分布反馈半导体激光芯片及其制备方法、光模块与流程

文档序号:11179772阅读:1290来源:国知局
分布反馈半导体激光芯片及其制备方法、光模块与流程

本发明涉及光通信技术领域,尤其涉及一种分布反馈半导体激光芯片及其制备方法、光模块。



背景技术:

光收发一体模块,简称光模块,是光纤通信中的一种标准模块。一个标准光模块通常包括光发射器、光接收器、微处理器和激光驱动器等器件。其中,激光器是光发射器中的关键部件。由于光纤传输具有低损耗、低色散的需求,因此波长为1.3~1.5微米的磷化铟基半导体激光器成为应用于光模块中的主流产品。其中,分布反馈激光器(distributedfeedbackbrag,dfb)因为单纵模特性好、传输距离更远的优势,其应用更为广泛。

在1972年贝尔实验室提出分布反馈光栅的概念时,把dbf激光器中的光栅分为两种类型,即增益耦合型光栅和折射率型耦合光栅。由于增益耦合性光栅需要直接刻蚀有源区,会引入各种缺陷影响器件的可靠性和稳定性,因此,目前多在激光器中设计折射率型耦合光栅。在具有折射率型耦合光栅的dbf激光器中,为了提升光栅性能,通常会设计各种复杂光栅结构,如多相移光栅、周期性调制光栅等,而上述复杂光栅制作工艺繁琐、制作成本高,不适于大规模生产,因此,当前大多仍采用均匀光栅结构。图1是一种典型的均匀光栅dfb半导体激光器的基本结构示意图。如图1所示,该dfb半导体激光器中包括沿其脊条方向排布的内建式均匀光栅10,利用该光栅来构成谐振腔,选择工作波长,可以实现动态单纵模工作,获得稳定的单一波长的激光。相关技术中,上述均匀光栅通常采用全息干涉技术制作,具体的,把激光器发出的光分成两束光波,使之在晶圆上形成干涉,通过调整入射光角度,以调整光栅的周期。在晶圆上完成其它的芯片制备工艺后,利用芯片切割技术将晶圆上的芯片分为独立的dfb半导体激光器芯片。

然而,在上述dfb半导体激光器中,其光栅的一个周期通常较小(约为200μm),而芯片切割时的误差在5~20μm,所以导致光栅的最后一个周期(最靠近激光器腔面的一个周期)切割位置是不可控的,造成光栅末端相位的随机性。但是,激光器内两个模增益差又受光栅末端相位的影响。因此,上述光栅末端相位的随机变化,会导致激光器内两个模的增益差不稳定,最终影响dfb半导体激光器的单纵模良率。



技术实现要素:

本发明提供了一种分布反馈半导体激光芯片及其制备方法、光模块,以解决dfb半导体激光芯片中光栅末端相位的不可控,所造成的dfb半导体激光器的单纵模良率低的问题。

根据本发明实施例的第一方面,本发明提供了一种分布反馈半导体激光芯片,所述分布反馈半导体激光芯片包括:

基板;

设于所述基板上的第一有源区和第二有源区,其中,所述第一有源区和第二有源区的宽度不相同;以及,

设于所述第一有源区上的第一光栅,所述第一有源区发出的光在所述第一光栅处发生布拉格反射;

设于所述第二有源区上的第二光栅,所述第二有源区发出的光在所述第二光栅处发生布拉格反射;

所述第一光栅和所述第二光栅通过解离所形成的光栅端面相位相同。

根据本发明实施例的第二方面,提供了一种分布反馈半导体激光芯片的制备方法,所述方法包括:

在基板上形成有源区;

在所述有源区上制备光栅;

在形成有所述光栅的有源区上制备周期性排布的有源区条形结构,其中,在每一个芯片周期内包括宽度不同的第一有源区和第二有源区;

在形成有所述有源区条形结构和光栅的晶圆上制备反向pn结、p型限制层、欧姆接触层和金属电极,得到具有多个分布反馈半导体激光芯片的晶圆;

对所述具有多个分布反馈半导体激光芯片的晶圆进行腔端面镀膜和芯片解离,得到多个独立的分布反馈半导体激光芯片。

根据本发明实施例的第三方面,还提供了另一种分布反馈半导体激光芯片的制备方法,所述方法包括:

在形成有量子阱有源区的晶圆中的p波导层上制备均匀光栅;

在形成有所述光栅的晶圆上生长p型限制层和欧姆接触层;

在形成有所述欧姆接触层的晶圆上制备周期性排布的脊波导,其中,在每一个芯片周期内包括至少两个宽度不同的脊波导;

在形成有所述脊波导结构的晶圆上制备金属电极,得到具有多个分布反馈半导体激光芯片的晶圆;

对所述具有多个分布反馈半导体激光芯片的晶圆进行腔端面镀膜和芯片解离,得到多个独立的分布反馈半导体激光芯片。

根据本发明实施例的第四方面,还提供了一种光模块,该光模块包括光发射器,所述光发射器中设有本发明实施例第一方面所提供的分布反馈半导体激光芯片。

由以上技术方法可见,本发明实施例提供的一种分布反馈半导体激光芯片及其制备方法、光模块,在一个激光器芯片中设计两个或两个以上的宽度不同的有源区,并且各有源区上的光栅通过解离形成的光栅端面相位相同。由于激光器的有效折射率neff由有源区材料、宽度、厚度等因素决定,因此在激光芯片的有源区材料、厚度等因素固定的条件下,有效折射率neff随有源区宽度的变化而变化,进而上述有源区宽度不同的芯片单元对应的有效折射率neff也不同。同时,dfb激光器输出波长与光栅周期、有效折射率又有如下关系:λ=2*λ*neff,其中,λ为光栅周期。由上述分析可以见,激光芯片有源区宽度的变化,最终引起其产生波长的变化。进一步的,波长不同的两个激光器,在相同的光栅端面相位条件下,其边摸抑制比也不同。因此,在单个半导体激光芯片尺寸上形成两个或更多个半导体激光芯片单元,在挑选激光芯片时,可以从芯片中挑选出边摸抑制比性能更优越的芯片单元作为有效芯片进行封装,进而可以使dfb激光芯片的良率得到大幅度提高,降低生产成本。

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。

附图说明

为了更清楚地说明本发明的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1是一种典型的均匀光栅dfb半导体激光器的基本结构示意图;

图2为现有技术中的dfb半导体激光芯片的表面结构示意图;

图3为图2的dfb半导体激光芯片中光栅末端相位示意图;

图4为本发明实施例提供的dfb半导体激光芯片的表面结构示意图;

图5为图4中的dfb半导体激光芯片的剖面结构示意图;

图6为图4中的dfb半导体激光芯片中的光栅结构示意图;

图7为图4中的dfb半导体激光芯片的在不同的光栅末端相位下的边模抑制比的模拟结果示意图;

图8为本发明实施例提供的在形成有量子阱有源区的晶圆上制备有宽度不同的有源区台面的剖面图;

图9为在图8中的晶圆上生长反向pn结、p型限制层和欧姆接触层后的剖面结构示意图。

具体实施方式

这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。

折射率光栅,是指沿激光器腔长方向折射率的实部即折射率周期性变化,形成前向光与后向光场的分布反馈机制。典型的折射率耦合结构是将光栅刻蚀在临近有源区的透明波导层上。本发明实例所研究的内容主要针对具有折射率型均匀光栅的dfb半导体激光器。

图2为现有技术中的dfb半导体激光芯片的表面结构示意图。如图2所示,该激光芯片主要激光芯片有源区1(该有源区的最上方覆盖有金属电极)、与有源区上方的金属电极连接的金属焊盘2、以及前后两个出光腔面(图中两个箭头所示),该激光芯片两个出光腔面的镀膜不同,后出光腔面面为高反射率镀膜(通常高于95%,称为“高反膜”),前出光面腔为反射率约为0的低反膜,用以打破激光芯片中两个模的平衡。图3为图2中的dfb半导体激光芯片中光栅末端相位示意图。如图3所示,均匀光栅3设置在有源区1上方,提供波长选择机制。由于光栅末端解理或者切割位置不可控,导致其光栅末端相位不可控,其中,该光栅末端相位可以表示为:ejδ/λ,λ为光栅周期,δ为解离位置。进一步,末端腔面反射取决于光栅相位,反射系数要乘以光栅相位,由于光栅末端相位的随机性,使得激光芯片的端面反射随相位变化,进而造成两个模的增益差不稳定,smsr(side-modesuppressionratio,边摸抑制比)也就不稳定,造成激光芯片单模良率低的问题(理论单模良率在40-50%之间)。针对该问题本发明实例通过对激光芯片中有源区进行优化设计,以提高激光器良率,降低该类激光器的制作成本。下面将结合附图,对本发明实例提供的dfb激光器芯片以及制备方法进行详细介绍。

图4为本发明实施例提供的dfb半导体激光芯片的表面结构示意图。图5为图4中的dfb半导体激光芯片的剖面结构示意图。如图4和5所示,该激光器芯片包括基板50,设于基板上的第一有源区15和第二有源区25;进一步的,如图6所示,在该dfb半导体激光芯片中的光栅结构示意图中,第一有源区15上设有第一光栅16、第二有源区25上设有第二光栅26。其中,第一有源区15和第二有源区25之间设有隔离沟槽30,并且该隔离沟槽30从分该布反馈半导体激光芯片单元的表面向下延伸至其基板50中,以减小寄生电容。

根据上述有源区的分布特点,本实施例将该dfb半导体激光芯片划分为两个芯片单元,分别称为第一dfb半导体激光芯片单元10和第二dfb半导体激光芯片单元20,其中,第一有源区15位于第一芯片单元中、第二有源区25位于第二芯片单元中。由于第第一dfb半导体激光芯片单元10和第二dfb半导体激光芯片单元20是采用同样的外延及芯片工艺制备的,所以两者的芯片材料层数,以及各层的排列次序、厚度和所用材料均相同。

下面将以第二芯片单元为例,对芯片的结构进行介绍,如图5所示,该芯片单元包括基板50、n型限制层28、有源区25、反向pn结27(p型inp限制层和n型inp限制层)、p型限制层24、p型欧姆接触层23、p面金属电极22以及n面金属电极40。

其中,构成基板50的材料可以是具有良好的结晶质量且与其上生长的材料具有良好的晶格匹配的半导体材料。本发明实施例以长波长激光器为例,在这种情况下,基板50的材料可以是n型inp,当然,基板50的材料还可以是其它半导体材料,例如,对于gaas激光器而言,基板50的材料可以是n型gaas。此外,基板50的表面应当平整、无缺陷,以有助于其上各层的生长。

在本发明实施例中,有源区25的材料可以是ingaasp,此外,有源区25还可以是ingaalas与ingaas构成的叠层。为了实现有源区25与基板50更好的晶格匹配,还可以在基板50与有源区25之间形成一缓冲层。有源区25两侧上可以形成有n型限制层28和p型限制层24,限制层可以用于将光场最大限度地限制在有源区25的周围。

另外,在有源区25和部分n型限制层28所形成的掩埋波导两侧形成有反向pn结27,用于限制电流从有源区25通过。在p型限制层24的上方可以形成有用于形成欧姆接触的p型欧姆接触层23。

进一步的,设于有源区上方的第一光栅16和第二光栅26由于采用同一光栅制备工艺制备,因此,两个光栅的类型、在芯片中的位置、周期以及光栅总长度均相同;并且,两者同时解离得到的末端光栅末端解理位置也是一样的,即两者的光栅端面相位相同。同样的,两个芯片单元是同时进行腔面镀膜的,所以两者前、后两个出光腔面的反射率均相同,本实施例称为两者具有相同的腔面反射率。

因此,通过上述分析,两个芯片单元两者的不同之处仅在于有源区的宽度不相同。其中,第一dfb半导体激光芯片单元10的有源区15的宽度为wa,第二dfb半导体激光芯片单元20的有源区25的宽度为wb,本发明实施例中将wb设计为大于wa。

由于激光器的有效折射率neff由有源区材料、宽度、厚度等因素决定,而在上述两个芯片单元的外延层结构以及光波导均相同的条件下,其有源区材料、厚度等均是相同的,所以两个芯片单元的有效折射率neff单仅受其有源区宽度的影响,即使两者有效折射率neff不同的因为只有有源区宽度这一个影响因素,因此,上述有源区宽度不同两个芯片单元的有效折射率neff也不同。并且,dfb激光器输出波长与光栅周期、有效折射率又有如下关系:λ=2*λ*neff,其中,λ为光栅周期。因此,上述两个芯片单元有源区宽度的变化,导致其有效折射率的变化,最终引起其输出波长的变化。

进一步的,在dfb激光器中,有源区发出的光进入光栅中进行布拉格反射,即是依靠其内置布拉格光栅这种与波长有很强关联性的分布反馈,满足谐振相位条件的纵模将有不同的损耗,与抛物线型的增益谱叠加后,净增最大的那个纵模实现激射的。因此,输出波长不同的两个激光器,在相同的光栅端面相位条件以及腔面反射率下,其边摸抑制比也不同,对应两个芯片单元的单模良率不同。

所以,在对将上述激光芯片封装时,可以从各芯片单元中挑选出边摸抑制比性能更好的芯片单元作为有效芯片进行封装,以防止因光栅端面相位偏差导致芯片单模抑制比不符合预设要求而报废的情况,进而可以使dfb激光芯片的良率得到大幅度提高,降低生产成本。

为了保证激光器的整体工作性能,本发明实施例还对芯片中各芯片单元中的有源区宽度进行了限定。具体的,上述第一dfb半导体激光芯片单元10和第二dfb半导体激光芯片单元20的有源区宽度wa、wb的上限值根据其对应的反馈半导体激光芯片单元工作在基横模的要求设定。由于保证基横模工作的有源区宽度与量子阱的设计有关,如波长、量子阱材料、阱数目、各层厚度等因素有关,因此,在实际应用中,需要根据实际的量子阱进行设计,如最宽是2um。进一步的,上述第一dfb半导体激光芯片单元10和第二dfb半导体激光芯片单元20的有源区宽度wa、wb的有源区宽度的下限值根据其对应的反馈半导体激光芯片单元的斜率效率满足预设效率值设定。由于激光器的输出功率、斜效率、串联电阻以及可靠性,会随着有源区变窄而恶化,而斜率效率又是衡量激光器输出特性的一个关键物理量,是与激光器的输出功率和泵浦功率相关的物理量,因此,本发明实施例利用斜率效率来限定有源区宽度值。

为使dfb半导体激光芯片中各dfb半导体激光芯片单元的边摸抑制比可以有较大的差异,以在挑选管芯时能顺利找到smsr更优越的芯片单元进行封装,本发明实例将各分布反馈半导体激光芯片中的各有源区宽度之间差值设计为,第一有源区15和第一有源区25的输出波长之间的差值大于或等于1nm。

例如,针对本发明实施例提供的dfb半导体激光芯片为掩埋波导结构、输出波长在1510nm波段、光栅周期为200nm的前提下,经计算第一有源区宽度wa比第二有源区宽度wb窄0.2um,两者的输出波长便可以相差越1nm。

当然,上述有源区宽度相差还可以是0.3um、0.5um等其它数据,这要根据最宽的波导是不是趋近可允许波导宽度上限、最窄的波导是不是趋近可允许波导宽度下限决定。进一步的,为给工艺制造流出足够的控制余地,上述有源区宽度中最宽、最窄要尽量远离上限或者下限,例如,如果有源区宽度可接受的范围在1.2-1.7um,那么两个有源区宽度最佳范围是1.35um-1.55um,即在1.2-1.7um的可允许范围的中间段。另外,本实施例提供的激光芯片设计,不仅适应于1510nm波段,在波长可以在850-1550nm都适用。

需要说明的是,本发明实施例是为了减少芯片中各光芯片单元之间的激光器反向漏电流和寄生电容,相邻的芯片单元之间开设隔离沟槽。在具体应用中,可以不设计该沟槽,或者将该沟槽设计为其它深度。

进一步的,由于在封装时,只选用上述两个分布反馈半导体激光芯片单元中的一个芯片单元作为有效芯片进行焊线封装,为了方便芯片的测试以及封装焊线工作,本发明实施例将上述两个芯片单元的金属焊盘分别设置在分布反馈半导体激光芯片的两侧,即如图4所示,第一dfb半导体激光芯片单元10的金属焊盘11设置在芯片的最左侧、而第二dfb半导体激光芯片单元20的金属焊盘21设置在芯片的最右侧,这样两者便具有一定的间距。

利用上述设计,本实施例还对上述两个有源区在不同的光栅末端相位下的smsr结果进行模拟。图7为图4中的dfb半导体激光芯片的在不同的光栅末端相位下的边模抑制比的模拟结果示意图。第一有源区宽度wa为1.2um,第二有源区宽度wb为1.4um,两者输出波长相差2um。从图7中看出,第二有源区对应的单模曲线随相位变化的统计良率(以大于35db为准),与第一有源区对应的曲线规律有很大不同。在任何光栅末端相位下,两个芯片单元的smsr总是处于一高一低的分布,进而保证了在上述两个dfb半导体激光芯片单元之间挑选smsr高的一只激光器的几率,远大于单独的第一dfb半导体激光芯片单元10或者第二dfb半导体激光芯片单元20的高smsr良率。

本发明实例提供的波长差异的dfb半导体激光芯片,并不限于在一个激光芯片区域内,设计并列的两个有源区宽度有差异的芯片单元。还可以并列设计三个、四个等多个芯片单元。由于当激光芯片中的芯片单元数量增加时,对应的激光芯片尺寸可能也要增大,因此,在实际应用中需要根据芯片良率以及产量的需求进行综合考量设计。

进一步的,当dfb半导体激光芯片设计有三个或三个以上的芯片单元时,为了节省芯片面积,还可也将芯片单元的金属焊盘设计在其相邻的芯片单元之上,例如,第三个芯片单元的金属焊盘布在第二个芯片单元的金属电极上,同时,为了避免两个芯片单元的金属电极的接触,还要在需要第二个芯片单元的金属电极表面淀积钝化膜。

另外,上述波长差异的dfb半导体激光芯片也并不限于上述掩埋波导结构,还可以为脊波导结构。

需要说明的是,现有技术中,由于误差等因素的存在,第一有源区的宽度与第二有源区的宽度不存在绝对的相同,即使采用同一解理工艺,产生的第一有源区的宽度与第二有源区的宽度也不可能绝对相同,这从描述上符合本发明实施例的方案,但是现有技术不关心这种绝对的不同,而在容忍误差等因素的基础上,认为是相同的。

绝对的不同虽然也会对波长产生影响,但是这种影响不足以满足本发明的目的。本发明实施例中,从激光器设计层面,将第一有源区的宽度与第二有源区的宽度设计为不同,这是一种刻意追求的不同,这种不同与现有技术并不一样,这种不同可以对激光器发出的波长产生较强的影响,这就是本发明的目的。

基于上述波长差异的dfb半导体激光芯片结构,本实施例还提供了波长差异的dfb半导体激光芯片的制备方法。

首先,是对掩埋波导结构的dfb半导体激光芯片的制备流程进行介绍。具体包括如下步骤:

步骤s110:在基板上形成有源区。

步骤s120:在所述有源区上制备光栅。

具体的,可以采用电子束直接曝光的方法、全息光刻等方法做出有源区条形结构上制备光栅条纹,然后,用湿法腐蚀或干法刻蚀的方法在有源区的上波导层上刻制出均匀光栅。

然后,在形成光栅层上生长一层p型inp材料,以保护光栅层。具体的,利用mocvd(有机金属化学气相沉积法,metal-organicchemicalvapordeposition)在上述形成光栅的晶圆上进行光栅层上面的再生长。

步骤s130:在形成有所述光栅的有源区上制备周期性排布的有源区条形结构,其中,在每一个芯片周期内包括宽度不同的第一有源区和第二有源区。

具体的,在形成有量子阱有源区的晶圆上先制备一层保护掩膜,然后,经过光刻、腐蚀等步骤在使上述掩膜形成在晶圆上周期性排布的条形图,并且在一个芯片周期内包括至少两个宽度不同的条形图,最后,以上述保护掩膜作为掩膜,利用湿法腐蚀或干法刻蚀制备掩埋波导,由于保护掩膜在一个芯片周期内包括至少两个宽度不同的条形图,所以,对应每一个芯片周期内包括至少两个宽度不同的有源区条形结构。图8为本发明实施例提供的在形成有量子阱有源区的晶圆上制备宽度不同的有源区台面的剖面图。如图8所示,在一个芯片周期内包括两个芯片单元,由于两个芯片单元的保护掩膜151、251的宽度不同,所以对应的两个有源区wa、wb的宽度也不同。。

步骤s140:在形成有所述有源区条形结构和光栅的晶圆上制备反向pn结、p型限制层、欧姆接触层和金属电极,得到具有多个分布反馈半导体激光芯片的晶圆。

具体的,利用mocvd(有机金属化学气相沉积法,metal-organicchemicalvapordeposition)在上述形成有有源区条形结构和光栅的晶圆依次进行光栅层上面的再生长、反向pn结再生长、以及p型限制层和欧姆接触层的再生长,如图9所示,即为在图8中的晶圆上生长反向pn结、p型限制层和欧姆接触层后的剖面结构示意图。最后,通过管芯制备工艺在上述晶圆上制备p面和n面金属电极,得到具有多个分布反馈半导体激光芯片的晶圆。

步骤s150:对所述具有多个分布反馈半导体激光芯片的晶圆进行腔端面镀膜和芯片解离,得到多个独立的分布反馈半导体激光芯片。

具体的,根据dbf半导体激光芯片的腔长要求,将上述晶圆解离成多个巴条并进行前、后出腔面镀膜,然后根据预设芯片周期将镀膜后的巴条进行芯片解离,进而得到多个独立的分布反馈半导体激光芯片。由于在步骤s130中制备了每一个芯片周期内包括至少两个宽度不同的有源区条形结构,因此,解离得到的激光芯片也包括至少两个有源区宽度不同的分布反馈半导体激光芯片单元。并且,在一个激光芯片中,各光栅的解离位置是同一次巴条解离时形成的,所以芯片中各光栅的光栅每段相位也相同。

进一步的,本发明实施还提供了对脊波导结构的dfb半导体激光芯片的制备方法。具体包括如下步骤:

步骤s210:在形成有量子阱有源区的晶圆中的p波导层上制备均匀光栅。

具体的,可以采用电子束直接曝光的方法、全息光刻等方法做出有源区条形结构上制备光栅条纹,然后,用湿法腐蚀或干法刻蚀的方法在有源区的上波导层上刻制出均匀光栅。

步骤s220:在形成有所述光栅的晶圆上生长p型限制层和欧姆接触层。

具体的,利用mocvd在上述形成有光栅的晶圆上依次生长p型限制层和欧姆接触层。

步骤s230:在形成有所述欧姆接触层的晶圆上制备周期性排布的脊波导,其中,在每一个芯片周期内包括至少两个宽度不同的脊波导。

具体的,可以利用过光刻的方法在使上述掩膜形成在晶圆上周期性排布的条形图,并且在一个芯片周期内包括至少两个宽度不同的条形图,然后,以光刻胶或其它物质作为保护掩膜,利用湿法腐蚀或干法刻蚀制备脊波导。由于利用光刻了每一个芯片周期内包括至少两个宽度不同的有源区条形结构,所以,在制备脊波导后每一个芯片周期内包括至少两个宽度不同的脊波导,对应的,每一个芯片周期也就包括至少两个宽度不同有源区。需要说明的是,对于脊波导类型的激光芯片,本发明实施例中的有源区是指与脊波导对应的有源区。

步骤s240:在形成有所述脊波导结构的晶圆上制备金属电极,得到具有多个分布反馈半导体激光芯片的晶圆。

通过管芯制备工艺在上述晶圆上制备p面和n面金属电极,得到具有多个分布反馈半导体激光芯片的晶圆。

步骤s250:对所述具有多个分布反馈半导体激光芯片的晶圆进行腔端面镀膜和芯片解离,得到多个独立的分布反馈半导体激光芯片。

基于上述有源区宽度有差异的多波导dfb半导体激光芯片,本发明实施例还提了一种一种光模块,该光模块包括光发射器、光接收器以及微处理器等部件,同时其光发射器中设有本发明实施例提供的dfb半导体激光芯片。

本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处,相关之处参见方法实施例的部分说明即可。本领域技术人员在考虑说明书及实践这里的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。

应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1