氮化镓纳米线感光单元、制作方法、紫外线探测器与流程

文档序号:17381845发布日期:2019-04-12 23:54阅读:213来源:国知局
氮化镓纳米线感光单元、制作方法、紫外线探测器与流程

发明涉及光探测领域,尤其涉及一种氮化镓纳米线感光单元及其制作方法及应用其的紫外线探测器。



背景技术:

紫外探测器在军民领域具有非常广阔的应用前景。军用领域的应用包括导弹制导、导弹预警防御系统和空间通讯等;民用领域的应用包括臭氧监测、火焰监测和环境监测等。现有技术中,紫外探测器主要以硅(si)或磷化镓(gap)等材料为主,它们具有在可见光和红外辐射区灵敏度高的优点。但是,由于硅(si)或磷化镓(gap)的光学带隙比较小,使得这些紫外探测器在紫外区的灵敏度非常低,从而限制了它们在紫外探测器领域中的应用。

氮化镓(gan)是一种宽禁带带隙的直接带隙半导体材料,带隙为3.4ev,同时氮化镓(gan)具有稳定的物理和化学性质,非常适合于制备波长小于365nm的短波长紫外探测器。但是,由于缺乏氮化镓(gan)体材料的相关制备技术,所以制备紫外探测器时所需的氮化镓(gan)薄膜均利用异质外延法得到,而异质外延法制备氮化镓(gan)薄膜时产生的穿透位错会引起漏电流,严重降低了氮化镓(gan)基紫外探测器的性能。如何设计并制作一种新型的紫外线探测器是本领域技术人员需要解决的。



技术实现要素:

一种氮化镓纳米线感光单元的制作方法,包括如下步骤:

提供一基板,在所述基板一侧形成一层氮掺杂的氧化镓材料层;

以所述氮掺杂的氧化镓材料层为基层制作一氮化镓层,所述氮化镓层包括多条氮化镓纳米线;

在所述氮化镓层远离所述基板一侧形成至少两个间隔设置的金属电极。

于一实施例中,所述氮掺杂的氧化镓材料层的至少部分转化为氮化镓层。

于一实施例中,所述氮掺杂的氧化镓材料层的全部转化为氮化镓层,所述感光单元中不含有所述氮掺杂的氧化镓材料层。

于一实施例中,所述氮化镓纳米线的直径小于100nm。

于一实施例中,所述氮化镓层由氮化镓纳米线构成。

于一实施例中,所述氮化镓层采用化学气相沉积法制备,以单质镓作为镓源,以氨气作为氮源。

于一实施例中,所述氮化镓层的生长温度范围为850~1000℃,氨气的流量可以为80sccm至120sccm。

于一实施例中,将所述基板置于一反应炉中,通过溅射镀膜的方式在所述基板一侧形成一氧化镓层,并在所述氧化镓层形成过程中向所述反应炉中持续通入氮气以获得氮掺杂的氧化镓材料层。

一种氮化镓纳米线感光单元,包括一基板、一氮化镓层以及至少两个金属电极,所述氮化镓层设置于所述基板一侧表面,至少两个所述金属电极间隔设置于所述氮化镓层远离所述基板的表面。

一种紫外线探测器,包括一氮化镓纳米线感光单元,所述氮化镓纳米线感光单元由上述制作方法制得。

与氮化镓(gan)体材料相比,氮化镓(gan)纳米线不仅具有氮化镓(gan)体材料本身优良的物理、化学和光电等性能,还兼具纳米材料特性,比如尺寸依赖的光学和电学特性等。一维氮化镓(gan)纳米线,具有比表面积大的形貌特征,这有助于进一步提高相关紫外探测器的性能。比如,利用氮化镓(gan)纳米线来制备紫外探测器,可以获得更大的光电流、响应度和紫外/可见光抑制比。另外,氮化镓(gan)纳米线基紫外探测器的性能还与其纳米线尺度有关,比如直径不同的纳米线基紫外探测器会产生不同的光电流和响应度。由于表面增强电子-空穴对分离等原因,利用各种半导体纳米线制备紫外探测器时常常可以产生更高的光电导增益。

附图说明

图1为本发明一实施例的氮化镓纳米线感光单元的制备流程示意图。

图2为本发明一实施例的氮化镓纳米线感光单元的制备流程示意图。

图3为本发明一实施例的氮化镓纳米线感光单元的制备流程示意图。

图4为本发明一实施例的氮化镓纳米线感光单元的剖视示意图。

图5为本发明一实施例的紫外线探测器的结构关系示意图。

如下具体实施方式将结合上述附图进一步说明本发明。

主要元件符号说明

具体实施方式

在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似应用,因此本发明不受下面公开的具体实施例的限制。

本发明提供一种氮化镓纳米线感光单元11的制作方法。所述制作方法包括以下步骤:

步骤s1:提供一基板110,在所述基板110一侧形成一层氮掺杂的氧化镓材料层a。

如图1所示,提供一基板110,基板110可为片状的蓝宝石(主要成分为al2o3)或者片状陶瓷或者表面覆盖有三氧化二铝(al2o3)钝化结构的片状金属。将所述基板110放置于一反应炉中,通过溅射镀膜的方式在基板110一侧形成一氧化镓层,溅射持续时间为1小时至6小时,并在所述氧化镓(ga2o3)层形成过程中向所述反应炉中持续通入氮气(n2)并最终获得氮掺杂的氧化镓材料层a,可在氮掺杂的氧化镓材料层a生长完成后对其进行退火处理,退火持续时间为0.5小时至6小时。

溅射镀膜过程中,溅射气压的取值范围可以为0.5pa至5.0pa,进一步可以为1.0pa至4.0pa,该范围进一步还可以为1.5pa至2.5pa,且,当溅射气压为2.0pa时氮掺杂的氧化镓材料层a的结晶性能较好;其中,随着溅射气压从1.0pa增加到4.0pa时氮掺杂的氧化镓材料层a的结晶性能先提高后逐渐降低,当溅射气压为2.0pa时,薄膜的结晶性能较好,结晶形成的速率亦较快。

溅射镀膜过程中,氮气(n2)流量可以为0至20sccm,进一步可以为3sccm至10sccm,该范围进一步还可以为5.5sccm至6.5sccm,且,当氮气(n2)流量为6sccm时氮掺杂的氧化镓材料层a的结晶性能较好;其中,随着氮气(n2)流量从0增加到10sccm时,氮掺杂的氧化镓材料层a的结晶性能先逐渐提高后降低,当氮气(n2)流量为6sccm时,氮掺杂的氧化镓材料层a的结晶性能较好,氮的掺杂程度亦较高。

溅射镀膜过程中,在500℃至1500℃的氮气、氧气或空气中对氮掺杂的氧化镓材料层a进行退火,氮掺杂的氧化镓材料层a的结晶性能和光学质量均得到了提升,其中在氮气(n2)中退火,氮掺杂的氧化镓材料层a的结晶性能和光学质量最好,可见光透过率大于85%。

步骤s2:以所述氮掺杂的氧化镓材料层a为基层制作一氮化镓层120,所述氮化镓层120包括多条氮化镓纳米线。

如图2所示,氮掺杂的氧化镓材料层a作为基层,将一侧设置有氮掺杂的氧化镓材料层a的基板110设置于一管式炉中,使用化学气相沉积(cvd)的方式,将单质镓设置于蒸镀源中作为镓源,以氨气(nh3)为氮源,并在基板110一侧生长出多条氮化镓纳米线,所述多条氮化镓纳米线构成氮化镓层120。

在氮化镓层120的制备过程中,氮化镓层120中的氮化镓晶体的生长温度为500~1500℃,进一步可以为850~1000℃;氨气(nh3)流量可以为40sccm至240sccm,进一步可以为80sccm至120sccm。其中,当生长温度为900℃、氨气(nh3)流量为120sccm时,所制备的氮化镓层120中的氮化镓纳米线的密度比较大,其平均直径为90nm左右;其中,当生长温度为900℃、氨气(nh3)流量为80sccm时,氮化镓纳米线的拉伸应力最小,为0.5gpa左右。其中,当生长温度为900℃、氨气(nh3)流量为120sccm时,氮化镓纳米线具有很强的紫外发光峰,并且黄光发光峰强度较弱,综合发光性能最佳。

于一实施例中,镓源与与待蒸镀的基板110之间的距离为2cm,氨气(nh3)流量为120sccm,管式炉的升温速率为每分钟10℃,生长温度范围为850至1000℃,生长时间为2小时。

通过该方法制备氮化镓层120,氮化镓(gan)直接以氮掺杂的氧化镓材料层a为基板生长出多个氮化镓(gan)纳米线以形成氮化镓层120,生长完成后氮掺杂的氧化镓材料层a全部转化为氮化镓层120,由于该过程不需要使用催化剂,所以避免了催化剂所带来的粒子污染等问题,因而可以制备出无粒子污染的氮化镓层120,纯度较高的氮化镓层120各方面性能都更优秀。

步骤s3:在所述氮化镓层120远离所述基板110一侧形成至少两个间隔设置的金属电极130。

如图3所示,将一侧设置有氮化镓层120的基板110放置于一反应炉中,在所述氮化镓层120远离基板110一侧设置一掩膜b,掩膜b具有一预定的图案,掩膜b覆盖并遮挡氮化镓层120的部分表面,氮化镓层120的至少部分表面未被掩膜b覆盖而裸露。通过蒸镀的方式将一金属材料蒸发并使蒸发的金属材料在氮化镓层120裸露的表面凝固以形成一金属电极130。

于一实施例中,掩膜b对应氮化镓层120的两端设置有两个开口,所述两个开口彼此间各设置,金属电极130为金属铝(al),气态的金属铝通过开口沉积于氮化镓层120的表面并形成两个金属电极130,两个金属电极130可以为边长为1cm的正方形,两个金属电极130之间的间距大于0.1mm。

本发明还提供一种使用上述方法制备的氮化镓纳米线感光单元11。

如图4所示,为本发明一实施例的氮化镓纳米线感光单元11的剖视示意图。氮化镓纳米线感光单元11包括基板110、氮化镓层120以及金属电极130,氮化镓层120设置于基板110一侧表面,金属电极130设置于氮化镓层120远离基板110一侧,金属电极130的数量为两个,两个金属电极130间隔设置。

基板110为氮化镓纳米线感光单元11的承载主体,基板110的材料可以为蓝宝石(主要成分为al2o3)、金属钛、高硬度陶瓷、表面包覆有三氧化二铝(al2o3)的普通陶瓷等。

氮化镓层120被光线照射会发生光电效应并产生电流,氮化镓层120的主体为氮化镓纳米线,氮化镓纳米线为直径小于100nm的柱状氮化镓晶体,多个氮化镓纳米线组合形成氮化镓层120。

两个金属电极130作为驱动电极驱动氮化镓层120工作并将氮化镓层120中的电信号传导至外部电路。金属电极130具有导电性及延展性,金属电极130的材料可以为单质金属如金、银、铜、铁、铝、镍等,或者为合金如黄铜(铜锌合金),或者为金属化合物如氯化银,还可以为金属复合物如钛铝钛或者钼铝钼。金属电极130可以采用物理气相沉积(pvd)或者化学气相沉积(cvd)的方式形成于氮化镓层120表面,也可以直接放置于氮化镓层120表面。

相较于应用传统的氮化镓体材料的感光单元,包含有由氮化镓纳米线组成的氮化镓层120的氮化镓纳米线感光单元11在受关照激发时的光电流更大,具有更好的光检测能力;氮化镓纳米线感光单元11的氮化镓纳米线的量子效率大于100%,即,其具备光电导增益效果;氮化镓纳米线感光单元11对于光线的响应时间普遍在22μs左右,即,该感光单元11具有较高的稳定性。

本发明还提供一种应用氮化镓纳米线感光单元11的紫外线探测器10。

如图5所示,为本发明一实施例的紫外线探测器10的结构关系示意图。

紫外线探测器10包括氮化镓纳米线感光单元11、放大电路12、转换电路13、驱动电路14、显示单元15、控制单元16、操作单元17以及外壳18。

氮化镓纳米线感光单元11、放大电路12、转换电路13、驱动电路14、显示单元15、控制单元16以及操作单元17设置于外壳18中。氮化镓纳米线感光单元11受到光线照射会产生感应电流,所述感应电流经由放大电路12进行放大,必要时可接入转换电路13对感应电流进行转化,经由放大电路12放大的感应电流或经由转换电路13转化后的感应电流的感应电信号传导至控制单元16,控制单元16对感应电信号进行分析并作出相对应的判断,必要时可将判断结果经由显示单元15进行显示,同时,控制单元16控制驱动电路14驱动氮化镓纳米线感光单元11正常工作,使用者可通过操作单元17进行对紫外线探测器10进行操作。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1