介质与热管19接触,此时驱动板17的热量也可以通过热管19传导至散热器,进一步提高了系统的可靠性。

实施例8:

本实施例与实施例7的结构基本相同,不同之处在于:

如图33所示,顶部金属绝缘基板4的上表面烧结有交错排布的热管19,热外的冷端向底部金属绝缘基板5的方向折弯,并插入散热装置18内部。驱动板17与驱动端子连接,并通过高热导的粘结材料固定在热管19的另一表面,达到驱动芯片散热的目的。此时,塑封外壳15将顶部金属绝缘基板4上表面的中间部分和底部金属绝缘基板5下表面的中间部分裸露在外,顶部金属绝缘基板4上表面的中间部分和底部金属绝缘基板5下表面的中间部分均高出塑封外壳15,便于与散热装置18的接触;热管19的蒸发段191烧结在顶部金属绝缘基板4上,蒸发段191露在塑封外壳15外部。

实施例9:

本实施例与实施例7、实施例8的结构基本相同,不同之处在于:

如图34-36所示,本实施例在底部金属绝缘基板5下表面的中间部分烧结有扰流结构53,流体直接与扰流结构53接触,达到更好的散热效果。本实施例中的扰流结构53为叉排的圆柱状pin-fin,通过焊料烧结在底部金属绝缘基板5的下表面,流体流动向方向的pin-fin呈交叉排布,增加了流体的扰动性,增强了流体与pin-fin的换热效果。

如图37所示,散热装置18的上表面设有扰流孔182,所述扰流结构53通过扰流孔182伸入散热装置18内部并在扰流孔182口处密封,在散热装置18内部构成散热介质的换热通道。

扰流结构53不限于圆柱状pin-fin,横截面可也以是菱性、方形,或者是肋条状结构等形式。pin-fin的材料一般为铜材,并在表面镀有其它金属,通过在底部金属绝缘基板5的下表面印刷焊膏,并利用工装夹具,将pin-fin烧结在底部金属绝缘基板5的下表面,功率模块内部产生的热量通过底部金属绝缘基板5传导至pin-fin,而pin-fin直接与流体接触,去除了底部金属绝缘基板5下表面金属层平板结构的导热硅脂,增加了功率模块的散热面积,减小了功率模块的热阻。

以上仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1