一种硅控整流器及其制造方法与流程

文档序号:21401385发布日期:2020-07-07 14:33阅读:160来源:国知局
一种硅控整流器及其制造方法与流程

本发明涉及半导体领域,尤其涉及一种双向无回滞效应的硅控整流器结构及其制造方法。



背景技术:

在高压集成电路防静电(esd,electro-staticdischarge)保护设计领域,无回滞效应硅控整流器(scr,siliconcontrolledrectifier)多级串联应用于高压端口的防静电保护电路设计的方案因其可以大大节省版图面积的优点而广受关注。

已有中国专利(授权公告号:cn108091650b)在业界提出了如图1所示出的无回滞效应硅控整流器结构。如图1所示出的,该硅控整流器包括p型衬底180,p型衬底的内具有n型阱160和p型阱170,n型阱160和p型阱170彼此邻接,以在n型阱160和p型阱170的交界处形成pn结(pnjunction)。在n型阱160和p型阱180的交界处的上部形成有p型重掺杂区122。n型阱160的上部形成有构成硅控整流器阳极a的p型重掺杂区120和n型重掺杂区128,p型阱170的上部形成有构成硅控整流器阴极k的p型重掺杂区126和n型重掺杂区124。

常规的硅控整流器因为内部寄生的pnp和npn耦合而造成的双正反馈而具有较大的电流增益,导致强回滞效应,即回滞效应的维持电压远低于触发电压。而如图1所示的硅控整流器已经能够实现无回滞效应,即其回滞效应的维持电压接近或者等于触发电压。

但是这种无回滞效应硅控整流器是一种单向器件,只适用于正高压端口的防静电保护电路设计,即当其阳极a为正高压,其阴极k接地时,该硅控整流器的电流路径为p+120/n型阱160/p型阱170/n+124(pnpn,如图1中的实线箭头所示),符合要求。但是,当该硅控整流器的阳极a为负高压,其阴极k接地时,该硅控整流器内部寄生的二极管(p+126)p型阱170/n型阱160(n+128)就处于正向导通状态,如图1中的虚线箭头所示出的电流路径,而这种导通在电路正常工作时则是不允许的,图1所示出的硅控整流器结构不适用于负高压端口的防静电保护电路设计。

有鉴于此,亟需要开发一种双向的硅控整流器,能够实现无回滞效应,以便能够同时适用于正负高压i/o端口的防静电保护电路设计。



技术实现要素:

以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。此概述不是所有构想到的方面的详尽综览,并且既非旨在指认出所有方面的关键性或决定性要素亦非试图界定任何或所有方面的范围。其唯一的目的是要以简化形式给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之序。

为了解决现有技术中的硅控整流器不能够同时适用于正负高压i/o端口的防静电保护电路设计的问题,本发明的一方面提供了一种硅控整流器,具体包括:

p型衬底(80);

位于上述p型衬底(80)中的n型阱(60),上述n型阱(60)的上部具有构成上述硅控整流器的第一极的p型重掺杂区(20)和n型重掺杂区(28),上述p型重掺杂区(20)和n型重掺杂区(28)之间具有浅沟槽隔离;

位于上述p型衬底(80)中的n型阱(62),上述n型阱(62)的上部具有构成上述硅控整流器的第二极的p型重掺杂区(22)和n型重掺杂区(26),上述p型重掺杂区(22)和n型重掺杂区(26)之间具有浅沟槽隔离;以及

位于上述p型衬底(80)中连接上述n型阱(60)和n型阱(62)的p型阱(70),上述p型阱(70)的上部具有p型重掺杂区(24);其中

上述第一极的p型重掺杂区(20)和n型重掺杂区(28)与上述第二极的p型重掺杂区(22)和n型重掺杂区(26)关于上述p型重掺杂区(24)镜像对称,上述n型重掺杂区(28)和上述n型重掺杂区(26)靠近上述p型重掺杂区(24),上述n型重掺杂区(28)和上述n型重掺杂区(26)与上述p型重掺杂区(24)之间分别为上述n型阱(60)和上述n型阱(62)的有源区。

在上述硅控整流器的一实施例中,可选的,上述p型重掺杂区(20)、p型重掺杂区(22)与上述p型重掺杂区(24)具有相同的离子掺杂浓度;和/或

上述n型重掺杂区(28)与上述n型重掺杂区(26)具有相同的离子掺杂浓度。

在上述硅控整流器的一实施例中,可选的,上述n型重掺杂区(28)、上述n型重掺杂区(26)与上述p型重掺杂区(24)之间的有源区的宽度d1关联于上述硅控整流器的触发电压。

在上述硅控整流器的一实施例中,可选的,上述宽度d1为0-2微米。

在上述硅控整流器的一实施例中,可选的,上述n型重掺杂区(28)与上述n型重掺杂区(26)的宽度d2、上述p型重掺杂区(24)的宽度d3以及上述p型重掺杂区(20)和n型重掺杂区(28)之间与上述p型重掺杂区(22)和n型重掺杂区(26)之间的浅沟槽隔离的宽度s关联于上述硅控整流器的无回滞效应状态。

在上述硅控整流器的一实施例中,可选的,上述宽度d2为0.4-10微米、上述宽度d3为1-10微米、上述宽度s为0-2微米。

本发明的另一方面还提供了一种硅控整流器的制造方法,具体包括:

提供p型衬底(80);

在上述p型衬底(80)中形成对应上述硅控整流器的第一极的n型阱(60)、对应上述硅控整流器的第二极的n型阱(62)以及连接上述n型阱(60)和n型阱(62)的p型阱(70);

在上述n型阱(60)的上部形成构成上述第一极的p型重掺杂区(20)和n型重掺杂区(28),在上述p型重掺杂区(20)和n型重掺杂区(28)之间形成浅沟槽隔离;

在上述n型阱(62)的上部形成构成上述第二极的p型重掺杂区(22)和n型重掺杂区(26),在上述p型重掺杂区(22)和n型重掺杂区(26)之间形成浅沟槽隔离;以及

在上述p型阱(70)的上部形成p型重掺杂区(24);其中

上述p型重掺杂区(20)和n型重掺杂区(28)与上述p型重掺杂区(22)和n型重掺杂区(26)关于上述p型重掺杂区(24)镜像对称,上述n型重掺杂区(28)和上述n型重掺杂区(26)靠近上述p型重掺杂区(24),上述n型重掺杂区(28)和上述n型重掺杂区(26)与上述p型重掺杂区(24)之间分别为上述n型阱(60)和上述n型阱(62)的有源区。

在上述制造方法的一实施例中,可选的,形成具有相同离子掺杂浓度的p型重掺杂区(20)、p型重掺杂区(22)与p型重掺杂区(24);和/或

形成具有相同离子掺杂浓度的n型重掺杂区(28)与n型重掺杂区(26)。

在上述制造方法的一实施例中,可选的,还包括:根据上述硅控整流器的触发电压调整上述n型重掺杂区(28)、上述n型重掺杂区(26)与上述p型重掺杂区(24)之间的有源区宽度d1。

在上述制造方法的一实施例中,可选的,上述有源区宽度d1为0-2微米。

在上述制造方法的一实施例中,可选的,还包括:调整上述n型重掺杂区(28)与上述n型重掺杂区(26)的宽度d2、上述p型重掺杂区(24)的宽度d3以及上述p型重掺杂区(20)和n型重掺杂区(28)之间与上述p型重掺杂区(22)和n型重掺杂区(26)之间的浅沟槽隔离的宽度s,以调整上述硅控整流器的无回滞效应状态。

在上述制造方法的一实施例中,可选的,上述宽度d2为0.4-10微米、上述宽度d3为1-10微米、上述宽度s为0-2微米。

本发明的一方面所提供的硅控整流器是一种双向器件,并且能够实现无回滞效应,以便能够同时适用于正负高压i/o端口的防静电保护电路设计。本发明的另一方面所提供的硅控整流器的制造方法与现有的cmos工艺兼容,能够在不增加制造复杂度的情况下,制造出能够同时适用于正负高压端口防静电保护的双向无回滞效应硅控整流器。

附图说明

在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本发明的上述特征和优点。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。

图1示出了现有技术中硅控整流器的结构示意图。

图2示出了本发明的一方面所提供的硅控整流器的制造方法一实施例的流程示意图。

图3示出了本发明的一方面所提供的硅控整流器一实施例的结构示意图。

图4示出了本发明的一方面所提供的硅控整流器的应用场景示意图。

附图标记

110浅沟槽隔离

120、122、126p型重掺杂区

124、128n型重掺杂区

160n型阱

170p型阱

180p型衬底

10浅沟槽隔离

20、22、24p型重掺杂区

26、28n型重掺杂区

60、62n型阱

70p型阱

80p型衬底

具体实施方式

为了提供能够同时适用于正负高压端口防静电保护的双向无回滞效应硅控整流器,本发明提供了一种硅控整流器结构及其制造方法。本发明还提供了其他实施例。

给出以下描述以使得本领域技术人员能够实施和使用本发明并将其结合到具体应用背景中。各种变型、以及在不同应用中的各种使用对于本领域技术人员将是容易显见的,并且本文定义的一般性原理可适用于较宽范围的实施例。由此,本发明并不限于本文中给出的实施例,而是应被授予与本文中公开的原理和新颖性特征相一致的最广义的范围。

在以下详细描述中,阐述了许多特定细节以提供对本发明的更透彻理解。然而,对于本领域技术人员显而易见的是,本发明的实践可不必局限于这些具体细节。换言之,公知的结构和器件以框图形式示出而没有详细显示,以避免模糊本发明。

请读者注意与本说明书同时提交的且对公众查阅本说明书开放的所有文件及文献,且所有这样的文件及文献的内容以参考方式并入本文。除非另有直接说明,否则本说明书(包含任何所附权利要求、摘要和附图)中所揭示的所有特征皆可由用于达到相同、等效或类似目的的可替代特征来替换。因此,除非另有明确说明,否则所公开的每一个特征仅是一组等效或类似特征的一个示例。

注意,在使用到的情况下,标志左、右、前、后、顶、底、正、反、顺时针和逆时针仅仅是出于方便的目的所使用的,而并不暗示任何具体的固定方向。事实上,它们被用于反映对象的各个部分之间的相对位置和/或方向。

如本文使用的术语“在...上方(over)”、“在...下方(under)”、“在...之间(between)”和“在...上(on)”指的是这一层相对于其它层的相对位置。同样地,例如,被沉积或被放置于另一层的上方或下方的一层可以直接与另一层接触或者可以具有一个或多个中间层。此外,被沉积或被放置于层之间的一层可以直接与这些层接触或者可以具有一个或多个中间层。相比之下,在第二层“上”的第一层与该第二层接触。此外,提供了一层相对于其它层的相对位置(假设相对于起始基底进行沉积、修改和去除薄膜操作而不考虑基底的绝对定向)。

如上所述,本发明提供了一种能够同时适用于正负高压端口防静电保护的双向无回滞效应硅控整流器及其制造方法,具体的,图2示出了本发明所提供的制造方法的流程示意图,以制造如图3示出的硅控整流器。

如图2所示,执行步骤s101,提供衬底。衬底可以是诸如硅晶圆的半导体晶圆。可选地或额外地,衬底可以包括元素半导体材料、化合物半导体材料和/或合金半导体材料。元素半导体材料的实例可以是但不限于晶体硅、多晶硅、非晶硅、锗和/或金刚石。化合物半导体材料的实例可以是但不限于碳化硅、砷化镓、磷化镓、磷化铟、砷化铟和/或锑化铟。合金半导体材料的实例可以是但不限于sige、gaasp、alinas、algaas、gainas、gainp和/或gainasp。在一实施例中,上述衬底为p型掺杂的p型衬底。

步骤s102,形成n型掺杂的n型阱60、62和p型掺杂的p型阱70。其中每个阱的形成都至少包括三到五个步骤来完成制作,包括但不限于外延生长、原氧化生长、采用掩膜版进行离子注入,并再次高能的离子注入以及退火工序。

在步骤s102中,所形成的p型阱70位于n型阱60和n型阱62之间,并且p型阱70分别与n型阱60和n型阱62邻接,以在p型阱70与n型阱60的交界处、p型阱70与n型阱62的交界处形成pn结。

步骤s103,在对应位置形成浅沟槽隔离(sti,shallowtrenchisolation),浅沟槽隔离工艺sti包括但不限于浅沟槽刻蚀、氧化物填充和氧化物平坦化。其中浅沟槽刻蚀包括但不限于隔离氧化层、氮化物沉淀、采用掩膜版进行浅槽隔离以及进行sti浅槽刻蚀。其中sti氧化物填充包括但不限于沟槽衬垫氧化硅、沟槽cvd(化学气相沉积)氧化物填充或pvd(物理气相沉积)氧化物填充。其中硅片表面的平坦化可以通过多种方法实现。可以通过使用sog(spin-on-glass)填充间隙实现硅片的平坦化,sog可以由80%的溶剂与20%的二氧化硅构成,淀积之后烘焙sog,蒸发掉溶剂,将二氧化硅留在间隙当中,也可以进行全部表面的反刻,以减少整个硅片的厚度。亦可以通过cmp工艺(也称为抛光工艺)有效地进行平坦化处理,包括但不限于对沟槽氧化物进行抛光(可以采用化学机械抛光)以及氮化物去除。本领域技术人员应当知道,借由上述浅沟槽隔离,能够有效实现衬底之间器件与器件之间的电气隔绝。

步骤s104,n型阱60和n型阱62靠近p型阱70的上部分别形成n型重掺杂区28和n型重掺杂区26,其中,在本实施例中,n型掺杂可具有掺杂物,例如砷(as)、磷(p)、其他第五族(groupv)元素或前述的组合。在一实施例中,可以理解的是,n型重掺杂区28和n型重掺杂区26具有相同的离子掺杂浓度。n型重掺杂区28和n型重掺杂区26关于p型阱70镜像对称,n型重掺杂区28和n型重掺杂区26与p型阱70之间间隔一段距离,即n型重掺杂区28、n型重掺杂区26与p型阱70之间分别为n型阱60、n型阱62的有源区。

步骤s105,在n型阱60和n型阱62远离p型阱70的上部分别形成p型重掺杂区20和p型重掺杂区22,以及在p型阱70的上部形成p型重掺杂区24。在本实施例中,p型掺杂可具有掺杂物,例如硼(b)或其他第三族(groupiii)元素。在一实施例中,可以理解的是,p型重掺杂区20、p型重掺杂区22和p型重掺杂区24具有相同的离子掺杂浓度。结合步骤s104中所形成的n型重掺杂区28和n型重掺杂区26,可以认为n型重掺杂区28、n型重掺杂区26与p型阱70上部的p型重掺杂区24之间设置有源区。同样的,p型重掺杂区20和p型重掺杂区22关于p型阱70镜像对称。结合步骤s103,p型重掺杂区20和n型重掺杂区28之间具有浅沟槽隔离,p型重掺杂区22和n型重掺杂区26之间具有浅沟槽隔离。

步骤s106,将p型重掺杂区20和n型重掺杂区28连接至阳极以及将p型重掺杂区22和n型重掺杂区26连接至阴极。可以理解的是,根据本发明的一方面所形成的硅控整流器在结构上具有关于p型阱70镜像对称的n型阱60和n型阱62,并且形成在n型阱60和n型阱62中的各个重掺杂区亦关于p型阱70镜像对称,因此,本领域技术人员可以根据版图设计的需要调整硅控整流器阴阳极的位置,例如,在另一实施例中,p型重掺杂区20和n型重掺杂区28构成硅控整流器的阴极,p型重掺杂区22和n型重掺杂区26构成硅控整流器的阳极。

需要注意的,虽然以先形成浅沟槽隔离,再形成n型掺杂区,最后形成p型掺杂区的方式来说明本发明的一方面所提供的制造方法的流程,但实际上,本领域技术人员可以根据现有或将有的流程形成浅沟槽隔离、n型掺杂区与p型掺杂区,形成浅沟槽隔离、n型掺杂区与p型掺杂区的顺序不应不当地限制本发明的保护范围。

据此,根据本发明的一方面所提供的制造方法已经能够形成同时适用于正负高压端口防静电保护的双向无回滞效应硅控整流器。并且,上述的制造工艺与现有的cmos工艺兼容,并没有额外增加制造复杂度与制造成本。

更具体的,在本发明的一方面所提供的制造方法的一实施例中,还通过调节n型重掺杂区28、n型重掺杂区26与所述p型重掺杂区24之间的有源区的宽度d1来调整硅控整流器的触发电压。在一实施例中,可以调节宽度d1为0-2um来调整触发电压,以使得硅控整流器具有满足不同需要的触发电压。

当将n型重掺杂区28、n型重掺杂区26与p型重掺杂区24之间的有源区的宽度d1扩大时,硅控整流器内部的寄生二极管n+28(n型阱60)/p+24和寄生二极管n+26(n型阱62)/p+24的反向击穿电压在一定范围内将变大,因此,会使得该硅控整流器的回滞效应的触发电压的增大。

在另一实施例中,还可以通过调整n型重掺杂区28与n型重掺杂区26的宽度d2、p型重掺杂区24的宽度d3以及p型重掺杂区20和n型重掺杂区28之间与p型重掺杂区22和n型重掺杂区26之间的浅沟槽隔离的宽度s来调整硅控整流器的无回滞效应状态。在一实施例中,可以调节d2为0.4-10um、调节宽度d3为1-10um、调节宽度s为0-2um来调节硅控整流器是否进入无回滞效应的状态。

具体的,若d2、d3越大,则该硅控整流器越容易进入无回滞效应状态,本领域技术人员可以根据需要进入无回滞效应状态的难易程度确定合适的d2、d3。另外,可以通过调整p型重掺杂区20和n型重掺杂区28之间、p型重掺杂区22和n型重掺杂区26之间的浅沟槽隔离的宽度s来改善载流子空穴从p+20、p+22注入到n型阱60、62之后的分布,以提高n型重掺杂区28、n型重掺杂区26作为保护环的效率,即提高载流子空穴被n型重掺杂区28、n型重掺杂区26复合湮灭的效率。

图3示出了根据本发明的一方面所提供的硅控整流器的结构示意图。如图3所示,本发明所提供的硅控整流器包括p型衬底80。p型衬底80的上部形成有n型阱60,n型阱60的上部具有构成硅控整流器第一极(图3中为阳极a)的p型重掺杂区20和n型重掺杂区28,p型重掺杂区20和n型重掺杂区28之间具有浅沟槽隔离10。p型衬底80的上部还形成有n型阱62,n型阱62的上部具有构成硅控整流器第二极(图3中为阴极k)的p型重掺杂区22和n型重掺杂区26,p型重掺杂区22和n型重掺杂区26之间具有浅沟槽隔离10。

由于硅控整流器的阴阳两极均对应于n型阱,为了保证器件能够正常工作,本发明的一方面所提供的硅控整流器在p型衬底80的上部还形成有连接n型阱60和n型阱62的p型阱70。p型阱70分别与n型阱60和n型阱62邻接,因而,在p型阱70与n型阱60的交界处、p型阱70与n型阱62的交界处形成有pn结。p型阱70的上部具有p型重掺杂区24。

为了保证硅控整流器的正常工作,n型重掺杂区28和n型重掺杂区26靠近p型重掺杂区24,p型重掺杂区20和p型重掺杂区22远离p型重掺杂区24。因此,当图3中的阳极a接入正向高压时,电流从p+20经过n型阱60(n+28)、p型阱70(p+24)流向n型阱62(n+26)(pnpn,如图3中左侧实线箭头所示),符合硅控整流器的要求。

同时,如图3所示出的本发明的一方面所提供的硅控整流器,由于硅控整流器的阴阳两极关于p型阱70镜像对称,因此,当图3中的阳极a接入负向高压时,电流从p+22经过n型阱62(n+26)、p型阱70(p+24)流向n型阱60(n+28)(pnpn,如图3中右侧实线箭头所示),同样能够符合硅控整流器的要求。也就是说,通过设置关于p型阱70镜像对称的两个n型阱,并在两个n型阱的上部对称地形成构成硅控整流器阴阳极的n、p型重掺杂区,能够使得该硅控整流器同时适用于正负高压端口的防静电保护。

可以理解的是,由于是完全对称的结构,p型重掺杂区20、p型重掺杂区22与p型重掺杂区24具有相同的离子掺杂浓度。在另一实施例中,n型重掺杂区28与n型重掺杂区26具有相同的离子掺杂浓度。

从图3中可以看出,本发明的一方面所提供的硅控整流器的n型重掺杂区28和n型重掺杂区26与p型重掺杂区24之间分别为n型阱60和n型阱62的有源区,也就是说,n型重掺杂区28和n型重掺杂区26与p型重掺杂区24之间没有设置sti浅沟槽隔离。

进一步的,在上述的实施例中,n型重掺杂区28、n型重掺杂区26与p型重掺杂区24之间的有源区的宽度d1关联于硅控整流器的触发电压。在一实施例中,可以调节宽度d1为0-2um来调整触发电压,以使得硅控整流器具有满足不同需要的触发电压。

当将n型重掺杂区28、n型重掺杂区26与p型重掺杂区24之间的有源区的宽度d1扩大时,硅控整流器内部的寄生二极管n+28(n型阱60)/p+24和寄生二极管n+26(n型阱62)/p+24的反向击穿电压在一定范围内将变大,因此,会使得该硅控整流器的回滞效应的触发电压的增大。

更进一步的,n型重掺杂区28与n型重掺杂区26的宽度d2、p型重掺杂区24的宽度d3以及p型重掺杂区20和n型重掺杂区28之间与p型重掺杂区22和n型重掺杂区26之间的浅沟槽隔离的宽度s关联于硅控整流器的无回滞效应状态。在一实施例中,可以调节d2为0.4-10um、调节宽度d3为1-10um、调节宽度s为0-2um来调节硅控整流器是否进入无回滞效应的状态。

具体的,若d2、d3越大,则该硅控整流器越容易进入无回滞效应状态,本领域技术人员可以根据需要进入无回滞效应状态的难易程度确定合适的d2、d3。另外,可以通过调整p型重掺杂区20和n型重掺杂区28之间、p型重掺杂区22和n型重掺杂区26之间的浅沟槽隔离的宽度s来改善载流子空穴从p+20、p+22注入到n型阱60、62之后的分布,以提高n型重掺杂区28、n型重掺杂区26作为保护环的效率,即提高载流子空穴被n型重掺杂区28、n型重掺杂区26复合湮灭的效率。

根据如上所描述的,由于本发明的一方面所提供的硅控整流器是对称结构,因此,能够同时适用于正负高压端口的防静电保护,满足不同条件的防静电保护,具有较为广泛的应用范围。

图4还示出了本发明所提供的硅控整流器的应用场景示意图。如图4所示,将本发明所提供的硅控整流器应用于esd保护电路中,能够有效启到保护电路的作用。

至此,已经描述了用于一种硅控整流器及其制造方法的实施例。尽管已经关于特定的示例性实施例描述了本公开,但将明显的是,可以对这些实施例做出各种修改和改变而不偏离本公开的更广泛的精神和范围。因此,本说明书和附图应被视为是说明性的含义而不是限制性的含义。

应当理解的是,本说明书将不用于解释或限制权利要求的范围或意义。此外,在前面的详细描述中,可以看到的是,各种特征被在单个实施例中组合在一起以用于精简本公开的目的。本公开的此方法不应被解释为反映所要求保护的实施例要求比在每个权利要求中明确列举的特征更多的特征的目的。相反,如所附权利要求所反映的,创造性主题在于少于单个所公开的实施例的所有特征。因此,所附权利要求据此并入详细描述中,其中每个权利要求独立地作为单独的实施例。

在该描述中提及的一个实施例或实施例意在结合该实施例描述的特定的特征、结构或特性被包括在电路或方法的至少一个实施例中。在说明书中各处出现的短语一个实施例不一定全部指的是同一实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1