层结构复合材料及其制备方法与流程

文档序号:17424452发布日期:2019-04-17 02:40阅读:452来源:国知局
层结构复合材料及其制备方法与流程

本发明属于复合材料领域,具体涉及一种层结构复合材料。



背景技术:

gan基宽禁带材料具有大的击穿电场,高的电子饱和速率,宽禁带抗辐射能力强及良好的化学稳定性等优异特征,基于氮化物异质结构极化效应和能带阶跃产生二维电子气(2deg)具有很高的迁移率和极高的载流子浓度(比algaas/gaas异质结构高一个量级),基于此制备的金属-氧化物-半导体场效应晶体管(金属-氧化物-半导体高迁移率晶体管,moshemt)更适合高频大功率的应用,被誉为当前最理想的微波功率器件,有望在航空航天、大气探测、自动控制、雷达通信、汽车电子等领域内发挥重大作用。

而在以氧化铝为栅极介质层的氮化镓基moshemt的mos结构制备过程中,一般的预处理工艺并不能有效去除在沉积氧化铝介质层时再生的原生氧化层,如氧化镓等。这将导致在氮化镓和氧化铝介质层之间形成高的界面态密度,而这些高密度的界面陷阱会使得器件的电流出现滞后以及阈值电压的不稳定,从而使得器件出现高的开关损耗和不稳定问题。

因此找到新的制备工艺,彻底去除原生氧化物,避免界面陷阱和高的界面态密度形成。



技术实现要素:

本发明的目的在于克服现有技术的不足,提供一种层结构复合材料,以解决目前的层复合结构由于原生氧化物去除不彻底导致的界面陷阱和界面密度高的技术问题。

本发明另一目的为提供一种复合材料的制备方法,以解决目前的制备方法无法彻底除去原生氧化层或容易引入别的杂质的技术问题。

为了实现本发明的目的本发明一方面提供了一种层结构复合材料,所述层结构包括氮化镓衬底,还包括氧化铝层和金属层,沿所述氮化镓衬底至金属层的方向,所述氮化镓衬底、氧化铝层和金属层依次层叠结合。

优选地,所述氮化镓层厚度为200-350μm;

优选地,所述氧化铝层厚度为15-30nm;

优选地,所述金属层厚度为50-300nm。

优选地,所述金属层包括ti和ai中的任一种或两种复合。

本发明另一方面提供了一种制备层结构复合材料的方法,包括如下步骤:

用酸清除氮化镓表面的原生氧化物;

在原子层沉积仪中,以惰性气体为载气体,衬底温度为250-350℃,用三甲基铝处理氮化镓衬底其中一个表面;

在原子层沉积仪中以惰性气体为载气体,利用铝源和氧源,衬底温度为250-350℃,沉积氧化铝介质层;

在氧化铝介质层镀上金属膜。

优选地,所述惰性气体为氮气、氩气中的一种或多种。

优选地,所述铝源为三甲基铝。

优选地,所述氧源为水。

优选地,用三甲基铝处理衬底表面的工艺包括如下步骤:

通入反应前驱体三甲基铝,三甲基铝与存在于衬底表面的氧化镓发生化学反应,直至饱和时自动停止;

通入载气(氮气)清洁腔体,清除未完全反应的前驱体及副产物;

至此,一个周期结束,所述处理衬底表面的工艺需持续20-30个周期。

优选地,所述酸为盐酸、硫酸、氢氟酸中的一种或多种。

与现有技术相比,本发明提供的层结构复合材料层结构之间没有原生氧化物的干扰,具有更低的界面态密度,性能更优良,电流不容易出现滞后以及阈值电压的更稳定。

本发明提供的层结构复合材料的制备方法由于采用的表面化学的制备方法,而不是以往的物理层积的方式,可以有效地去除少量留在表面的原生氧化物,因此制备所得的材料性能更好也更稳定。

附图说明

图1是本发明实施例层结构复合材料制备的流程示意图

具体实施方式

为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

本发明实施例提供了一种层结构复合材料,如图1所示,所述层结构包括氮化镓衬底,还包括氧化铝层和金属层,沿所述氮化镓衬底至金属层的方向,所述氮化镓衬底、氧化铝层和金属层依次层叠结合。

所述氮化镓层厚度为200-350μm;

所述氧化铝层厚度为15-30nm;

所述金属层厚度为50-300nm。

所述各层的厚度可以根据需要器件的性能加以适当调整,以适应所需。

所述金属层包括ti和ai中的任一种或两种复合。不同的金属电阻、导率等性能都有差异可以根据需求选择。

本发明另一方面提供了一种制备层结构复合材料的方法,包括如下步骤:

s01:用酸除去氮化镓表面的原生氧化物;

s02:在原子沉积仪中,以惰性气体为载气体,衬底温度为250-350℃,用三甲基铝处理氮化镓衬底其中一个表面;

s03:在原子沉积仪中以惰性气体为载气体,利用铝源和氧源,衬底温度为250-350℃,沉积氧化铝介质层;

s04:在氧化铝介质层镀上金属膜。

其中步骤s01中所述酸为盐酸、硫酸、氢氟酸中的一种或多种。硫酸和盐酸配置为ph为1的水溶液,必要时候可以采用超声,搅拌等方式加速与氧化物的反应。

步骤s02中所述惰性气体为氮气、氩气中的一种或多种。若从节约成本方面考虑可以选择氮气。

步骤s03中所述铝源为三甲基铝。

步骤s03中所述氧源为水。

用三甲基铝处理衬底表面的工艺包括如下步骤:

通入反应前驱体三甲基铝,三甲基铝与存在于衬底表面的氧化镓发生化学反应,直至饱和时自动停止;

通入载气(氮气)清洁腔体,清除未完全反应的前驱体及副产物;

至此,一个周期结束,所述处理衬底表面的工艺需持续20-30个周期。

根据实际试验得出,处理20-30周期能将表面氧化物彻底除去,达到应用要求。

本发明实施例所述的层结构复合材料制备方法由于采取了表面化学方法,并巧妙利用自清洁效应,氮化镓层和氧化铝层之间界面衔接更为紧密,界面之间的杂质也就是原生氧化物很少,相比目前的制备方法,本方法能制备出质量更好更稳定的层结构复合材料,而且本方法也为其他的层结构复合材料的制备提供了一个新思路。

本发明实施例所述的层结构复合材料主要用于半导体器件方面,本发明的层结构复合材料采用的是表面化学方式,是将原生氧化物用化学方式替换,因此杂质被去除,并且由于是化学方法替换可以像原生氧化物一样结合更紧密,总体上使得所述复合材料的性能得到提高,并且由于没有界面陷阱,稳定性也得到保证,用此材料制得的电子元器件电流滞后效应减弱,阈值电压也更稳定,因此此复合材料具有相当的进步性。

实施例1

一、表面预处理。

1.准备一镓面抛光的gan衬底。分别在丙酮、异丙醇中超声清洗约5分钟,去除表面的污染物,如灰尘,有机物等。

2.在盐酸(hcl:h2o=1:1)中浸泡约5分钟,并用氮气吹干,清除氮化镓表面的原生氧化物。

二、三甲基醛(tma)处理(核心步骤)。

将预处理的氮化镓衬底放入原子层沉积仪,以氮气为载气体,在衬底温度约为300度的情况下,用tma处理衬底镓面约30个周期。表面化学原理如下:2al(ch3)3+ga2o3→al2o3+2ga(ch3)3

三、原子层沉积生成氧化铝介质层。

紧接着在原子层沉积仪中以氮气为载气体,以tma和去离子水分别为铝源和氧源,在衬底温度约为300度的情况下,沉积氧化铝介质层。

至此,氮化镓及氧化铝的界面处理完成。获得低界面态密度的氧化物-半导体结构。之后再镀金属膜完成mos结构的制备。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1