氧化镁锌薄膜及其制备方法与流程

文档序号:17424455发布日期:2019-04-17 02:40阅读:656来源:国知局
氧化镁锌薄膜及其制备方法与流程

本发明涉及宽禁带半导体薄膜材料领域,具体地,本发明涉及一种氧化镁锌薄膜及其制备方法,更具体地,本发明涉及一种高镁含量纤锌矿氧化镁锌薄膜及其制备方法。



背景技术:

作为第三代宽禁带半导体材料,氧化锌(zno)具有大的激子束缚能(60mev)、较低的受激辐射阈值、强的抗辐射能力以及良好的热稳定性和化学稳定性,在紫外光电子器件方面具有十分广泛的应用前景。常温常压下,氧化锌为纤锌矿结构,带隙3.37ev。掺镁可以增大氧化锌的带隙,拓展其发光波长。然而,热力学平衡条件下,镁在纤锌矿氧化锌中的固溶度小于4%。因此,氧化镁锌(zn1-xmgxo)必须在非平衡条件下制备,镁含量超过一定程度时会出现相分离问题,也就是同时存在纤锌矿氧化锌和岩盐矿氧化镁两种相结构。

目前,制备单相纤锌矿氧化镁锌的方法有很多。a.ohtomo等人采用脉冲激光沉积(pld)技术,在蓝宝石衬底上获得镁含量33%的氧化镁锌薄膜,其带隙为3.87ev(a.ohtomo,etal.,appl.phys.lett.72,2466(1998).)。w.i.park等人采用金属有机气相外延(movpe)技术,在蓝宝石衬底上获得镁含量49%的氧化镁锌薄膜,其带隙为4.05ev(w.i.park,etal.,appl.phys.lett.79,2022(2001).)。y.zhang等人采用金属有机化学气相沉积(mocvd)技术,在蓝宝石衬底上获得镁含量39%的氧化镁锌薄膜,其带隙为3.95ev(y.zhang,etal.,j.cryst.growth268,140(2004).)。k.koike等人采用分子束外延(mbe)技术,在硅衬底上获得镁含量43%的氧化镁锌薄膜,其带隙为4.0ev(k.koike,etal.,j.cryst.growth278,288(2005).)。q.zheng等人采用磁控溅射方法,在氧化锌衬底上获得镁含量49%的氧化镁锌薄膜,带隙约4.35ev(q.zheng,etal.,appl.phys.lett.98,221112(2011).)。m.wen等人采用mbe技术,在铝镁酸钪衬底上获得镁含量50%的氧化镁锌薄膜,其带隙为4.21ev(m.wen,etal.,j.cryst.growth477,174(2017).)。

经过科研人员多年努力,虽然纤锌矿氧化镁锌中的镁掺杂量已经得到了极大的提升,但是,由于蓝宝石等衬底与氧化镁锌存在较大的晶格失配,无法为亚稳相氧化镁锌薄膜提供足够的晶格约束力,使得纤锌矿氧化镁锌中的镁掺杂量难以进一步提高,进而制约了纤锌矿氧化镁锌薄膜在深紫外波段的更好应用。



技术实现要素:

本发明的发明目是针对纤锌矿氧化镁锌中的镁掺杂量难以进一步提高从而制约纤锌矿氧化镁锌薄膜在深紫外波段更好应用的问题,提供了一种氧化镁锌薄膜及其制备方法。

一方面,本发明提供了一种氧化镁锌薄膜,该氧化镁锌薄膜中镁的摩尔含量是60%至75%。

进一步,氧化镁锌薄膜是单相纤锌矿结构。

进一步,氧化镁锌薄膜的带隙范围是4.59ev至4.90ev。

另一方面,本发明提供了一种氧化镁锌薄膜的制备方法,依次包括如下步骤:

清洗衬底,然后将衬底导入分子束外延生长系统;

对衬底进行氢气氛热清洁;

对衬底进行氧气氛退火原位处理;

生长氧化锌缓冲层;

生长氧化镁锌薄膜。

进一步,衬底是铝镁酸钪衬底。

进一步,清洗衬底的步骤包括:衬底依次通过丙酮和异丙醇超声清洗,随后用氮气吹干。

进一步,对衬底进行氢气氛热清洁的步骤包括:在温度600℃至800℃、氢气气氛下对衬底进行热处理10分钟至60分钟。

进一步,对衬底进行氧气氛退火原位处理的步骤包括:在温度600℃至800℃、氧分压3×10-6mbar至3×10-5mbar条件下进行退火30分钟至60分钟。

进一步,生长氧化锌缓冲层的步骤是在高温富氧条件下生长氧化锌缓冲层,优选地,包括:在温度600℃至750℃、氧分压是5×10-6~2×10-5mbar条件下生长厚度是10nm至20nm的氧化锌缓冲层。

进一步,生长氧化镁锌薄膜的步骤包括:在温度500℃至700℃、氧分压5×10-6mbar至2×10-5mbar、等离子体射频功率200w至300w的条件下进行氧化镁锌薄膜生长2小时至6小时;优选地,锌和镁的流量比zn:mg是5:1至1:1。

相比于现有技术,本发明的氧化镁锌薄膜及其制备方法具有如下有益效果:

(1)本发明的氧化镁锌薄膜为单相纤锌矿结构并且镁掺杂量高,在深紫外光电子器件方面具有很好的应用前景。

(2)本发明的制备方法采用与氧化锌接近晶格匹配的铝镁酸钪作为衬底,利用极低的晶格失配度提高氧化镁锌薄膜的临界厚度,增强亚稳相纤锌矿氧化镁锌薄膜的稳定性。

(3)本发明的制备方法采用等离子体辅助分子束外延技术进行氧化镁锌薄膜的制备,借助非平衡动力学条件(生长温度和分子束流量)的调控,提高镁在纤锌矿氧化镁锌薄膜中的含量。

(4)本发明的制备方法采用分子束外延设备,对铝镁酸钪衬底进行氢气氛热清洁和氧气氛退火原位处理,并在高温富氧条件下生长氧化锌缓冲层,从而为高镁含量纤锌矿氧化镁锌薄膜的外延提供一种界面预处理方法。该方法可以有效提升镁在氧化锌中的掺杂量,实现高镁含量单相纤锌矿氧化镁锌薄膜的制备,拓宽氧化镁锌体系的带隙范围及其应用波长。

附图说明

图1显示了实施例1中铝镁酸钪衬底经过退火后的清洁表面。

图2显示了实施例1中氧化锌缓冲层的表面。

图3显示了实施例1中生长完氧化镁锌外延层后的氧化镁锌薄膜的表面。

图4显示了实施例1中氧化镁锌薄膜表面形貌的sem照片。

图5显示了实施例1至实施例3的氧化镁锌薄膜的x射线衍射图谱,其中曲线(a)、(b)和(c)分别对应于实施例1、实施例2和实施例3的氧化镁锌薄膜。

图6显示了实施例1至实施例3的氧化镁锌薄膜的透过谱,其中曲线(a)、(b)和(c)分别对应于实施例1、实施例2和实施例3的氧化镁锌薄膜。

具体实施方式

为充分了解本发明之目的、特征及功效,借由下述具体的实施方式,对本发明做详细说明,但本发明并不仅仅限于此。

首先,对本发明中涉及的主要术语进行说明如下:

“纤锌矿结构”:六方晶系,ab型共价键晶体结构,其中a原子作六方密堆积,b原子填充在a原子构成的四面体空隙中。

“岩盐矿结构”:立方晶系,ab型离子化合物的晶体结构,其中阴离子b排列成立方密堆积,阳离子a填充在阴离子构成的八面体空隙中。

“带隙”:也称为禁带宽度,是指半导体中导带底与价带顶之间的能量差,代表了产生本征激发所需要的最小能量。

“分子束外延”:是一种制备高质量薄膜的新技术。在超高真空条件下,使具有一定热能的一种或多种分子(原子)束流喷射到衬底,在衬底表面发生反应,进行外延生长。

第一方面,本发明提供了一种氧化镁锌薄膜。该氧化镁锌薄膜具有高的镁掺杂量,具体地,该氧化镁锌薄膜中镁的摩尔含量是60%~75%。

本发明的氧化镁锌薄膜的镁含量虽然高,但是并没有出现相分离问题,通过x射线衍射分析证明,本发明的氧化镁锌薄膜是单相纤锌矿结构,不含岩盐矿结构。

本发明的氧化镁锌薄膜的带隙范围拓展至深紫外波段,具体地,本发明的氧化镁锌薄膜的带隙范围为4.59ev~4.90ev,即波长不超过270nm。

第二方面,本发明提供了本发明第一方面的氧化镁锌薄膜的制备方法。该方法依次包括:清洗衬底,然后将衬底导入分子束外延生长系统;对衬底进行氢气氛热清洁;对衬底进行氧气氛退火原位处理;生长氧化锌缓冲层;生长氧化镁锌薄膜。

可选地,本发明的制备方法还包括:氧化镁锌薄膜生长结束之后,进行退火处理。

在一种优选的实施方案中,本发明的氧化镁锌薄膜的制备方法依次包括如下步骤:

s101,清洗衬底:

选择铝镁酸钪(scalmgo4)衬底,将该衬底依次置于丙酮、异丙醇中超声清洗5~10分钟(例如5分钟),随后用氮气吹干,以去除衬底表面污染物。

清洗完毕之后,将铝镁酸钪衬底导入分子束外延生长系统的进样室。

s102,氢气氛热清洁:

在分子束外延生长系统的进样室中,温度采用600~800℃(例如700℃),在氢气气氛下对铝镁酸钪衬底进行热处理10~60分钟(例如30分钟),从而得到清洁的铝镁酸钪衬底表面。

氢气氛热清洁完毕之后,将铝镁酸钪衬底送入分子束外延生长系统的生长腔。

s103,氧气氛退火原位处理:

在温度是600~800℃(例如700℃)、氧分压是3×10-6~3×10-5mbar(例如1×10-5mbar)条件下对铝镁酸钪衬底进行退火处理30~60分钟(例如30分钟)。

s104:生长氧化锌缓冲层:

在温度是600~750℃(例如700℃)、氧分压是5×10-6~2×10-5mbar(例如5×10-6mbar)条件下生长厚度是10nm~20nm的氧化锌缓冲层。

待氧化锌缓冲层生长结束之后,将该氧化锌缓冲层在氧分压是3×10-6~3×10-5mbar(例如1×10-5mbar)条件下退火15~30分钟(例如15分钟)。

s105,生长氧化镁锌薄膜:

在温度是500℃~700℃、氧分压是5×10-6~2×10-5mbar(例如5×10-6mbar)、等离子体射频功率是200~300w(例如300w)条件下,进行氧化镁锌薄膜的生长,时间是2~6小时。

优选地,通过调控锌/镁流量比例zn:mg为5:1~1:1获得不同镁含量的氧化镁锌薄膜。

s106,退火:

氧化镁锌薄膜生长结束后,在温度600~800℃(例如700℃)、氧分压3×10-6~3×10-5mbar(例如5×10-6mbar)条件下进行退火,时间为15~30分钟(例如30分钟)。

退火之后,将生成的氧化镁锌薄膜导出分子束外延生长系统,即得到成品。

在本发明的氧化镁锌薄膜的制备方法中,采用了与氧化锌接近晶格匹配的铝镁酸钪作为衬底,由于铝镁酸钪与氧化锌的晶格失配度仅0.1%,利用极低的晶格失配度提高了氧化镁锌薄膜的临界厚度,在相同厚度情况下可以减少应变弛豫程度,从而增强亚稳相纤锌矿氧化镁锌薄膜的稳定性。

在本发明的氧化镁锌薄膜的制备方法中,将步骤s102至s104进行了有机结合。采用分子束外延设备,对铝镁酸钪衬底进行氢气氛热清洁和氧气氛退火原位处理,并在高温富氧条件下生长氧化锌缓冲层,从而为高镁含量纤锌矿氧化镁锌薄膜的外延提供一种界面预处理方法。该方法可以有效提升镁在氧化锌中的掺杂量,实现高镁含量(60~75%)单相纤锌矿氧化镁锌薄膜的制备,拓宽氧化镁锌体系的带隙范围及其应用波长。

另外,在本发明的氧化镁锌薄膜的制备方法中,采用等离子体辅助分子束外延技术进行氧化镁锌薄膜的制备,借助非平衡动力学条件(即,生长温度和分子束流量)的调控,提高镁在纤锌矿氧化镁锌薄膜中的含量。

实施例

下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。

对于下述实施例中使用的铝镁酸钪衬底,铝镁酸钪晶体采用提拉法生长,将晶体切割为特定尺寸(例如10×10×1mm3)的晶片,利用钻石膏进行精细抛光,获得表面平整的衬底晶片。

实施例1

本实施例制备了镁含量60%的单相纤锌矿氧化镁锌(zn0.40mg0.60o)薄膜,具体步骤如下:

1)将铝镁酸钪衬底依次置于丙酮、异丙醇中超声清洗5分钟,用氮气吹干,去除表面的污染物,然后导入分子束外延生长系统的进样室;

2)在温度700℃、氢气气氛下进行热处理30分钟,得到清洁的表面,然后将衬底送入生长腔;

3)在温度700℃、氧分压1×10-5mbar条件下进行退火,时间为30分钟;

4)在温度700℃、氧分压5×10-6mbar条件下生长厚度为10nm的氧化锌缓冲层,将该缓冲层在氧分压1×10-5mbar条件下退火15分钟;

5)在温度700℃、氧分压5×10-6mbar、等离子体射频功率300w的条件下,进行氧化镁锌薄膜的生长,时间为6小时,调控锌/镁流量比例为zn:mg=5:1,其中zn流量是1×10-7mbar;

6)氧化镁锌薄膜生长结束后,在温度700℃、氧分压5×10-6mbar条件下进行退火,时间为30分钟。

在本实施例的单相纤锌矿氧化镁锌(zn0.40mg0.60o)薄膜的制备过程中,利用反射高能电子衍射仪(rheed,specsrhd-30,20kv、1.8a)对样品进行原位观察,结果如图1至图3所示,其中图1为铝镁酸钪衬底经过退火后的清洁表面,图2为氧化锌缓冲层的表面,图3为生长完氧化镁锌外延层后的表面,图3表明所制备薄膜为单相结构,并具有光滑的表面形貌。采用扫描电子显微镜(sem,zeisssupra55)对该薄膜进行了表面形貌观察,如图4所示,图中显示薄膜表面平整,可以满足器件制作要求。采用扫描电镜能谱仪(eds,3kv)测得薄膜中的镁摩尔含量为60%。利用x射线衍射(xrd,brukerd8)对薄膜的微结构进行分析,如图5中的曲线(a)所示,衍射图案表明薄膜为单相纤锌矿结构,不含岩盐矿结构。采用紫外可见分光光度计(hitachiu-3900h)测量了薄膜的透过谱,如图6中的曲线(a)所示,结果表明薄膜的带隙位于270nm左右,也就是大约4.59ev。

实施例2

本实施例制备了镁含量70%的单相纤锌矿氧化镁锌(zn0.30mg0.70o)薄膜,具体步骤如下:

1)将铝镁酸钪衬底依次置于丙酮、异丙醇中超声清洗5分钟,用氮气吹干,去除表面的污染物,然后导入分子束外延生长系统的进样室;

2)在温度600℃、氢气气氛下进行热处理60分钟,得到清洁的表面,然后将衬底送入生长腔;

3)在温度600℃、氧分压3×10-5mbar条件下进行退火,时间为60分钟;

4)在温度600℃、氧分压2×10-5mbar条件下生长厚度为20nm的氧化锌缓冲层,将该缓冲层在氧分压1×10-5mbar条件下退火15分钟;

5)在温度600℃、氧分压1×10-5mbar、等离子体射频功率260w的条件下,进行氧化镁锌薄膜的生长,时间为4小时,调控锌/镁流量比例为zn:mg=2:1,其中zn流量是1×10-7mbar;

6)氧化镁锌薄膜生长结束后,在温度700℃、氧分压5×10-6mbar条件下进行退火,时间为30分钟。

在本实施例的单相纤锌矿氧化镁锌(zn0.30mg0.70o)薄膜的制备过程中,利用反射高能电子衍射仪对样品进行原位观察,图案呈现条纹状,没有第二套衍射图案出现,表明所制备薄膜为单相结构,并具有光滑的表面形貌。采用扫描电子显微镜对该薄膜进行了表面形貌观察,薄膜表面平整,可以满足器件制作要求。采用扫描电镜能谱仪测得薄膜中的镁含量为70%。利用x射线衍射对薄膜的微结构进行分析,如图5中的曲线(b)所示,衍射图案表明薄膜为单相纤锌矿结构,不含岩盐矿结构。采用紫外可见分光光度计测量了薄膜的透过谱,如图6中的曲线(b)所示,结果表明薄膜的带隙位于258nm左右,也就是大约4.81ev。

实施例3

本实施例制备了镁含量75%的单相纤锌矿氧化镁锌(zn0.25mg0.75o)薄膜,具体步骤如下:

1)将铝镁酸钪衬底依次置于丙酮、异丙醇中超声清洗5分钟,用氮气吹干,去除表面的污染物,然后导入分子束外延生长系统的进样室;

2)在温度800℃、氢气气氛下进行热处理10分钟,得到清洁的表面,然后将衬底送入生长腔;

3)在温度800℃、氧分压3×10-6mbar条件下进行退火,时间为30分钟;

4)在温度750℃、富氧条件下生长厚度为15nm的氧化锌缓冲层,将该缓冲层在氧分压1×10-5mbar条件下退火15分钟;

5)在温度500℃、氧分压2×10-5mbar、等离子体射频功率200w的条件下,进行氧化镁锌薄膜的生长,时间为2小时,调控锌/镁流量比例为zn:mg=1:1,其中zn流量是8×10-8mbar;

6)氧化镁锌薄膜生长结束后,在温度700℃、氧分压5×10-6mbar条件下进行退火,时间为30分钟。

在本实施例的单相纤锌矿氧化镁锌(zn0.25mg0.75o)薄膜的制备过程中,利用反射高能电子衍射仪对样品进行原位观察,图案呈现条纹状,没有第二套衍射图案出现,表明所制备薄膜为单相结构,并具有光滑的表面形貌。采用扫描电子显微镜对该薄膜进行了表面形貌观察,薄膜表面平整,可以满足器件制作要求。采用扫描电镜能谱仪测得薄膜中的镁含量为75%。利用x射线衍射对薄膜的微结构进行分析,如图5中的曲线(c)所示,衍射图案表明薄膜为单相纤锌矿结构,不含岩盐矿结构。采用紫外可见分光光度计测量了薄膜的透过谱,如图6中的曲线(c)所示,结果表明薄膜的带隙位于253nm左右,也就是大约4.90ev。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的替代、修饰、组合、改变、简化等,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1