一种功率半导体器件的封装结构的制作方法

文档序号:20812013发布日期:2020-05-20 02:08阅读:419来源:国知局
一种功率半导体器件的封装结构的制作方法

本实用新型涉及功率半导体器件封装技术领域,尤其涉及一种功率半导体器件的封装结构。



背景技术:

目前对于大功率半导体器件的封装结构,大致分为两种,一种是封装体背部露散热基板的结构,另一种是全包封的结构,因大功率半导体器件发热量较大的特性,无论哪种封装结构,在其应用时都需要在背部加装散热器进行散热。

如图1为封装体背部露散热基板的封装结构的侧视图,因其芯片2与本身的散热基板6连接,需在散热基板6的散热面与散热器之间加装绝缘片进行电气绝缘,保证其应用的绝缘性能,绝缘片在安装时,其位置及贴近程度也关系到绝缘效果的好坏,导致应用端安装难度加大,且绝缘片本身的导热性能一般在1-3w/mk之间,热量并不能在短时间内快速散出,热传输效果一般。如图2为全包封的封装结构的侧视图,因封装体1本身的绝缘性能,在安装散热器时就无需再加装绝缘片,该封装结构背面的封装体1厚度通常在0.4-0.6mm之间,塑封用的树脂材料导热系数一般为1-2w/mk,散热效果更差。因此,如何既能简化应用端安装工艺,又能提高产品散热性能,是本实用新型的研究方向。



技术实现要素:

为了解决上述技术问题,本实用新型提供了一种功率半导体器件的封装结构,主要解决了现有的封装结构存在应用端安装难度大和散热效果差的问题,目的在于,通过设计一种新型的封装结构,既不需要在其背部安装绝缘片进行电气绝缘,简化了应用端的安装难度,又可以提高产品整体的散热性能。

为实现上述目的,本实用新型解决其技术问题所采用的技术方案是:所述功率半导体器件的封装结构,包括封装体以及封装体内部由芯片、键合线、电路载体、引脚组成的内部电路和散热基板,所述芯片与引脚通过键合线连接,所述内部电路通过所述电路载体与所述散热基板实现绝缘隔离。

进一步地,所述电路载体设置为双面覆铜陶瓷基板,所述双面覆铜陶瓷基板包括陶瓷基板和所述陶瓷基板两面分别烧结的铜板,所述陶瓷基板的两面铜板分别通过结合材与芯片和散热基板相连。

进一步地,所述结合材设置为焊锡材料。

进一步地,所述双面覆铜陶瓷基板背面设置散热基板,所述双面覆铜陶瓷基板通过其中的陶瓷基板与所述散热基板实现绝缘隔离。

进一步地,所述散热基板与引脚设置为一体式框架结构,所述引脚穿出所述封装体外。

进一步地,所述引脚沿其长度方向设置有将塑封材料聚集的环形塑封槽。

进一步地,所述双面覆铜陶瓷基板设置在所述散热基板的中部,且所述双面覆铜陶瓷基板的边缘与所述散热基板的边缘之间在水平方向的距离大于0.8mm。

本实用新型的有益效果是:

1、该封装结构设置为封装体背部露散热基板的结构,通过在内部电路里设置电路载体,通过电路载体将内部电路和散热基板进行绝缘隔离,实现了功率半导体器件的内部绝缘,省去了应用安装时需要加装绝缘片的环节,提高了作业效率及安装良率,而且通过将散热基板外露的方式可将热量及时散出,提高了散热性能。

2、具体地,其中的电路载体设置为双面覆铜陶瓷基板,双面覆铜陶瓷基板的两面铜板通过结合材分别与芯片和散热基板焊接相连,该双面覆铜陶瓷基板中的陶瓷基板的散热系数导热系数可达到20w/mk,散热性能好,且陶瓷基板本身为绝缘材料,把双面覆铜陶瓷基板应用在功率半导体器件的封装上,不但提高了产品本身的散热性能,提升了功率半导体器件本身导热与绝缘耐压能力,同时避免了功率半导体器件绝缘失效的风险,还实现了产品内部电路与散热基板之间的电气绝缘,进而降低了功率半导体器件应用端的安装难度。

综上,本实用新型提供了一种新型的封装结构,该封装结构实现了功率半导体器件的内部绝缘,省去了应用安装时需要加装绝缘片的环节,提高了作业效率及安装良率,而且提高了功率半导体器件的散热性能。

附图说明

下面对本实用新型说明书各幅附图表达的内容及图中的标记作简要说明:

图1为现有技术中一种封装结构的结构示意图;

图2为现有技术中另一种封装结构的结构示意图;

图3为本实用新型的封装结构的结构示意图;

上述图中的标记均为:1.封装体,2.芯片,3.键合线,4.电路载体,41.陶瓷基板,42.铜板,5.引脚,51.环形塑封槽,6.散热基板。

具体实施方式

为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本实用新型,但不用来限制本实用新型的范围。

在本实用新型的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。

在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。

本实用新型具体的实施方案为:如图3所示,为本实用新型中功率半导体器件的封装结构的侧视图,该封装结构为左右对称结构,该封装结构包括封装体1以及封装体1内部由芯片2、键合线3、电路载体4、引脚5组成的内部电路和散热基板6,芯片2与引脚5通过键合线3连接,内部电路通过电路载体4与散热基板6实现绝缘隔离。该封装结构设置为封装体1背部露散热基板6的结构,通过在内部电路里设置电路载体4,通过电路载体4将内部电路和散热基板6进行绝缘隔离,实现了功率半导体器件的内部绝缘,省去了应用安装时需要加装绝缘片的环节,提高了作业效率及安装良率,而且通过将散热基板6外露的方式可将热量及时散出,提高了散热性能。

具体地,该电路载体4设置为双面覆铜陶瓷基板,该双面覆铜陶瓷基板为一体式结构,包括陶瓷基板41和陶瓷基板41两面分别烧结的铜板42,陶瓷基板41的两面铜板42分别通过锡膏、锡片或锡线等焊锡材料组成的结合材与芯片2和散热基板6焊接相连,其中的陶瓷基板41为陶瓷材料,其散热系数可达到20w/mk,与现有技术中的绝缘片和塑封用的树脂材料相比,陶瓷基板41的散热系数高,散热性能好,且陶瓷基板41本身为绝缘材料,实现了产品内部电路与散热基板之间的电气绝缘,进而降低了功率半导体器件应用端的安装难度。把双面覆铜陶瓷基板应用在功率半导体器件的封装上,不但提高了产品本身的散热性能,提升了功率半导体器件本身导热与绝缘耐压能力,同时避免了功率半导体器件绝缘失效的风险,还实现了产品内部电路与散热基板之间的电气绝缘,解决了本领域技术人员一直想解决却未解决的问题。

具体地,双面覆铜陶瓷基板背面设置散热基板6,散热基板6露出封装体1的背部,散热基板6的材料设置为常用的铜材、铝材或合金材料,并在散热基板6的背部加装散热器,可及时将内部电路产生的热量依次通过双面覆铜陶瓷基板中的陶瓷基板41、散热基板6传热,由散热器将热量及时快速散出去,进一步提高了功率半导体器件的散热性能。

另外,散热基板6与引脚5设置为一体式框架结构,提高了整体结构的稳定性,降低了安装难度,引脚5穿出封装体1外与其他元器件进行电气连接;引脚5沿其长度方向设置有将塑封材料聚集的环形塑封槽51,在对产品进行塑封时,该环形塑封槽51可将塑封材料实现缩口密封,进一步提高了塑封的质量;双面覆铜陶瓷基板设置在散热基板6的中部,且双面覆铜陶瓷基板的边缘与散热基板6的边缘之间在水平方向的距离大于0.8mm,由于在不同的使用情况下,为了防止芯片2、散热基板6之间的双面覆铜陶瓷基板的表面可能出现的污染物出现爬电现象,使双面覆铜陶瓷基板被电极化,导致绝缘失效的现象,在综合额定电压、污染状况、绝缘材料、表面形状、位置方向、承受电压时间长短等多种使用条件和环境因素下,根据经验值,将双面覆铜陶瓷基板的边缘与散热基板6的边缘之间在水平方向的距离大于0.8mm时,可防止爬电现象的产生,防止了内部绝缘失效。

综上,该封装结构整体结构简单,实现了功率半导体器件的内部绝缘,省去了应用安装时需要加装绝缘片的环节,提高了作业效率及安装良率,而且提高了功率半导体器件的散热性能。

上述功率半导体器件的封装结构的封装工艺,包括以下步骤:

1)通过结合材将双面覆铜陶瓷基板的底层焊接在散热基板6上,需要满足双面覆铜陶瓷基板的边缘与散热基板6的边缘之间在水平方向的距离大于0.8mm;

2)通过结合材将芯片2焊接在双面覆铜陶瓷基板的上层;

3)将芯片2通过键合线3与引脚5进行电气连接,该芯片2包括两个电极,两个电极分别通过键合线3与对应的引脚5相连;

4)将连接好的芯片2、双面覆铜陶瓷基板、散热基板6、引脚5放置在注塑模具内塑封形成封装体1,同时使散热基板6的背面露出封装体1,使引脚5伸出封装体1外。

该封装工艺比较简单,具有实现规模化量产的可能,可提供性能较好、安装成本较低的功率半导体器件,适于推广使用。

以上所述,只是用图解说明本实用新型的一些原理,本说明书并非是要将本实用新型局限在所示所述的具体结构和适用范围内,故凡是所有可能被利用的相应修改以及等同物,均属于本实用新型所申请的专利范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1