陶瓷材料、压敏电阻和制备该陶瓷材料和压敏电阻的方法与流程

文档序号:16051592发布日期:2018-11-24 11:20阅读:240来源:国知局

随着变电所容量的增加和地下站的发展,需要减小输电和转换装置的尺寸。因此,需要具有更小尺寸和/或更简单结构的气体绝缘开关装置(gis)浪涌压敏电阻(surgevaristor)来跟随这一趋势并减少sf6和外壳材料的消耗。这样的要求需要新一代的关键部件—金属氧化物压敏电阻(metaloxidevaristor,mov),对于给定的保护电压该压敏电阻的高度应该明显降低。

为了实现mov的高度降低,必须改进制造mov的陶瓷材料的若干性质。

本发明的目的是提供一种具有改进性质的陶瓷材料待用于压敏电阻并提供一种包含由这样的陶瓷材料制成的陶瓷体的压敏电阻。进一步的目的是提供制备陶瓷材料的方法和制备压敏电阻的方法。

这些目的用根据独立权利要求1的陶瓷材料、用根据独立权利要求9的压敏电阻和用根据权利要求11和13的方法实现。进一步的实施方案是从属权利要求的主题。

根据至少一个实施方案,提供了陶瓷材料,所述陶瓷材料包含作为主要组分的zno和选自以下的添加剂:含al3+的溶液、含ba2+的溶液和至少一种含金属元素的化合物,其中所述金属元素选自:bi、sb、co、mn、ni、y和cr。

“陶瓷材料”应理解为多种组分的组合物,该组合物以仅必须烧结以变成陶瓷的方式制备。由陶瓷材料形成的主体可以称为生坯(greenbodies)。当陶瓷材料烧结时,形成陶瓷,该陶瓷具有取决于陶瓷材料的组成的性质。

添加到主要组分zno中的添加剂可以包含一种含金属元素的化合物,或者几种各自含金属元素的化合物,其中在每种化合物中金属元素可以是不同的。例如,可以存在含bi的化合物、含sb的化合物和含co的化合物作为陶瓷材料中的添加剂。

添加剂含al3+的溶液和含ba2+的溶液应理解为添加到主要组分zno中的起始材料。或者,这些添加剂可分别称作al3+和ba2+,它们在制备陶瓷材料时以含al3+的溶液和含ba2+的溶液的形式加入。

根据一个实施方案,陶瓷材料中添加剂的含量≤5mol%。应理解,所有添加剂的含量一起≤5mol%。与现有技术的陶瓷相比,这是减少的添加剂含量,所述现有技术的陶瓷通常具有5至7mol%的量的添加剂。陶瓷材料中添加剂的低含量导致烧结的陶瓷中低含量的第二相,这增强了有效的zno相和zno-zno晶界,导致压敏电阻陶瓷的更高体积效率。

根据一个实施方案,在陶瓷材料中c1是co3o4中co的当量含量(equivalentcontent),m是mn3o4中mn的当量含量,s是sb2o3中sb的当量含量,c2是cr2o3中cr的当量含量,a是al3+的含量,y是y2o3中y的当量含量,b1是bi2o3中bi的当量含量,n是nio中ni的当量含量,b2是ba2+的含量,且z是zno的含量,并且

0.4mol%≤b1≤0.55mol%,

1.10mol%≤s≤1.90mol%,

0.50mol%≤c1≤0.80mol%,

0.20mol%≤m≤0.30mol%,

0.70mol%≤n≤1.20mol%,

0.25mol%≤y≤0.45mol%,

0.00mol%≤c2≤0.10mol%,

0.003mol%≤a≤0.006mol%,和

0.005mol%≤b2≤0.015mol%。

在选择上述氧化物作为含金属元素的化合物的情况下,b1也对应于bi2o3的含量,s也对应于sb2o3的含量,c1也对应于co3o4的含量,m也对应于mn3o4的含量,n也对应于nio的含量,c2也对应于cr2o3的含量,并且y也对应于y2o3的含量。

此外,(c1+5c2+2s+4y–m–250a)(1-z)/b1可以称为组成因子f并且适用于0.27≤f≤0.43。陶瓷材料中不同添加剂的含量的关系是造成在陶瓷材料烧结期间晶粒尺寸控制和晶界电位形成的原因,以便实现从480v/mm到640v/mm(包括端值)的烧结陶瓷的超高压敏电阻梯度(e1ma)。压敏电阻梯度是每mm的特征性压敏电阻电压。

添加剂的含量和压敏电阻梯度之间的关系使得能够通过针对所需的压敏电阻梯度同时且恰当地改变相关元素使烧结陶瓷中的压敏电阻非活性相(例如尖晶石相zn7sb2o12)最小化。结果,通过更有效的zno-zno晶界可以提高烧结陶瓷的体积效率。

此外,所述至少一种化合物可选自金属氧化物、金属碳酸盐、金属乙酸盐、金属氮化物及其混合物。所述至少一种化合物可选自bi2o3、sb2o3、co3o4、mn3o4、nio、y2o3和cr2o3。例如,所有含金属元素的化合物可以是各自包含不同金属元素的金属氧化物。

此外,所述含al3+的溶液和所述含ba2+的溶液可以是选自氮化物、乙酸盐、水合物及其混合物的溶液。例如,所述含ba2+的溶液可以是ba(ch3coo)2的溶液,所述含al3+的溶液可以是硝酸铝al(no3)3的溶液。调节陶瓷材料中ba2+的含量以降低由该陶瓷材料制成的陶瓷的高温功率损耗和/或漏电流,并改善包含由该陶瓷材料制成的陶瓷体的压敏电阻的i/v曲线的非线性。

根据一个实施方案,陶瓷材料具有在1020℃和1060℃之间的烧结温度,包括端值。该降低的烧结温度需要较少能量。这在环境保护方面是有利的,并且使得能够快速生产包含由该陶瓷材料制成的陶瓷的压敏电阻装置。此外,bi2o3的蒸发是热力学抑制的,导致较少的bi2o3蒸发,同时减少由烧结引起的可能的组成偏差和可能的不均匀性。

陶瓷的均匀性导致在操作期间由该陶瓷材料制成的压敏电阻中电流分布的均匀性,该电流分布的均匀性对于压敏电阻装置的能量容量是至关重要的。

因此,根据上述实施方案的zno基陶瓷材料可用于金属氧化物压敏电阻(mov),所述金属氧化物压敏电阻可用于气体绝缘避雷器(gasisolatedarresters,gis)。由该陶瓷材料制成的陶瓷的超高压敏电阻梯度确保避雷器装置的小型化和设计简化。此外,所述陶瓷显示出降低的高温功率损耗,即使在较差的散热条件下也能防止热失控(thermalrun-away)。

此外,提供一种压敏电阻,所述压敏电阻包含含有烧结的根据上述实施方案的陶瓷材料的陶瓷体。由于陶瓷材料的组成,压敏电阻可以称为金属氧化物压敏电阻(mov)。压敏电阻可以具有480v/mm和640v/mm之间的压敏电阻梯度e1ma,包括端值。因此,提供了压敏电阻的超高梯度。例如,这样的压敏电阻可以用于紧凑型gis避雷器中。

由于在压敏电阻中使用了根据上述实施方案之一的陶瓷材料,压敏电阻具有若干有利性质。例如,由于陶瓷材料的组成,陶瓷体中第二相的量可以大大减少。

在传统的压敏电阻陶瓷中,晶粒尺寸由尖晶石相(zn7sb2o12)控制,尖晶石相实际上在压敏电阻响应中不具活性。在烧结期间尖晶石相的形成消耗了陶瓷材料组成中相当多的zno(1molsb2o3对应于7molzno)。因此,对于包含2mol%sb2o3的组合物,约14mol%的zno将被尖晶石相夺走,并且最多86mol%的zno可用于在最终陶瓷中形成压敏电阻晶界。高含量的尖晶石相还降低了zno晶界的连通性。因此,体积效率受到很大限制,特别是当必须通过增加尖晶石相以减小晶粒尺寸来实现更高的压敏电阻梯度时。

在陶瓷材料中引入的y2o3可以在烧结期间与bi2o3、sb2o3和少量的zno(与sb2o3的量相当)反应并形成非常细小粒子(直径小于1微米),该细小粒子比尖晶石更有效地抑制晶粒生长。因此,可以在陶瓷材料中用降低含量(例如低至1.2mol%)的sb2o3实现超高压敏电阻梯度。sb2o3(或最终陶瓷中的尖晶石相)和其他添加剂总体上降低的含量(≤5mol%)导致包含由该陶瓷材料制成的陶瓷的压敏电阻的高体积效率。

另外,由该陶瓷材料制成的压敏电阻的陶瓷体在190℃下具有期望的高温功率损耗pcov,这取决于装置设计,以及优异的陡度s7(为钳位梯度e10ka与压敏电阻梯度e1ma的关系:e10ka/e1ma),特别是陡度s7≤1.5。这些性质也适用于尺寸减小且散热条件恶化的gis避雷器中使用的压敏电阻的陶瓷。

因此,通过使用该陶瓷材料可以实现mov的高度降低,因为压敏电阻梯度明显增加并且同时mov的高温功率损耗减小。

应当理解,在陶瓷材料的上下文中提到的特征也适用于压敏电阻,并且在压敏电阻的上下文中提到的特征也适用于陶瓷材料。

此外,提供了一种制备根据上述实施方案之一的陶瓷材料的方法。该方法具有以下制备步骤:称重、混合和球磨第一部分添加剂,加入zno和第二部分添加剂,形成均匀浆料,并喷雾干燥浆料以形成陶瓷材料的颗粒。第一部分添加剂可以是至少一种含金属元素的化合物,其中所述金属元素选自bi、sb、co、mn、ni、y和cr,并且第二部分添加剂可以是含al3+的溶液和含ba2+的溶液中的至少一种。

例如,将添加剂bi2o3、sb2o3、y2o3、co3o4、cr2o3、mn3o4和nio或具有所述当量量(equivalentquantity)的金属元素的其他类型的氧化物、碳酸盐、乙酸盐、氮化物称重、混合并球磨(例如在水中),以获得所需的粒度分布。主要组分zno可以粉末形式加入并与例如以氮化物、乙酸盐或氢化物形式的含al3+和含ba2+的溶液一起引入体系中。为了形成均匀的浆料,可以进一步引入另外的水和一些有机物例如粘合剂、分散剂、消泡剂,并且可以形成具有所需粘度和密度的均匀浆料。进行浆料的喷雾干燥以得到所需直径、可流动性和可压制性的颗粒用于随后的工艺步骤。

此外,提供一种制备压敏电阻的方法,包括以下制备步骤:形成包含根据上述实施方案之一制备的陶瓷材料的陶瓷体和施加电极层,其中所述陶瓷材料在1020℃和1060℃之间的温度下烧结以形成陶瓷体,包括端值。

陶瓷体的形成可以包括进一步的步骤:干压用上述方法制备的陶瓷材料的颗粒,对陶瓷材料进行脱粘合剂并烧结陶瓷材料,其中所述步骤在烧结之前进行。

例如,提供由用上述方法制成的陶瓷材料的颗粒形成的具有限定的尺寸的圆柱形生坯部件,其中所述限定的尺寸可取决于进一步的表征方法。对于特征性质如压敏电阻梯度e1ma、钳位梯度e10ka和漏电流密度js,生坯部件的尺寸可以是直径15.6mm,厚度1.8mm。对于能量压敏电阻的示范,直径可以是130mm至155mm,厚度可以是22mm。生坯部件可以由颗粒干压,随后在约500℃的空气中脱粘合剂以除去有机组分。然后可将部件在1020至1060℃下烧结1至3小时以得到致密且均匀的压敏电阻陶瓷体。

作为电极层,例如al或ag的层可以施加在陶瓷体的顶表面和底表面上。al可以例如通过schoop工艺施加,其中熔融金属液滴溅射在固体表面上以形成电极。可以例如通过溅射施加ag。

另外,可以在陶瓷体的侧表面上施加绝缘层。例如,可通过喷雾和回火施加高绝缘性釉涂层。釉涂层可包含玻璃。回火可以在约510℃的温度下进行。可以在施加电极层之前进行绝缘层的施加。

以下通过实施例和附图进一步解释陶瓷材料、压敏电阻以及制备该陶瓷材料和压敏电阻的方法的实施方案。

图1显示了压敏电阻的横截面;

图2显示了压敏电阻梯度e1ma对组成因子f的依赖性;

图3显示了由陶瓷材料制成的陶瓷的一个实施方案的微观结构图。

图4显示了几种电性质对ba2+含量的依赖性。

相等、相似或显然相等的要素在图中具有相同的数字或符号。图和图中的要素的比例未按比例绘制。相反,为了更好地呈现和/或更好地理解,多个要素可以不成比例地呈现。

图1示出了根据一个实施方案的压敏电阻的横截面。它包含陶瓷体10、电极层20和绝缘层30。为了制备压敏电阻,首先形成陶瓷体10。

为此,将固态添加剂原料如bi2o3、sb2o3、y2o3、co3o4、cr2o3、mn3o4和nio(或具有所述当量量的金属元素的其他类型的氧化物、碳酸盐、乙酸盐或氮化物)称重、混合并且球磨(在水中)以获得所需的粒度分布。然后将主要组分zno以粉末形式与al3+和ba2+溶液(以氮化物、乙酸盐或水合物形式)一起引入系统中。进一步引入另外的水和一些有机物(例如粘合剂、分散剂、消泡剂)以形成具有所需粘度、密度或固体含量的均匀浆料。然后通过喷雾干燥法由浆料产生具有所需直径和尺寸分布、填充密度、可流动性和可压制性的颗粒。

进一步形成的包含陶瓷材料的颗粒的圆柱形生坯部件的尺寸取决于进一步的表征方法:例如,对于电表征,由颗粒干压直径为15.6mm且厚度为1.8mm的圆盘形生坯部件,然后在约500度的空气中脱粘合剂以除去有机组分。然后将圆盘在1040℃下烧结3小时以得到致密的陶瓷体。将顶表面和底表面金属化,例如通过溅射用ag金属化。

对于如图1所示的能量压敏电阻,陶瓷部件的侧表面通过喷雾和回火涂覆有高绝缘釉层以形成绝缘层30。研磨顶部和底部表面以去除污染的釉并且获得所需的高度和表面质量。将顶部和底部表面完全金属化,例如通过schoop工艺使用al金属化。

在下文中,示出了陶瓷材料和由其制成的陶瓷的几个实例。

表1中描述的样品e01至e43解释了在规定的工艺条件下添加剂的含量与压敏电阻梯度e1ma之间的相互关系。在包括zno和其他添加剂的每种组分的规定范围内,压敏电阻梯度强烈地取决于最相关的添加剂组分bi2o3、sb2o3、y2o3、co3o4、cr2o3、mn3o4、nio和al3+的相对含量。依赖性可以通过e1ma与组成因子f之间的线性关系来表示,其中f是co3o4(c1)、mn3o4(m)、sb2o3(s)、cr2o3(c2)、al3+(a)、y2o3(y)、bi2o3(b1)和zno(z)的含量的函数:

f=(c1+5c2+2s+4y–m–250a)(1-z)/b1。

为了获得所需的压敏电阻梯度(例如e1ma在480v/mm和640v/mm之间,包括端值),应调节添加剂的含量,使得因子f在0.26(优选0.27)和0.43之间,包括端值。

如关于图1所述制备样品e01至e43,其中由颗粒干压直径为15.6mm、厚度为1.8mm的圆盘状生坯部件,然后在约500℃的空气中脱粘合剂以去除有机组分。然后将圆盘在1040℃下烧结3小时以得到致密的陶瓷体。

为了表征样品,通过溅射用ag在顶部和底部表面将圆盘金属化。对金属化部件的电性质进行表征,然后归一化为直径为125mm、高度为18mm的能量压敏电阻,以进行公平比较。

压敏电阻梯度e1ma用低直流电流测量,该电流在直径为125mm的陶瓷圆盘上提供1ma的电流密度(即约10µa/cm2)。钳位梯度e10ka用8/20µs的放电波测量,并在直径为125mm的陶瓷圆盘上提供10ka的电流密度(即约100a/cm2)。陡度s7等于e10ka/e1ma。在0.75e1ma的dc场下测量在室温和170度下的漏电流密度。

表1显示了每个实施例e01至e43的组成(其中zno和添加剂的含量以mol%给出)、因子f和压敏电阻梯度e1ma。可以看出,对于在0.27和0.43之间的因子f,压敏电阻梯度在480v/mm和640v/mm之间的所需范围内。如果因子f分别大于0.43或小于0.27,则不能实现压敏电阻梯度的所需范围(实施例e03、e06至e08、e18、e23和e24)。

表1

压敏电阻梯度对组成因子f的依赖性也在图2中示出,其中可以清楚地看到e1ma和f之间的相互关系。

表达式(expression)f反映了相应组分影响压敏电阻梯度的有效性,该压敏电阻梯度实际上由烧结期间形成的晶粒尺寸和晶界电位确定。晶粒生长主要受第二相(例如尖晶石相zn7sb2o12)和富y-bi相的形成和分布所控制,可在图3看出。在图3中,示出了示例性样品e15陶瓷的微观结构。a表示富y-bi相,b表示富bi液相,c表示尖晶石相zn7sb2o12。

尖晶石相的特征在于晶粒尺寸为2至4μm,而富y-bi相具有小得多的亚微米直径尺寸。因此,与引入sb2o3相比,引入y2o3在实现所需的压敏电阻梯度方面带来了双重有效性。尖晶石相的形成消耗更多zno并且不利于高体积效率。通过引入1mol%的sb2o3,约7mol%的zno将被尖晶石相夺走,并且有效的压敏电阻体积分数(zno晶粒)不得不减少很多。相比之下,富y-bi相晶粒具有小zno含量并且对体积效率具有较小的影响。因此,通过协同地改变其他添加剂的含量使得因子f在一定范围内(例如e12、e22和e33至e42的组合物)可以实现具有降低的sb2o3含量(例如1.1mol%至1.2mol%)的超高梯度压敏电阻陶瓷。

样品e44至e46与样品e15和e25一起列于表2中,并显示ba2+含量对高温漏电流js和陡度特性s7的影响。

表2

表2中列出的组合物均具有相同量的添加剂,不同之处在于ba2+的含量。zno和添加剂的含量以mol%给出。制备方法和电表征与针对实施例e01至e43所述的相同。基本电性质与ba2+的含量b2的函数关系绘制在图4中。这里,ba2+的含量b2相对于高温漏电流js、陡度s7和压敏电阻梯度e1ma绘制。图4中的圆圈是样品的相应测量值,方框是发散(scattering)的统计表示(例如,中值、平均值、最大值、最小值等,取决于绘图中的定义)。显然,低至0.0060%的痕量的ba2+可有效降低高温漏电流密度js,这对装置工作中的能量容量至关重要。b2的进一步增加导致甚至更低的漏电流,但是当b2超过0.0150%时,陡度s7变差。

表3中列出的样品e47至e49以及样品e10、e15和e19分别由与e10、e15和e19相同的组合物制备,不同之处在于在脱粘合剂和烧结之前生坯部件的尺寸为直径150mm和高度25mm。因此,在表3中,样品编号(实施例)、组合物、直径d和厚度t与电性质(压敏电阻梯度e1ma、陡度s7、高温漏电流js和高温功率损耗pcov)一起列出。

表3

脱粘合剂和烧结条件与实施例e01至e46中的小圆盘相同。然后将玻璃材料层喷在样品的侧表面上,接着在510℃下回火以得到致密且高度绝缘的釉涂层。然后将部件的两个主侧面研磨至所需厚度,例如18mm。在顶部和底部表面上提供铝金属化(例如通过schoop工艺)以用于电接触。表征基本电性质(高温功率损耗pcov而不是js在190℃下在幅度e10ka/2.75的50hz-ac场下测量)并且与实施例e10、e15和e19的小圆盘进行比较。基本上,小圆盘的压敏电阻梯度e1ma可以以约5%的轻微偏移很好地再现,同时由于尺寸效应陡度s7漂移到较低的值。对于较低js的材料,可以预期较低的pcov,因为两者都来自相同的物理效应(耐高温性)。

因此可以表明,zno基陶瓷材料可用于气体绝缘避雷器中使用的金属氧化物压敏电阻。这些材料的超高压敏电阻梯度对于避雷装置的小型化和设计简化是必需的。

本发明的保护范围不限于上文给出的实施例。本发明体现在每个新颖的特征和特征的每个组合中,其特别包括权利要求中陈述的任何特征的每种组合,即使该特征或该特征组合在权利要求或在实施例中没有明确陈述。

参考列表

10陶瓷体

20电极层

30绝缘层

a富y-bi相

b富bi液相

c尖晶石zn7sb2o13相

f组成因子

e1ma压敏电阻梯度

s7陡度

js漏电流密度

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1