一种阵列聚焦式激光传能光电接收设备的制作方法

文档序号:17475223发布日期:2019-04-20 06:04阅读:214来源:国知局
一种阵列聚焦式激光传能光电接收设备的制作方法

本发明涉及激光无线能量传输领域,具体涉及一种阵列聚焦式激光传能光电接收设备。



背景技术:

激光无线能量传输技术是以高能光光束作为能量载体,利用高效的电光、光电转换,实现对远端特定设备的非接触能量供给的技术。相对于电磁耦合、磁共振能量传输等形式,激光无线能量传输可以实现更远的传输距离;相对于微波无线能量传输形式,激光无线能量传输装置体积、重量更小,转换效率更高,非常适于对远端的小型目标的静态、动态能量传输。目前,欧、美、日等均对激光无线能量传输进行了大量研究。

由于激光无线能量传输系统接收装置光功率密度远大于太阳光强度,一般采用特定的小尺、激光电池实现激光-电能转化,由于光电池单体尺寸较小。传统光电接收靶面封装工艺是将单体激光电池通过表面贴装技术(smt)等工艺,直接焊接在光电接收靶面基板上,在面阵封装过程中,电池与电池之间的缝隙占比较大(一般为光电接收靶面的18~25%),造成光电接收靶面光电池有效面积较小,严重影响了光电接收靶面整体光电转换效率。



技术实现要素:

本发明的目的是针对激光无线能量传输系统光电接收板在设计中,由于激光电池单体尺寸较小,整体铺装过程中,电极、间隙等光电转换无效面积大,整体光电有效面积占空比小,影响激光无线能量传输系统光电转换接收板的整体光电转换效率。发明一种阵列聚焦式激光传能光电接收设备,实现对缝隙能量的折射、聚焦和吸收转换。

为了实现上述目的,本发明的技术方案是:一种阵列聚焦式激光传能光电接收设备,其特征在于:包括光子电源单体、下基板,所述光子电源单体设置于下基板上并紧密无间隙排布为光子电源单体阵列形式;

所述光子电源单体包括激光电池芯片、二极管、上基板和聚焦透镜,所述上基板包括基板正极、基板负极和基板绝缘层,所述基板绝缘层分别设于基板正极和基板负极之间和四周,用于将基板正极和基板负极绝缘,所述基板正极和基板负极中心设有导电夹层,所述激光电池芯片通过导电胶贴装在基板负极上表面,所述二极管固定在激光电池芯片四周,并与激光电池芯片反并联连接,所述激光电池芯片的正极通过导线连接基板正极,所述激光电池芯片、二极管、上基板封装在聚焦透镜内部,所述上基板焊接在下基板的焊盘上。

进一步地;所述聚焦透镜材料为透光热固胶或树脂,优选环氧树脂。

进一步地;所述聚焦透镜为球面或柱面透镜,其中曲面向上凸起或向下凹陷。

进一步地;所述聚焦透镜为菲涅尔透镜。

进一步地;所述下基板材料为树脂板、pcb板或金属板。

本发明的有益效果:

1)光子电源单体内部同时封装与激光电池芯片反并联的二极管,提高单个光子电源单体的可靠性,当发生电池衰变,失效时,通过旁路二极管,可以实现对故障电池的隔离,提高整个激光接收电池板的可靠性;

2)利用树脂透镜结构,对入射光束进行折射,使得电池芯片之间缝隙上的激光可以聚焦在电池光敏面上,提高光电池表面利用效率,提高整体转换效率;

3)改用两级加工工艺,在完成光子电源单体封装后,可以根据要求,灵活进行激光电池靶面形状设计,提高灵活性。

附图说明

图1是本发明立体结构示意图;

图2是本发明主视图;

图3是本发明俯视图;

图4是本发明左视图;

图5是光子电源单体的剖视图。

图中:光子电源单体1,下基板2,激光电池芯片3,二极管4,上基板5,聚焦透镜6,基板正极51,基板负极52,基板绝缘层53,导电夹层54。

具体实施方式

实施例:

如图1至图5所示,一种阵列聚焦式激光传能光电接收设备,包括光子电源单体1、下基板2,所述光子电源单体1设置于下基板2上并紧密无间隙排布为光子电源单体1阵列形式;

所述光子电源单体1包括激光电池芯片3、二极管4、上基板5和聚焦透镜6,所述上基板5包括基板正极51、基板负极52和基板绝缘层53,所述基板绝缘层53分别设于基板正极51和基板负极52之间和四周,用于将基板正极51和基板负极52绝缘,所述基板正极51和基板负极52中心设有导电夹层54,所述激光电池芯片3通过导电胶贴装在基板负极52上表面,所述二极管4固定在上基板5上并设于激光电池芯片3四周,所述二极管4与激光电池芯片3反并联连接,所述激光电池芯片3的正极通过金丝导线连接基板正极51,所述激光电池芯片3、二极管4、上基板5封装在聚焦透镜6内部,所述上基板5焊接在下基板2的焊盘上。

所述聚焦透镜6为球面透镜,其曲面向上凸起,其材料为环氧树脂。所述下基板2材料金属板。

所述阵列聚焦式激光传能光电接收设备的制备方法,包括以下步骤:

1)封装激光电池颗粒:

①首选对激光电池芯片3进行清洗和检查,确认无物理损坏;

②然后通过导电胶将激光电池芯片3贴装在基板负极52上表面;

③使用金丝导线在激光电池芯片3的正极和基板正极51上进行焊线,完成后做推拉力测试,保证其可承载大电流且达到规定的焊接强度;

④将二极管4固定在激光电池芯片3四周,并与激光电池芯片3反并联连接;

⑤根据入射光束质量,以及激光电池芯片3无效面积尺寸,设计透镜结构,以保证入射光聚焦光与电池片光敏面面积偏差不超过5%;

⑥根据设计的透镜尺寸,加工注胶模具;

⑦在进行激光电池芯片3、二极管4、上基板5封装时,将注胶模具加工为具有聚焦效果的透镜结构腔体,进行注胶成形;

⑧完成注胶、固化后,对光子电源单体1进行切单处理,形成光子电源单体1。

2)制备激光电池接收阵列下基板2:

①根据激光传能系统传输距离,传输功率、光斑尺寸等指标,设计激光电池接收阵列下基板2,并根据光斑分布情况,设计下基板2上电池链接关系;

②根据电池链接关系设计相应的焊盘和导线。

3)光子电源单体1与下基板2集成:将封装完成的光子电源单体1与下基板2的焊盘结构焊接,利用集成电路工艺,将光子电源单体1与下基板2进行整合加工,完成光电池板的加工。

以上所述的实施例只是本发明较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。



技术特征:

技术总结
本发明属于激光无线能量传输领域,公开了一种阵列聚焦式激光传能光电接收设备,包括光子电源单体、下基板,所述光子电源单体设置于下基板上并紧密无间隙排布为光子电源单体阵列形式;所述光子电源单体包括激光电池芯片、二极管、上基板和聚焦透镜,所述激光电池芯片通过导电胶贴装在上基板上,所述激光电池芯片与二极管反并联连接,所述激光电池芯片、二极管、上基板封装在聚焦透镜内部,所述上基板焊接在下基板的焊盘上。本发明使得电池芯片之间缝隙上的激光可以聚焦在电池光敏面上,提高光电池表面利用效率,提高整体转换效率。

技术研发人员:吴世臣;孟祥翔;曲志超;石德乐;宋镇江;时振磊;王健隆;于方磊;杜丙川;王翀
受保护的技术使用者:山东航天电子技术研究所
技术研发日:2018.11.30
技术公布日:2019.04.19
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1