低温多晶硅薄膜的制作方法、低温多晶硅薄膜及低温多晶硅TFT基板与流程

文档序号:15972689发布日期:2018-11-16 23:35阅读:450来源:国知局

本发明涉及显示技术领域,尤其涉及一种低温多晶硅薄膜的制作方法、低温多晶硅薄膜及低温多晶硅tft基板。

背景技术

在显示技术领域,液晶显示器(liquidcrystaldisplay,lcd)和有源矩阵驱动式有机电致发光(activematrixorganiclight-emittingdiode,amoled)显示器等平板显示装置因具有机身薄、高画质、省电、无辐射等众多优点,得到了广泛的应用,如:移动电话、个人数字助理(pda)、数字相机、计算机屏幕或笔记本屏幕等。

薄膜晶体管(thinfilmtransistor,tft)阵列(array)基板是目前lcd装置和amoled装置中的主要组成部件,直接关系到高性能平板显示装置的发展方向,用于向显示器提供驱动电路,通常设置有数条栅极扫描线和数条数据线,该数条栅极扫描线和数条数据线限定出多个像素单元,每个像素单元内设置有薄膜晶体管和像素电极,薄膜晶体管的栅极与相应的栅极扫描线相连,当栅极扫描线上的电压达到开启电压时,薄膜晶体管的源极和漏极导通,从而将数据线上的数据电压输入至像素电极,进而控制相应像素区域的显示。

其中,低温多晶硅(lowtemperaturepoly-silicon,ltps)薄膜晶体管与传统非晶硅(a-si)薄膜晶体管相比,虽然制作工艺复杂,但因其具有更高的载流子迁移率,被广泛用于中小尺寸高分辨率的lcd和amoled显示面板的制作,低温多晶硅被视为实现低成本全彩平板显示的重要材料。

目前制作低温多晶硅的方法包括固相结晶(solidphasecrystallization,spc)、金属诱导结晶(metalinducedcrystallization,mic)和准分子激光退火(excimerlaserannealer,ela)等几种,其中准分子镭射退火是目前使用最为广泛的方法。

低温多晶硅晶粒的大小对多晶硅的电学性能有重要影响,在准分子激光退火制程中,非晶硅受到高温后变成完全熔融(nearlycompletelymelts)状态,然后重结晶形成多晶硅。重结晶时会按照低能量向高能量方向结晶,低温向高温方向结晶。由于目前采用准分子激光束均匀的照射到非晶硅薄膜层上,非晶硅薄膜层的各部分温度大致相等,所以重结晶时的起点和方向是凌乱的,导致结晶后晶粒偏小,晶粒间晶界偏多,就会影响多晶硅的电子迁移率。



技术实现要素:

本发明的目的在于提供一种低温多晶硅薄膜的制作方法,能够提高晶化效率,增大晶粒尺寸,减少晶界数量,进而能够提高tft器件载流子的迁移率,减小晶界对漏电流的影响。

本发明的目的在于提供一种低温多晶硅薄膜,采用上述的多晶硅薄膜的制作方法制得,其结晶方向可控且具有较大的多晶硅晶粒,进而能够提高tft器件载流子的迁移率,减小晶界对漏电流的影响。

本发明的目的在于提供一种低温多晶硅tft基板,有源层由上述的低温多晶硅薄膜所构成,具有很高的电子迁移率以及稳定的电性能。

为实现上述目的,本发明首先提供一种低温多晶硅薄膜的制作方法,包括如下步骤:

步骤s1、提供衬底基板,在所述衬底基板上形成非晶硅薄膜层;

步骤s2、在所述非晶硅薄膜层上沉积形成一折射层,然后在该折射层表面形成多个凸形的或凹形的弧面结构;所述折射层的材料为氮化硅;

步骤s3、采用准分子激光束从所述折射层照射到非晶硅薄膜层上,使所述非晶硅薄膜层结晶形成低温多晶硅薄膜,照射过程中所述准分子激光束通过折射层的弧面结构时会产生散光效应或聚光效应。

所述步骤s2中在折射层表面形成多个弧面结构的具体过程为:在所述折射层上涂布光阻材料,并通过一道半透光光罩对该光阻材料进行曝光显影处理,得到表面具有多个光阻弧面的光阻层;以所述光阻层为遮蔽层,对所述折射层进行蚀刻处理,对应所述多个光阻弧面在所述折射层的表面上形成多个弧面结构,然后去除所述光阻层。

所述步骤s2中形成的光阻弧面为凸形光阻弧面,在所述折射层的表面上形成多个弧面结构为凸形弧面结构。

所述步骤s2中形成的光阻弧面为凹形光阻弧面,在所述折射层的表面上形成多个弧面结构为凹形弧面结构。

所述步骤s2中采用干蚀刻方式对所述折射层进行蚀刻处理,对所述折射层进行蚀刻处理的蚀刻气体包含氧气、六氟化硫、五氟乙烷及四氟化碳中的一种或多种。

所述步骤s2中对所述折射层进行蚀刻处理的蚀刻气体为氧气和六氟化硫的组合。

所述步骤s2中形成的折射层的厚度为在所述折射层上涂布的光阻材料的厚度为2-3μm。

所述步骤s3还包括在结晶形成低温多晶硅薄膜之后,去除所述折射层。

本发明还提供一种低温多晶硅薄膜,采用如上所述的低温多晶硅薄膜的制备方法制得。

本发明还提供一种低温多晶硅薄膜tft基板,包括衬底基板、形成于所述衬底基板上的有源层、覆盖所述有源层的栅极绝缘层、设于栅极绝缘层上的栅极、覆盖栅极的层间绝缘层及设于层间绝缘层上的源漏极;

所述有源层由如上所述的低温多晶硅薄膜构成;

所述层间绝缘层和栅极绝缘层在对应于所述有源层两端的上方设有过孔,所述源漏极通过所述过孔与有源层相接触。

本发明的有益效果:本发明的低温多晶硅薄膜的制作方法,通过在非晶硅薄膜层上沉积形成折射层并在该折射层表面形成多个凸形的或凹形的弧面结构,当采用准分子激光束照射非晶硅薄膜层使非晶硅薄膜层结晶形成低温多晶硅薄膜的制程中,准分子激光束通过折射层的弧面结构时会产生一定的散光效应或聚光效应,从而在非晶硅薄膜层上形成激光能量梯度,如此便可控制非晶硅薄膜层的结晶方向,增大晶粒尺寸,减少晶界数量,进而能够提高tft器件载流子的迁移率,减小晶界对漏电流的影响。本发明的低温多晶硅薄膜,采用上述的多晶硅薄膜的制作方法制得,其结晶方向可控且具有较大的多晶硅晶粒,进而能够提高tft器件载流子的迁移率,减小晶界对漏电流的影响。本发明的低温多晶硅tft基板,有源层由上述的低温多晶硅薄膜所构成,具有很高的电子迁移率以及稳定的电性能。

附图说明

为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。

附图中,

图1为本发明的低温多晶硅薄膜的制作方法的流程示意图;

图2为本发明的低温多晶硅薄膜的制作方法的第一实施例的步骤s1的示意图;

图3-5为本发明的低温多晶硅薄膜的制作方法的第一实施例的步骤s2的示意图;

图6-7为本发明的低温多晶硅薄膜的制作方法的第一实施例的步骤s3的示意图;

图8-10为本发明的低温多晶硅薄膜的制作方法的第二实施例的步骤s2的示意图;

图11为本发明的低温多晶硅薄膜的制作方法的第二实施例的步骤s3的示意图;

图12为本发明的低温多晶硅tft基板的结构示意图。

具体实施方式

为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。

请参阅图1,本发明首先提供一种低温多晶硅薄膜的制作方法,本发明低温多晶硅薄膜的制作方法的第一实施例具体包括如下步骤:

步骤s1、如图2所示,提供衬底基板10,在所述衬底基板10上制作缓冲层20,然后沉积形成非晶硅薄膜层30,并对非晶硅薄膜层30进行高温去氢处理及氢氟酸(hf)预清洗处理。

具体地,所述缓冲层20为氮化硅(sinx)层与氧化硅(siox)层的堆栈组合。

步骤s2、如图3-5所示,在所述非晶硅薄膜层30上沉积形成一氮化硅材料的折射层40,然后在所述折射层40上涂布2.2μm的光阻材料,并通过一道半透光光罩70对该光阻材料进行曝光显影处理,得到表面具有多个光阻弧面801的光阻层80;以所述光阻层80为遮蔽层,对所述折射层40进行蚀刻处理,对应所述多个光阻弧面801在所述折射层40的表面上形成多个弧面结构401,去除所述光阻层80。

具体地,所述步骤s2中采用化学气相沉积法(cvd)沉积形成所述折射层40。

具体地,所述步骤s2中形成的折射层40的厚度为本实施例中所形成的折射层40的厚度优选为

具体地,所述步骤s2中在所述折射层40上涂布的光阻材料的厚度为2-3μm,本实施例中所涂布的光阻材料的厚度优选为2.2μm。

具体地,所述步骤s2中形成的光阻弧面801为凹形光阻弧面,在所述折射层40的表面上形成多个弧面结构401为凹形弧面结构,凹形的所述弧面结构401相当于一凹透镜面,可使垂直照射于所述折射层40的光束发生折射而产生一定的散光效应,以后续对非晶硅薄膜层30进行准分子激光束90照射时,在非晶硅薄膜层30上形成激光能量梯度,如此便可控制非晶硅薄膜层30的结晶方向,增大晶粒尺寸,减少晶界数量。

具体地,所述步骤s2中采用干蚀刻方式对所述折射层40进行蚀刻处理,对所述折射层40进行蚀刻处理的蚀刻气体包含氧气(o2),该蚀刻气体还可包含(sf6)、五氟乙烷(c2hf5)及四氟化碳(cf4)中的一种或多种。

具体地,所述步骤s2中对所述折射层40进行蚀刻处理的蚀刻气体为氧气和六氟化硫的组合,且该蚀刻气体中氧气与六氟化硫的体积比例优选为10:1。

步骤s3、如图6-7所示,采用准分子激光束90从所述折射层40照射到非晶硅薄膜层30上,使所述非晶硅薄膜层30结晶形成低温多晶硅薄膜39,照射过程中所述准分子激光束90通过折射层40的凹形的弧面结构401时会产生散光效应,从而在非晶硅薄膜层30上形成激光能量梯度,如此便可控制非晶硅薄膜层30的结晶方向,增大晶粒尺寸,减少晶界数量。

具体地,所述步骤s3还包括,在结晶形成低温多晶硅薄膜39之后,去除所述折射层40。

进一步的,所述步骤s3采用氢氟酸刻蚀去除所述折射层40。

需要说明的是,所述步骤s3中,准分子激光束90垂直入射到折射层40上时,在凹形的弧面结构401区域发生折射而产生散光效应使光束分散,此时对应于弧面结构401下方的非晶硅薄膜30与其他区域的非晶硅薄膜30之间会形成激光能量梯度,由于多晶硅重结晶时按照低能量向高能量方向结晶、低温向高温方向结晶,因此,如图6所示的示例性图示,非晶硅薄膜层30重结晶时可以获得方向可控且具有较大的多晶硅晶粒的低温多晶硅薄膜。

具体地,所述步骤s3中,根据实际状况调试准分子激光束90的能量大小,使得在凹形的弧面结构401最底端垂直对应处的非晶硅薄膜30可以刚好达到熔融状态。

本发明的低温多晶硅薄膜的制作方法的第二实施例,与上述第一实施例相比,如图8-10所示,所述步骤s2中形成的光阻弧面801为凸形光阻弧面,在所述折射层40的表面上形成多个弧面结构401为凸形弧面结构。那么,在所述步骤s3中,如图11所示,采用准分子激光束90从所述折射层40照射到非晶硅薄膜层30的过程中,所述准分子激光束90通过折射层40的凸形的弧面结构401时会产生聚光效应。在所述步骤s3中,准分子激光束90垂直入射到折射层40上时,在凸形的弧面结构401区域发生折射而产生散光效应使光束汇聚,此时对应于弧面结构401下方的非晶硅薄膜30与其他区域的非晶硅薄膜30之间会形成激光能量梯度,由于多晶硅重结晶时按照低能量向高能量方向结晶、低温向高温方向结晶,因此,如图11所示的示例性图示,非晶硅薄膜层30重结晶时可以获得方向可控且具有较大的多晶硅晶粒的低温多晶硅薄膜。在所述步骤s3中,根据实际状况调试准分子激光束90的能量大小,以使得非晶硅薄膜层30达到最优的结晶效果。其他技术特征均与上述第一实施例相同,在此不再赘述。

本发明的低温多晶硅薄膜的制作方法,通过在非晶硅薄膜层30上沉积形成氮化硅材料的折射层40并在该折射层40表面形成多个凸形的或凹形的弧面结构401,当采用准分子激光束90照射非晶硅薄膜层30使非晶硅薄膜层30结晶形成低温多晶硅薄膜39的过程中,准分子激光束90通过折射层40的弧面结构401时会产生一定的散光效应或聚光效应,从而在非晶硅薄膜层30上形成激光能量梯度,如此便可控制非晶硅薄膜层30的结晶方向,增大晶粒尺寸,减少晶界数量,进而能够提高tft器件载流子的迁移率,减小晶界对漏电流的影响。

基于上述的低温多晶硅薄膜的制作方法,本发明还提供一种低温多晶硅薄膜,按照以上方法制备得到,具有很高的电子迁移率以及稳定的电性能,可用于制备薄膜晶体管(tft),特别是液晶显示器中的tft阵列中的薄膜晶体管。

请参阅图12,基于上述的低温多晶硅薄膜,下面介绍本发明提供的一种低温多晶硅tft基板,包括衬底基板10、形成于所述衬底基板10上的缓冲层20、形成于所述缓冲层20上的有源层35、覆盖所述有源层35的栅极绝缘层50、设于栅极绝缘层50上的栅极60、覆盖栅极60的层间绝缘层70及设于层间绝缘层70上的源漏极75。

具体地,所述有源层35由上述方法制得的低温多晶硅薄膜39构成,所述有源层35包括位于两端的源漏极接触区351位于中间的沟道区352以及位于源漏极接触区351和沟道区352之间的轻掺杂区353;所述栅极60对应于所述沟道区352的位置。

具体地,所述层间绝缘层70和栅极绝缘层50在对应于所述有源层35两端的上方设有过孔55,所述源漏极75通过所述过孔55与有源层35相接触。

具体地,在采用上述的低温多晶硅薄膜的制作方法形成低温多晶硅薄膜39之后,可以利用现有技术制作得到上述结构的低温多晶硅tft基板,后续具体的制作方法在此不做详细介绍。

本发明的低温多晶硅tft基板,采用上述的低温多晶硅薄膜39制作有源层35,tft器件具有很高的电子迁移率以及稳定的电性能,提高了液晶显示器的显示质量。

综上所述,本发明的低温多晶硅薄膜的制作方法,通过在非晶硅薄膜层上沉积形成一折射层并在该折射层表面形成多个凸形的或凹形的弧面结构,当采用准分子激光束照射非晶硅薄膜层使非晶硅薄膜层结晶形成低温多晶硅薄膜的过程中,准分子激光束通过折射层的弧面结构时会产生一定的散光效应或聚光效应,从而在非晶硅薄膜层上形成激光能量梯度,如此便可控制非晶硅薄膜层的结晶方向,增大晶粒尺寸,减少晶界数量,进而能够提高tft器件载流子的迁移率,减小晶界对漏电流的影响。本发明的低温多晶硅薄膜,采用上述的多晶硅薄膜的制作方法制得,其结晶方向可控且具有较大的多晶硅晶粒,进而能够提高tft器件载流子的迁移率,减小晶界对漏电流的影响。本发明的低温多晶硅tft基板,有源层由上述的低温多晶硅薄膜所构成,具有很高的电子迁移率以及稳定的电性能。

以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1