铁酸铋膜材料、低温在硅基底上集成制备铁酸铋膜的方法及应用与流程

文档序号:21806452发布日期:2020-08-11 21:06阅读:235来源:国知局
铁酸铋膜材料、低温在硅基底上集成制备铁酸铋膜的方法及应用与流程
本发明涉及电子材料开发和薄膜材料制备技术,具体涉及铁酸铋膜材料、低温在硅基底上集成制备铁酸铋膜的方法及应用。
背景技术
:公开该
背景技术
部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。近年来,铁电材料,尤其是铁电膜因具有良好的铁电、压电、介电、光电、热释电等特性,在高容量存储器、高密度电容器、微机电系统等方面有着广泛的应用前景,是目前科学研究的前沿和热点之一。其中,铁酸铋是一种在室温下同时具有铁电性和反铁磁性的多铁性材料,具有剩余极化大、介电常数高、压电响应快、能带带隙窄、结晶温度低、环境友好等优点。多种性质的共存、耦合可以实现新型器件设计的小型化、集成化和多功能化。因此,多种铁性的共存以及优异的性能决定了铁酸铋在传感器、存储器、驱动器、光学器件、自旋电子器件等领域的广阔应用前景。本发明的发明人经过研究发现,在铁酸铋的实际应用中,存在着制备温度高、漏电流大等问题。高的热处理温度不仅会加剧漏电、界面扩散等问题,还会由于挥发性bi2o3的损失而导致缺陷扩散、化学价态与元素计量比不稳定等问题,而且高温也使铁酸铋膜与cmos-si技术、大规模集成电路的兼容性面临巨大挑战。这些问题使铁酸铋膜难以获得理想的电滞回线且易被击穿,难以与应用技术接轨,严重时将导致器件失效。技术实现要素:为了解决现有技术的不足,本发明的目的是提供铁酸铋膜材料、低温在硅基底上集成制备铁酸铋膜的方法及应用,能够降低制备铁酸铋膜材料的温度至300~400℃,使铁酸铋膜与cmos-si技术、大规模集成电路相兼容,且该铁酸铋膜材料具有较高的极化强度。为了实现上述目的,本发明的技术方案为:一方面,一种低温在硅基上集成制备铁酸铋膜的方法,在300~400℃条件下,在基体表面由下向上依次磁控溅射底电极、缓冲层、铁酸铋膜,降低温度至室温,在铁酸铋膜表面磁控溅射顶电极,所述缓冲层的材质为能够与铁酸铋晶格匹配的钙钛矿结构的导电氧化物。首先,经过研究发现,若将铁酸铋直接与底电极接触,在低温(≤400℃)下,不利于铁酸铋结晶,从而难以制备铁酸铋膜。本发明添加与铁酸铋晶格匹配的钙钛矿结构的导电氧化物作为缓冲层,能够保证铁酸铋在低温下结晶长大,从而形成铁酸铋膜。经过实验发现,本发明能够实现铁酸铋膜的低温制备,增强低温制备的铁酸铋膜材料的极化强度。另一方面,一种铁酸铋膜材料,由上述低温在硅基上集成制备铁酸铋膜的方法获得。本发明提供的铁酸铋膜材料具有较高的极化强度,尤其是具有较高的剩余极化值。由于本发明提供的铁酸铋膜材料具有较高的剩余极化值,即具有较高的铁电性能,有利于传感器、存储器、驱动器、光学器件、自旋电子器件等性能的提高,因而本发明第三方面,一种上述铁酸铋膜材料在传感器、存储器、驱动器、光学器件或自旋电子器件中的应用。本发明的有益效果为:1.本发明制备工艺中材料体系的沉积温度较低(300~400℃),有利于大面积硅集成电路的应用;低的制备温度大大降低了体系中元素的挥发,避免了界面扩散、材料氧空位等缺陷的产生,获得了具有优异性能的膜材料,其剩余极化强度高达60~70μc/cm2。2.本发明以与铁酸铋晶格匹配的导电氧化物作为缓冲层,利于铁酸铋在低温下结晶,优化电学性能。3.本发明铁酸铋膜材料不含毒性元素,绿色环保;制备工艺流程、设备操作简单,所用原材料均为市场所售,成本较低,易于器件集成,适合于工业化推广及生产。附图说明构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。图1为本发明实施例1制备铁酸铋膜材料体系的结构示意图,1-基体、2-底电极、3-缓冲层、4-铁酸铋膜、5-顶电极。图2为本发明实施例1制备铁酸铋膜的xrd图。具体实施方式应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属
技术领域
的普通技术人员通常理解的相同含义。需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。鉴于现有铁酸铋在集成技术或应用中,以及铁酸铋膜材料中,存在制备温度与极化强度无法同时满足的问题,本发明提出了铁酸铋膜材料、低温在硅基底上集成制备铁酸铋膜的方法及应用。本发明的一种典型实施方式,提供了一种低温在硅基上集成制备铁酸铋膜的方法,在300~400℃条件下,在基体表面由下向上依次磁控溅射底电极、缓冲层、铁酸铋膜,降低温度至室温,在铁酸铋膜表面磁控溅射顶电极。所述缓冲层的材质为能够与铁酸铋晶格匹配的钙钛矿结构的导电氧化物。本发明添加与铁酸铋晶格匹配的钙钛矿结构的导电氧化物作为缓冲层,能够诱导铁酸铋在低温下结晶,从而形成结晶良好的铁酸铋膜,从而使低温制备的铁酸铋膜材料具有较高的极化强度。本发明所述的基体材质为硅和或二氧化硅等硅材料。由于硅材料的处理温度需要在低温下进行,因而本发明的方法能够有助于铁酸铋膜在硅集成电路中的应用。本发明中的参数范围若下限数据中指明单位,则默认为与上限数据单位一致,例如10~30min中“10”的单位默认为min。经过实验发现,降低铁酸铋膜的制备温度带来的极化强度降低的问题,为了解决该问题,该实施方式的一种或多种实施例中,磁控溅射铁酸铋膜后,进行保温,再降温,然后在铁酸铋膜表面磁控溅射顶电极,所述保温为含氧气氛下,保持温度300~400℃,保持时间10~30min。增加保温过程能够使低温制备的铁酸铋膜材料具有较高的极化强度。含氧气氛是指纯氧气氛或氧气与其他气体的混合气氛(例如空气)。该系列实施例中,保温过程中,氧气的气压或氧气的分压为为1pa~30kpa。例如1~9pa、1~7pa、1~5pa、1~3pa、2~9pa、2~7pa、2~5pa、2~3pa、3~9pa、3~7pa、3~5pa、5~9pa、5~7pa、5~6pa、7~9pa、7~8pa、8~9pa、2.5~10pa、2.5~100pa、2.5pa~10kpa、2.5pa~30kpa、5pa~30kpa、10pa~30kpa、100pa~30kpa、1~30kpa、10~30kpa、20~30kpa等。该系列实施例中,降温至50~100℃,将气氛改为空气氛围,再降低至室温,然后在铁酸铋膜表面磁控溅射顶电极。该实施方式的一种或多种实施例中,磁控溅射铁酸铋膜中,气氛为氩气和氧气的混合气氛,氩气和氧气的体积比为30~110:5~30。该实施方式的一种或多种实施例中,磁控溅射铁酸铋膜中,磁控溅射的气压为0.3~2pa,溅射功率为60~150w。该实施方式的一种或多种实施例中,铁酸铋膜的厚度为50nm~2μm。该实施方式的一种或多种实施例中,磁控溅射缓冲层中,气氛为氩气和氧气的混合气氛,氩气和氧气的体积比为30~110:5~30。该实施方式的一种或多种实施例中,磁控溅射缓冲层中,磁控溅射的气压为0.3~2pa,溅射功率为60~150w。该实施方式的一种或多种实施例中,缓冲层的厚度为50~300nm。缓冲层的材质为能够与铁酸铋晶格匹配的导电氧化物,例如钴酸镧锶、钌酸锶、镍酸镧等。该实施方式的一种或多种实施例中,磁控溅射底电极中,气氛为氩气。该实施方式的一种或多种实施例中,磁控溅射底电极中,气压为0.1~1pa,溅射功率为30~80w。底电极的材质一般为金属活动性低于氢的惰性金属,例如铜、金、银、铂、钛等。该实施方式的一种或多种实施例中,底电极的材质为钛和铂。当底电极为两种或两种以上金属时,采用磁控溅射依次沉积不同金属层,例如先溅射钛层,再溅射铂层。该实施方式的一种或多种实施例中,底电极的厚度为50~300nm。该实施方式的一种或多种实施例中,将基体放入至真空镀膜腔室中,抽气使真空镀膜腔室的真空度为0.5×10-4~1.5×10-4pa,在氩气气氛下,使基体升温至300~400℃,气流量为20~60sccm,升温气压为1~3pa,然后依次磁控溅射底电极、缓冲层、铁酸铋膜。该实施方式一种或多种实施例中,磁控溅射顶电极中,气氛为空气,溅射功率为40~90w。顶电极的材质一般为贵重金属,例如金、银、铂等。该实施方式的一种或多种实施例中,顶电极的材质为金或铂。本发明的另一种实施方式,提供了一种铁酸铋膜材料,由上述低温在硅基上集成制备铁酸铋膜的方法获得。本发明提供的铁酸铋膜材料具有较高的极化强度,尤其是具有较高的剩余极化值。本发明的第三种实施方式,提供了一种上述铁酸铋膜材料在传感器、存储器、驱动器、光学器件或自旋电子器件中的应用。为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。实施例1(a)基体的处理以半导体si/sio2为基体,将其放入样品托盘中,再将样品托盘装入真空镀膜腔室的样品托盘架上;抽真空:关闭真空腔室,抽真空,使腔室内气压至~10-4pa;加热:向腔室内通入ar,气压为2.3pa,然后对基体进行加热,使其温度升至350℃后,保持温度稳定。(b)底电极的制备以金属钛、铂为溅射靶材,以射频磁控溅射方式沉积底电极。溅射气压调为0.3pa,溅射功率为55w,在基体上依次沉积,总厚度为150nm。(c)缓冲层的制备以镍酸镧氧化物陶瓷为溅射靶材,以射频磁控溅射方式沉积缓冲层。溅射气氛为ar和o2,ar气流量控制在60sccm,o2气流量控制在15sccm,溅射气压为1.2pa,溅射功率为100w,镍酸镧层厚度为150nm。(d)铁酸铋膜的制备以铁酸铋氧化物陶瓷为溅射靶材,以射频磁控溅射方式沉积铁酸铋膜。溅射气氛为ar和o2,ar气流量控制在60sccm,o2气流量控制在15sccm,溅射气压为1.2pa,溅射功率为100w,铁酸铋层厚度为1μm。(e)保温及降温向腔室通入纯o2,气压2.5pa,保持10min,然后不变参数,降温至100℃以下。(f)顶电极的制备室温下,以金箔靶为溅射靶材,以直流溅射方式沉积顶电极。溅射气氛为空气,放电电流为~9ma。将掩模板盖在铁酸铋介电层上,以得到圆点直径为200μm的顶电极。制备的电极结构如图1所示,由下至上依次为基体1、底电极2、缓冲层3、铁酸铋膜4、顶电极5。该实施例制备的铁酸铋膜xrd结果,如图2所示,为三方相,呈(l00)择优取向。实施例2本实施例与实施例1的区别在于:步骤(a)中,加热温度为400℃。实施例3本实施例与实施例1的区别在于:步骤(d)中,铁酸铋的厚度为60nm。实施例4本实施例与实施例1的区别在于:步骤(e)中,保温及降温过程中,气氛为空气氛围,气压为1个大气压。多种实施方式制备的铁酸铋膜,经过电学性能测试,铁电性能显著提高,实施例1的电学性能如表1。剩余极化值约为60μc/cm2,接近(100)取向上的剩余极化理论值~55μc/cm2。其它实施例性能与实施例1相近。表1电滞回线特征值饱和极化值剩余极化值正向矫顽电场负向矫顽电场~80μc/cm2~60μc/cm2~+380kv/cm2~-35kv/cm2实施例5一种能量搜集器,材料结构与本发明实施例1中的一致,在1~7v电压下的检测结果如表2。检测结果表明:所制备的能量搜集器具有优良的压电性能,包括较大的压电系数、优质因子、机电耦合系数、电压响应、功率效率和信噪比,具有电压稳定性、工作电压低等优点,符合当前微机电器件小型化、工作电压低、低成本等的要求。表2压电测试结果对比例1本对比例与实施例1的区别在于:没有步骤(c)及步骤(c)中的缓冲层。经过电学性能测试,结果表明无具有铁电材料特征的电滞回线测试结果出现。对比例2本对比例与实施例1的区别在于:步骤(e)中,没有氧气保温过程,直接在氧气中降温。经过电学性能测试,如表3所示,铁电性能明显劣于实施例1~4,饱和极化强度和剩余极化强度明显降低。表3电滞回线特征值饱和极化值剩余极化值正向矫顽电场负向矫顽电场~45μc/cm2~31μc/cm2~+470kv/cm2~-30kv/cm2以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1