半导体装置用接合线的制作方法

文档序号:25739090发布日期:2021-07-06 18:49阅读:69来源:国知局

本申请是于2016年5月19日提交的申请号为201680002657.9、名称为“半导体装置用接合线”的专利申请的分案申请。

本发明涉及为了将半导体元件上的电极和外部引线等的电路布线板的布线连接而被利用的半导体装置用接合线。



背景技术:

现在,作为将半导体元件上的电极与外部引线之间接合的半导体装置用接合线(以下称为接合线),主要使用线径15~50μm左右的细线。接合线的接合方法一般为并用超声波的热压接方式,可使用通用接合装置、将接合线通到其内部而用于连接的毛细管工具等。接合线的接合工艺通过下述过程来完成:通过电弧热输入将线尖端加热熔融,利用表面张力形成球(fab:freeairball,无空气的球)后,使该球部压接接合于在150℃~300℃的范围内加热了的半导体元件的电极上(以下称为“球接合”),接着,形成环(环路:loop)之后,将线部压接接合于外部引线侧的电极(以下称为“楔接合”)。作为接合线的接合对象的半导体元件上的电极可以使用在si基板上形成了以al为主体的合金膜的电极结构,而外部引线侧的电极可以使用施加了镀ag层和/或镀pd层的电极结构等。

迄今为止,接合线的材料以au为主流,但以lsi用途为中心,替代为cu的工作正在推进。另一方面,以近年来的电动汽车、混合动力汽车的普及为背景,在车载用装置用途中,对于从au替代为cu的需求也在提高。

关于cu接合线,曾提出了使用高纯度cu(纯度:99.99质量%以上)的cu接合线(例如,专利文献1)。cu与au相比具有易被氧化的缺点,存在接合可靠性、球形成性、楔接合性等较差的问题。作为防止cu接合线的表面氧化的方法,曾提出了用au、ag、pt、pd、ni、co、cr、ti等金属被覆cu芯材表面的结构(专利文献2)。另外,曾提出了在cu芯材的表面被覆pd,再将pd被覆层表面用au,ag、cu或它们的合金被覆的结构(专利文献3)。

在先技术文献

专利文献

专利文献1:日本特开昭61-48543号公报

专利文献2:日本特开2005-167020号公报

专利文献3:日本特开2012-36490号公报



技术实现要素:

车载用装置与一般的电子设备相比,要求在严苛的高温高湿环境下的接合可靠性。特别是将线的球部与电极接合的球接合部的接合寿命成为最大的问题。

作为评价在高温高湿环境下的球接合部的接合可靠性的代表性的评价方法,有hast(highlyacceleratedtemperatureandhumiditystresstest)(高温高湿环境暴露试验)。在采用hast评价球接合部的接合可靠性的情况下,将评价用的球接合部暴露于温度为130℃、相对湿度为85%的高温高湿环境中,测定接合部的电阻值的经时变化、或测定球接合部的剪切强度的经时变化,由此评价球接合部的接合寿命。

另外,作为评价170℃以上的高温环境下的球接合部的接合可靠性的方法,可采用hts(hightemperaturestoragetest)(高温放置试验)。在利用hts评价球接合部的接合可靠性的情况下,关于暴露于高温环境中的评价用的样品,通过测定球接合部的电阻值的经时变化、或测定球接合部的剪切强度的经时变化,从而评价球接合部的接合寿命。

通过本发明人的研究,判明了在接合线包含例如ni、zn、rh、in、ir、pt等的赋予高温环境下的连接可靠性的元素的情况下,与不包含该元素的情况相比,130℃以上的高温环境下的球接合部的接合可靠性提高。

在此,用下述(1)式定义耐力比。

耐力比=最大耐力/0.2%耐力(1)

在楔接合中,接合线激烈地变形。在变形时,若线发生加工硬化,则接合后的线变硬,其结果楔接合的接合强度下降。为了维持楔接合强度,用上述(1)式定义的耐力比优选为1.6以下。然而,为了提高在高温环境下的球接合部的接合可靠性而使线中含有上述元素的结果,耐力比增大,变得超过1.6。因而,会导致楔接合的接合强度下降。

本发明的目的是提供一种半导体装置用接合线,其具有cu合金芯材和形成于其表面的pd被覆层,其能够提高在高温下的球接合部的接合可靠性,并且能够使用(1)式定义的耐力比成为1.1~1.6。

即,本发明的要旨如下。

[1]一种半导体装置用接合线,其特征在于,具有cu合金芯材和形成于所述cu合金芯材的表面的pd被覆层,

所述接合线包含赋予高温环境下的连接可靠性的元素,

在对与所述接合线的线轴垂直的方向的芯材截面测定晶体取向所得到的结果中,线长度方向(线轴方向)的晶体取向之中相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率为30%以上,

与所述接合线的线轴垂直的方向的芯材截面的平均结晶粒径为0.9~1.5μm。

[2]根据上述[1]所述的半导体装置用接合线,其特征在于,用下述(1)式定义的耐力比为1.1~1.6。

耐力比=最大耐力/0.2%耐力(1)

[3]根据上述[1]或[2]所述的半导体装置用接合线,其特征在于,所述pd被覆层的厚度为0.015~0.150μm。

[4]根据上述[1]~[3]的任一项所述的半导体装置用接合线,在所述pd被覆层上还具有包含au和pd的合金表皮层。

[5]根据上述[4]所述的半导体装置用接合线,其特征在于,所述包含au和pd的合金表皮层的厚度为0.050μm以下。

[6]根据上述[1]~[5]的任一项所述的半导体装置用接合线,所述接合线包含选自ni、zn、rh、in、ir、pt之中的至少1种元素,相对于线整体,所述元素的浓度总计为0.011~2质量%。

[7]根据上述[1]~[6]的任一项所述的半导体装置用接合线,所述接合线包含选自ga、ge之中的1种以上的元素,相对于线整体,所述元素的浓度合计为0.011~1.5质量%。

[8]根据上述[1]~[7]的任一项所述的半导体装置用接合线,其特征在于,所述接合线包含选自as、te、sn、sb、bi、se之中的1种以上的元素,相对于线整体,所述元素的浓度合计为0.1~100质量ppm,sn≤10质量ppm,sb≤10质量ppm,bi≤1质量ppm。

[9]根据上述[1]~[8]的任一项所述的半导体装置用接合线,其特征在于,所述接合线还包含选自b、p、mg、ca、la之中的至少1种元素,相对于线整体,所述元素的浓度分别为1~200质量ppm。

[10]根据上述[1]~[9]的任一项所述的半导体装置用接合线,其特征在于,在所述接合线的最表面存在cu。

[11]根据上述[1]~[10]的任一项所述的半导体装置用接合线,其特征在于,cu合金芯材含有总计为0.1~3.0质量%的元素周期表第10族的金属元素,线最表面的cu浓度为1原子%以上。

根据本发明,能够提高在高温环境下的球接合部的接合可靠性,且使用(1)式定义的耐力比成为1.1~1.6。

具体实施方式

本发明的半导体装置用接合线具有cu合金芯材和形成于所述cu合金芯材的表面的pd被覆层。在本发明中,接合线包含赋予高温环境下的连接可靠性的元素,在针对与接合线的线轴垂直的方向的芯材截面测定晶体取向所得到的结果中,线长度方向的晶体取向之中相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率为30%以上,与接合线的线轴垂直的方向的芯材截面的平均结晶粒径为0.9~1.5μm。

作为半导体装置的封装体(package)的模塑树脂(环氧树脂),分子骨架中含有氯(cl)。在hast评价条件即130℃、相对湿度85%的高温高湿环境下,分子骨架中的cl进行水解,作为氯离子(cl-)溶出。在将不具有pd被覆层的cu接合线与al电极接合的情况下,如果cu/al接合界面被置于高温下,则cu和al相互扩散,最终会形成金属间化合物cu9al4。cu9al4容易受到cl等卤素所致的腐蚀,腐蚀由于从模塑树脂中溶出的cl而进行,导致接合可靠性的降低。在cu线具有pd被覆层的情况下,被覆有pd的cu线与al电极的接合界面成为cu/pd浓化层/al这样的结构,因此与不具有pd被覆层的cu线相比,虽然cu9al4金属间化合物的生成被抑制,但车载用装置所要求的高温高湿环境下的接合可靠性不充分。

对此,可以认为,如果如本发明那样含有赋予高温环境下的连接可靠性的元素,则存在接合部中的cu9al4金属间化合物的生成被进一步抑制的倾向。

从改善球接合部在高温环境下的接合可靠性(特别是175℃以上的条件下的hts的成绩)的观点出发,相对于线整体,赋予高温环境下的连接可靠性的元素的浓度总计优选为0.011质量%以上,更优选为0.030质量%以上,进一步优选:相对于线整体,所述元素的浓度总计为0.050质量%以上、相对于线整体,所述元素的浓度总计为0.070质量%以上、相对于线整体,所述元素的浓度总计为0.09质量%以上、相对于线整体,所述元素的浓度总计为0.10质量%以上、相对于线整体,所述元素的浓度总计为0.15质量%以上、或者、相对于线整体,所述元素的浓度总计为0.20质量%以上。在后面叙述关于赋予高温环境下的连接可靠性的元素的详细说明。

如前述那样,用下述(1)式定义耐力比。

耐力比=最大耐力/0.2%耐力(1)

在楔接合中,接合线激烈地变形。当在变形时线加工硬化时,接合后的线变硬,其结果是楔接合的接合强度下降。为了维持良好的楔接合强度,用上述(1)式定义的耐力比优选为1.6以下。然而,为了提高在高温环境下的球接合部的接合可靠性而含有能够充分地发挥效果的量的赋予高温环境下的连接可靠性的元素的结果,耐力比增大而会超过1.6。在芯材的cu中含有上述元素的结果,可以认为发生了耐力比的增大、即硬度的增加。因而,造成楔接合的接合强度下降。另一方面,想要在以往的制造方法的范围内降低耐力比的结果是耐力比变得小于1.1,楔接合性差。

因此,对于即使接合线含有上述赋予高温环境下的连接可靠性的元素也能够将(1)式的耐力比保持在1.1~1.6的最佳范围的晶体组织进行了研究。其结果发现:在要将(1)式的耐力比保持在最佳范围时,控制接合线中的芯材的晶体结构、特别是以下两项很重要:(i)针对与接合线的线轴垂直的方向的芯材截面测定晶体取向所得到的结果中的、线长度方向的晶体取向之中相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率(以下也仅称为“<100>取向比率”)、和(ii)与接合线的线轴垂直的方向的芯材截面中的平均结晶粒径(以下仅称为“平均结晶粒径”)。详细而言,当采用通常的制造方法制造接合线时,不能够使<100>取向比率为30%以上和平均结晶粒径为0.9μm以上1.5μm以下两立,作为其结果,可知耐力比变得小于1.1或超过1.6。相对于此,通过如后述那样钻研制造方法,能够使与接合线的线轴垂直的方向的芯材截面中的线长度方向的晶体取向之中、包括相对于线长度方向角度差为15度以内在内的<100>的取向比率成为30%以上,并使与接合线的线轴垂直的方向的芯材截面中的平均结晶粒径成为0.9~1.5μm,其结果明确可知能够使(1)式的耐力比成为1.1~1.6。

在<100>取向比率为30%以上时,由于随着楔接合时的变形的线的加工硬化很小,因此能够使耐力比成为1.6以下。但是,即使是该情况,当平均结晶粒径小于0.9μm时,0.2%耐力也高(缺乏延展性),因此耐力比变得小于1.1,楔接合性差。在平均结晶粒径超过1.5μm的情况下,<100>取向比率变得小于30%,而且0.2%耐力低,因此可推定耐力比超过1.6,楔接合性差。

再者,在关于线的晶体结构,满足上述条件的情况下,如果线中的赋予高温环境下的连接可靠性的元素的含量过多,则有时耐力比增大。从实现耐力比为1.6以下,抑制接合线的硬质化来抑制楔接合性的下降的观点出发,相对于线整体,赋予高温环境下的连接可靠性的元素的浓度总计优选为2.0质量%以下、1.8质量%以下、或1.6质量%以下。

在要使接合线中含有赋予高温环境下的连接可靠性的元素时,不论采用使cu芯材中含有这些元素的方法、覆着在cu芯材或者线表面来含有这些元素的方法中的哪一种,都能够发挥上述本发明效果。由于这些成分的添加量为极微量,因此添加方法的变化(variation)宽泛,不管采用怎样的方法添加,只要包含该成分,就都能显现效果。

在本发明的接合线中,从得到良好的fab形状的观点以及更进一步改善车载用装置所要求的高温高湿环境下的球接合部的接合可靠性的观点出发,pd被覆层的厚度优选为0.015μm以上,更优选:所述pd被覆层的厚度为0.02μm以上,进一步优选:所述pd被覆层的厚度为0.025μm以上、所述pd被覆层的厚度为0.03μm以上、所述pd被覆层的厚度为0.035μm以上、所述pd被覆层的厚度为0.04μm以上、所述pd被覆层的厚度为0.045μm以上、或者、所述pd被覆层的厚度为0.05μm以上。另一方面,由于即使pd被覆层的厚度过厚,fab形状也下降,因此pd被覆层的厚度优选为0.150μm以下,更优选:所述pd被覆层的厚度为0.140μm以下、所述pd被覆层的厚度为0.130μm以下、所述pd被覆层的厚度为0.120μm以下、所述pd被覆层的厚度为0.110μm以下、或者、所述pd被覆层的厚度为0.100μm以下。

说明上述接合线的cu合金芯材、pd被覆层的定义。cu合金芯材与pd被覆层的边界以pd浓度为基准来判定。将pd浓度为50原子%的位置作为边界,将pd浓度为50原子%以上的区域判定为pd被覆层,将pd浓度小于50原子%的区域判定为cu合金芯材。其根据是因为,如果在pd被覆层中pd浓度为50原子%以上,则由pd被覆层的结构能得到特性的改善效果。pd被覆层可以包含单纯的pd层的区域、pd和cu在线的深度方向具有浓度梯度的区域。在pd被覆层中能形成具有该浓度梯度的区域的原因是因为,有时由于制造工序中的热处理等,pd和cu的原子进行扩散。在本发明中,所谓浓度梯度是指向深度方向的浓度变化的程度是每0.1μm为10mol%以上。进而,pd被覆层也可以包含不可避免的杂质。

在本发明的接合线中,从能进一步享有本发明的效果的观点出发,pd被覆层中的pd的最大浓度优选为60原子%以上,更优选为70原子%以上、80原子%以上、或90原子%以上。pd被覆层中的pd的最大浓度优选为100原子%,但在本发明的接合线中,在pd被覆层中的pd的最大浓度小于100原子%、例如为99.9原子%以下、99.8原子%以下、99.7原子%以下、99.6原子%以下、99.5原子%以下、99.0原子%以下、98.5原子%以下、98原子%以下、97原子%以下、96原子%以下、或95原子%以下的情况下也能够达到所希望的效果。

在本发明的接合线中,pd被覆层中的pd浓度为99.0原子%以上的区域的厚度可以是40nm以下,例如可以是35nm以下、30nm以下、25nm以下、20nm以下、15nm以下、10nm以下、或5nm以下。

本发明的接合线可以在pd被覆层的表面还具有包含au和pd的合金表皮层。由此,本发明的接合线能够进一步提高接合可靠性,并且能够进一步改善楔接合性。

说明上述接合线的包含au和pd的合金表皮层的定义。包含au和pd的合金表皮层与pd被覆层的边界,以au浓度为基准来判定。将au浓度为10原子%的位置作为边界,将au浓度为10原子%以上的区域判定为包含au和pd的合金表皮层,将au浓度小于10原子%的区域判定为pd被覆层。另外,即使是pd浓度为50原子%以上的区域,如果存在10原子%以上的au,则也判定为包含au和pd的合金表皮层。其根据是因为,如果au浓度在上述的浓度范围,则能够由au表皮层的结构期待特性的改善效果。包含au和pd的合金表皮层为au-pd合金,作为包含au和pd在线的深度方向具有浓度梯度的区域的区域。在包含au和pd的合金表皮层中能形成具有该浓度梯度的区域的原因是因为,由于制造工序中的热处理等,au和pd的原子进行扩散。进而,包含au和pd的合金表皮层也可以包含不可避免的杂质和cu。

在本发明的接合线中,包含au和pd的合金表皮层能够与pd被覆层进行反应来提高包含au和pd的合金表皮层、pd被覆层、cu合金芯材间的密着(密合)强度,抑制楔接合时的pd被覆层和包含au和pd的合金表皮层的剥离。由此,本发明的接合线能够进一步改善楔接合性。从得到良好的楔接合性的观点出发,包含au和pd的合金表皮层的厚度优选为0.0005μm以上,更优选:所述包含au和pd的合金表皮层的厚度为0.001μm以上、所述包含au和pd的合金表皮层的厚度为0.002μm以上、或者、所述包含au和pd的合金表皮层的厚度为0.003μm以上。从抑制偏芯、得到良好的fab形状的观点出发,包含au和pd的合金表皮层的厚度优选为0.050μm以下,更优选:所述包含au和pd的合金表皮层的厚度为0.045μm以下、所述包含au和pd的合金表皮层的厚度为0.040μm以下、所述包含au和pd的合金表皮层的厚度为0.035μm以下、或者、所述包含au和pd的合金表皮层的厚度为0.030μm以下。再者,包含au和pd的合金表皮层能够采用与pd被覆层的形成方法同样的方法来形成。

在本发明中,作为赋予高温环境下的连接可靠性的元素,例如可列举出元素周期表第9族的元素(co、rh、ir)、元素周期表第10族的元素(ni、pd、pt)、元素周期表第11族的元素(ag、au等)、元素周期表第12族的元素(zn等)、元素周期表第13族的元素(al、ga、in等)、元素周期表第14族的元素(ge、sn等)、元素周期表第15族的元素(p、as、sb、bi等)、元素周期表第16族的元素(se、te等)等。这些元素可以以单独一种、或组合两种以上而包含在接合线中。

在本发明中,关于接合线,作为赋予高温环境下的连接可靠性的元素,优选包含选自ni、zn、rh、in、ir、pt之中的至少1种元素。相对于线整体,优选这些元素的浓度总计为0.011~2质量%。

在作为半导体装置的封装体的模塑树脂(环氧树脂)中包含硅烷偶联剂。硅烷偶联剂具有提高有机物(树脂)与无机物(硅、金属)的密着性的作用,因此能够提高与硅基板、金属的密着性。进而,在要求在更高温下的可靠性的面向车载的半导体等要求高的密着性的情况下,可添加“含硫的硅烷偶联剂”。关于模塑树脂中所含有的硫,如果在175℃以上(例如175℃~200℃)的条件下使用,则会游离出来。而且,如果在175℃以上的高温下游离出的硫与cu接触,则cu的腐蚀变得剧烈,生成硫化物(cu2s)、氧化物(cuo)。如果在使用cu接合线的半导体装置中发生cu的腐蚀,则特别是球接合部的接合可靠性会降低。

因此,通过接合线包含选自ni、zn、rh、in、ir、pt之中的至少1种元素,且相对于线整体,使所述元素浓度总计为0.011~2质量%,能够使高温环境中的接合可靠性(特别是175℃以上的条件下的hts的成绩)提高。从改善球接合部的在高温环境下的接合可靠性(特别是175℃以上的条件下的hts的成绩)的观点出发,相对于线整体,所述元素的浓度总计优选为0.011质量%以上,更优选为0.050质量%以上,进一步优选:相对于线整体,所述元素的浓度总计为0.070质量%以上、相对于线整体,所述元素的浓度总计为0.090质量%以上、相对于线整体,所述元素的浓度总计为0.10质量%以上、相对于线整体,所述元素的浓度总计为0.15质量%以上、或者、相对于线整体,所述元素的浓度总计为0.20质量%以上。在以下的说明中,将选自ni、zn、rh、in、ir、pt之中的至少1种元素也称为“元素ma”。

在本发明中,关于接合线,优选的是,作为赋予高温环境下的连接可靠性的元素,包含选自ga、ge中的1种以上的元素,相对于线整体,所述元素的浓度合计为0.011~1.5质量%。再者,在线中也可以包含选自ga、ge中的1种以上的元素来代替元素ma,或者同时包含选自ga、ge中的1种以上的元素和元素ma。在以下的说明中,将选自ga、ge之中的1种以上的元素也称为“元素mb”。

在球接合部的fab形成时,线中的ga、ge也向pd被覆层扩散。可以认为,在球接合部中的cu与al界面的pd浓化层中存在的ga、ge进一步提高pd浓化层的抑制cu和al的相互扩散的效果,作为结果,抑制了在高温高湿环境下容易腐蚀的cu9al4的生成。另外,也有线中所含的ga、ge具有直接阻碍cu9al4形成的效果的可能性。

进而,使用含有规定量的选自ga、ge中的至少1种元素的被覆有pd的cu接合线形成球部,用扫描电镜(sem:scanningelectronmicroscope)观察fab,结果在fab的表面观察到许多的直径(ф)为几十nm左右的析出物。当通过能量色散型x射线分析(eds:energydispersivex-rayspectroscopy)来分析析出物时,确认到ga、ge浓化了。从以上的状况来看,虽然详细的机理尚不明确,但是可认为由于fab中所观察到的该析出物存在于球部与电极的接合界面,因此在温度为130℃、相对湿度为85%的高温高湿环境下的球接合部的接合可靠性格外提高了。

作为ga、ge的存在部位,优选是在cu合金芯材中,但即使是包含于pd被覆层和/或后述的包含au和pd的合金表皮层中,也能够获得充分的作用效果。向cu合金芯材中添加ga、ge的方法,容易进行准确的浓度管理,线生产率、品质稳定性提高。另外,由于由热处理引起的扩散等,在pd被覆层和/或合金表皮层中也含有ga和ge的一部分,因此各层界面的密着性优良化,能够进一步提高线生产率。

另一方面,从得到良好的fab形状的观点、抑制接合线的硬质化从而得到良好的楔接合性的观点出发,相对于线整体,ga、ge的浓度合计为1.5质量%以下,优选为1.4质量%以下,更优选为1.3质量%以下、或1.2质量%以下。

在本发明中,优选的是,接合线包含选自as、te、sn、sb、bi、se之中1种以上的元素,相对于线整体,所述元素的浓度合计为0.1~100质量ppm,sn≤10质量ppm,sb≤10质量ppm,bi≤1质量ppm。再者,在线中也可以包含选自as、te、sn、sb、bi、se中的1种以上的元素来代替元素ma和/或元素mb,或者在包含元素ma和/或元素mb的同时包含选自as、te、sn、sb、bi、se中的1种以上的元素。在以下的说明中,将选自as、te、sn、sb、bi、se之中的1种以上的元素也称为“元素mc”。

当接合线包含选自as、te、sn、sb、bi、se之中的至少1种元素,相对于线整体,所述元素的浓度合计为0.1~100质量ppm,sn≤10质量ppm,sb≤10质量ppm,bi≤1质量ppm时,能够进一步改善车载用装置所要求的高温高湿环境下的球接合部的接合可靠性。由于使特别是温度为130℃、相对湿度为85%的高温高湿环境下的球接合部的接合寿命提高,改善接合可靠性,因此是优选的。相对于线整体,所述元素的浓度合计优选为0.1质量ppm以上,更优选为0.5质量ppm以上,进一步优选为1质量ppm以上,更进一步优选:相对于线整体,所述元素的浓度合计为1.5质量ppm以上、相对于线整体,所述元素的浓度合计为2质量ppm以上、相对于线整体,所述元素的浓度合计为2.5质量ppm以上、或者、相对于线整体,所述元素的浓度合计为3质量ppm以上。另一方面,从得到良好的fab形状的观点出发,相对于线整体,所述元素的浓度合计优选为100质量ppm以下,更优选为95质量ppm以下、90质量ppm以下、85质量ppm以下、或80质量ppm以下。另外,在sn浓度、sb浓度超过10质量ppm的情况下、或者bi浓度超过1质量ppm的情况下,fab形状变得不良,因此通过设为sn≤10质量ppm,sb≤10质量ppm,bi≤1质量ppm,能够进一步改善fab形状,因此是优选的。

本发明的接合线,优选的是,还包含选自b、p、mg、ca、la之中的至少1种元素,相对于线整体,所述元素的浓度分别为1~200质量ppm。由此,能够改善高密度安装所要求的球接合部的压溃形状,即能够改善球接合部形状的的圆形度。相对于线整体,优选所述元素的浓度分别为1质量ppm以上,更优选:相对于线整体,所述元素的浓度分别为2质量ppm以上、相对于线整体,所述元素的浓度分别为3质量ppm以上、相对于线整体,所述元素的浓度分别为4质量ppm以上、或者、相对于线整体,所述元素的浓度分别为5质量ppm以上。从抑制球的硬质化来抑制球接合时的芯片损伤的观点出发,相对于线整体,优选所述元素的浓度分别为200质量ppm以下,更优选分别为150质量ppm以下、120质量ppm以下、100质量ppm以下、95质量ppm以下、90质量ppm以下、85质量ppm以下、或80质量ppm以下。

如本发明那样,在被覆有pd的cu接合线含有提高高温环境下的连接可靠性的元素的情况下,当在接合线的最表面还存在cu时,存在接合部中的cu9al4金属间化合物的生成进一步被抑制的倾向。在被覆有pd的cu接合线含有提高高温环境下的连接可靠性的元素的情况下,当在接合线的最表面还存在cu时,通过接合线中所含有的上述元素和cu的相互作用,在fab形成时促进fab表面的pd浓化,球接合界面的pd浓化更显著地显现。由此推定,由pd浓化层带来的抑制cu和al的相互扩散的效果进一步变强,在cl的作用下容易腐蚀的cu9al4的生成量变少,球接合部的在高温高湿环境下的接合可靠性更进一步提高。

在pd被覆层的最表面存在cu的情况下,当cu的浓度变为30原子%以上时,线表面的抗硫化性下降,接合线的使用寿命下降,因而有时不适于实用。因此,在pd被覆层的最表面存在cu的情况下,优选cu的浓度小于30原子%。

另外,在au表皮层的最表面存在cu的情况下,当cu的浓度变为35原子%以上时,线表面的抗硫化性下降,接合线的使用寿命下降,因而有时不适于实用。因此,在au表皮层的最表面存在cu的情况下,优选cu的浓度小于35原子%。

在此,所谓最表面是指在不实施溅射等的状态下,对于接合线的表面由俄歇电子能谱装置测定到的区域。

在本发明中,优选的是,cu合金芯材含有总计为0.1~3.0质量%的元素周期表第10族的金属元素,且线最表面的cu浓度为1~10原子%。当设为这样的构成时,能够进一步改善对镀pd的引线框或者在pd镀层之上实施了镀au的引线框的楔接合性。另外,通过在cu合金芯材中含有规定量的元素周期表第10族的金属元素,关于接合线与电极间的球接合部能够实现在高湿加热条件下也优异的球接合性。

作为cu合金芯材中的元素周期表第10族的金属元素,优选为选自ni、pd和pt之中的1种以上。在优选的一实施方式中,cu合金芯材包含作为元素周期表第10族的金属元素的ni。例如,在cu合金芯材中,作为元素周期表第10族的金属元素可以单独地含有ni,也可以将pd、pt中的一方或两方与ni组合而含有。在另一优选的实施方式中,cu合金芯材包含作为元素周期表第10族的金属元素的pd、pt中的一方或两方。

如果cu合金芯材中的元素周期表第10族的金属元素的浓度总计为0.1质量%以上,则能够充分地控制接合界面的cu、al的相互扩散,在严苛的高湿加热评价试验即hast试验中,接合部的寿命也提高到380小时以上。作为在此的接合部的评价,在hast试验后开封、除去树脂,然后通过拉扯(pull)试验评价接合部的断裂状况。从充分地得到上述的hast试验可靠性的改善效果的观点出发,cu合金芯材中的元素周期表第10族的金属元素的浓度总计为0.1质量%以上,优选为0.2质量%以上,更优选:cu合金芯材中的元素周期表第10族的金属元素的浓度总计为0.3质量%以上、cu合金芯材中的元素周期表第10族的金属元素的浓度总计为0.4质量%以上、cu合金芯材中的元素周期表第10族的金属元素的浓度总计为0.5质量%以上、或者、cu合金芯材中的元素周期表第10族的金属元素的浓度总计为0.6质量%以上。另外,从得到低温接合中的与al电极的初始的接合强度良好、hast试验中的长期可靠性、对bga(ballgridarray)、csp(chipsizepackage)等的基板、带等的接合的量产余裕度优异的接合线的观点、降低芯片损伤的观点出发,cu合金芯材中的元素周期表第10族的金属元素的浓度总计为3.0质量%以下,优选为2.5质量%以下、或2.0质量%以下。当cu合金芯材中的元素周期表第10族的金属元素的浓度总计超过3.0质量%时,需要以低载荷进行球接合,以避免发生芯片损伤,与电极的初始的接合强度下降,作为结果,有时hast试验可靠性恶化。在本发明的接合线中,通过将cu合金芯材中的元素周期表第10族的金属元素的浓度的总计设为上述最佳范围,hast试验中的可靠性进一步提高。例如,能够实现hast试验的直到发生不良为止的寿命超过450小时的接合线。这也有时相当于以往的cu接合线的1.5倍以上的长寿命化,也能够应对严苛的环境中的使用。

再者,作为从接合线制品求出cu合金芯材中所含有的上述元素的浓度的方法,例如可举出:使接合线的截面露出,对cu合金芯材的区域进行浓度分析的方法;一边从接合线的表面向深度方向通过溅射等进行切削,一边对cu合金芯材的区域进行浓度分析的方法。例如,在cu合金芯材包含具有pd浓度梯度的区域的情况下,对接合线的截面进行线分析,对不具有pd浓度梯度的区域(例如,向深度方向的pd浓度变化的程度是每0.1μm小于10mol%的区域、cu合金芯材的轴心部)进行浓度分析即可。

在本发明的接合线中,通过使用含有规定量的元素周期表第10族的金属元素的cu合金芯材,并将线最表面的cu浓度设为1原子%以上,能够大幅度改善对镀pd的引线框的楔接合性、特别是剥离(peeling)性,并且能够实现良好的楔接合性和fab形状,能够抑制线表面的氧化从而抑制品质的经时劣化。从能够更进一步改善楔接合性的观点出发,在本发明的接合线中,线最表面的cu浓度优选为1.5原子%以上,更优选为2原子%以上、2.5原子%以上、或3原子%以上。线最表面的cu浓度的上限如上所述,但从实现良好的楔接合性和fab形状的观点、抑制线表面的氧化来抑制品质的经时劣化的观点出发,在包含含有规定量的元素周期表第10族的金属元素的cu合金芯材的本发明的接合线中,线最表面的cu浓度优选为10原子%以下,更优选为9.5原子%以下、或9原子%以下。

对于pd被覆层、包含au和pd的合金表皮层的浓度分析,一边从接合线的表面向深度方向通过溅射等进行切削一边进行分析的方法、或者使线截面露出从而进行线分析、点分析等的方法是有效的。用于这些浓度分析的解析装置,可以利用在扫描电镜或透射电镜中装备的俄歇电子能谱分析装置、能量色散型x射线分析装置、电子射线显微分析仪等。作为使线截面露出的方法,可以利用机械研磨、离子蚀刻法等。关于接合线中的ni、zn、rh、in、ir、pt等的微量元素的分析,可利用icp发射光谱分析装置、icp质谱分析装置来分析用强酸溶解接合线而得到的液体,作为接合线整体中所包含的元素的浓度来检测出。

(制造方法)

接着,说明本发明的实施方式涉及的接合线的制造方法。接合线是通过在制造用于芯材的cu合金后,加工成细线状,形成pd被覆层、au层,进行热处理而得到的。也有时在形成pd被覆层、au层后,进行再次拉丝和热处理。对于cu合金芯材的制造方法、pd被覆层、包含au和pd的合金表皮层的形成方法、热处理方法进行详细说明。

芯材所使用的cu合金,是通过将成为原料的cu和添加的元素一起熔化,使其凝固而得到的。对于熔化,可以利用电弧加热炉、高频加热炉、电阻加热炉等。为了防止从大气中混入o2、h2等气体,优选在真空气氛或ar、n2等惰性气氛中进行熔化。

在cu合金芯材的表面形成pd被覆层、au层的方法,有镀敷法、蒸镀法、熔融法等。关于镀敷法,可以应用电解镀敷法、无电解镀敷法中的任何方法。被称为触击镀、闪镀的电解镀敷,其镀敷速度快,与基底的密着性也良好。用于无电解镀敷的溶液,可分类为置换型和还原型,在厚度薄的情况下仅采用置换型镀敷就足够了,但在厚度厚的情况下,在置换型镀敷之后阶段性地实施还原型镀敷是有效的。

在蒸镀法中,可以利用溅射法、离子镀法、真空蒸镀等物理吸附、和等离子体cvd等化学吸附。都是干式方法,在形成pd被覆层、au层之后不需要洗涤,不用担心洗涤时的表面污染等。

通过在pd被覆层、au层形成后进行热处理,pd被覆层的pd向au层中扩散,能形成包含au和pd的合金表皮层。也可以不是在形成au层后通过热处理来形成包含au和pd的合金表皮层,而是从最初就覆着包含au和pd的合金表皮层。

对于pd被覆层、包含au和pd的合金表皮层的形成,在拉丝到最终线径后进行形成的方法、和在形成于粗径的cu合金芯材上后数次拉丝直到目标线径为止的方法中的任何方法都是有效的。在前者的在最终线径下形成pd被覆层、包含au和pd的合金表皮层的情况下,制造、品质管理等很简便。在后者的将pd被覆层、包含au和pd的合金表皮层与拉丝组合的情况下,在提高与cu合金芯材的密着性方面是有利的。作为各形成法的具体例,可举出:对于最终线径的cu合金芯材,一边使线在电解镀敷溶液中连续地扫掠通过一边形成pd被覆层、包含au和pd的合金表皮层的方法;或者,将粗的cu合金芯材浸渍在电解镀浴或无电解镀浴中来形成pd被覆层、包含au和pd的合金表皮层,然后将线进行拉丝而达到最终线径的方法;等等。

在形成pd被覆层、包含au和pd的合金表皮层后,有时进行热处理。通过进行热处理,在包含au和pd的合金表皮层、pd被覆层、cu合金芯材之间原子进行扩散,密着强度提高,因此能够抑制加工中的包含au和pd的合金表皮层、和pd被覆层的剥离,在生产率提高方面是有效的。为了防止来自大气中的o2的混入,优选在真空气氛或ar、n2等惰性气氛中进行热处理。

如前述那样,通过调整对接合线实施的扩散热处理、退火热处理的条件,芯材的cu通过晶界扩散、晶粒内扩散等在pd被覆层、包含au和pd的合金表皮层中扩散,能够使cu到达接合线的最表面,使最表面存在cu。作为用于使最表面存在cu的热处理,如上述那样,能够使用用于形成包含au和pd的合金表皮层的热处理。在进行用于形成合金表皮层的热处理时,通过选择热处理温度和时间,能够使最表面存在cu,或者不使最表面存在cu。进而,也能够将最表面的cu浓度调整为规定的范围(例如1~50原子%的范围)。也可以通过在合金表皮层形成时以外进行的热处理来使cu扩散到最表面。

如前述那样,在使接合线中含有赋予高温环境下的连接可靠性的元素时,不论采用使cu芯材中含有这些元素的方法、覆着在cu芯材或者线表面来含有这些元素的方法中的哪一种,都能够发挥上述本发明效果。对于b、p、mg、ca、la也是同样的。

作为上述成分的添加方法,最简便的方法是预先向cu合金芯材的起始材料中添加的方法。例如,在称量了高纯度的铜和上述成分元素原料作为起始材料之后,将其在高真空下或者氮气、氩气等惰性气氛下加热熔化,由此制成添加有目标浓度范围的上述成分的锭,作为包含目标浓度的上述成分元素的起始材料。因此,在优选的一实施方式中,本发明的接合线的cu合金芯材包含选自ni、zn、rh、in、ir、pt之中的至少1种元素,以使得相对于线整体,上述元素的浓度总计成为0.011~2质量%。该浓度合计的合适的数值范围如前所述。在优选的另一实施方式中,本发明的接合线的cu合金芯材包含选自ga、ge之中的1种以上的元素,以使得相对于线整体,上述元素的浓度总计成为0.011~1.5质量%。该浓度合计的合适的数值范围如前所述。在另一优选的实施方式中,本发明的接合线的cu合金芯材包含选自as、te、sn、sb、bi、se中的至少1种元素,以使得相对于线整体,上述元素的浓度合计成为0.1~100质量ppm、sn≤10质量ppm、sb≤10质量ppm、bi≤1质量ppm。该浓度的合适的数值范围如前所述。在优选的一实施方式中,cu合金芯材的cu纯度为3n以下(优选为2n以下)。以往的被覆有pd的cu接合线,从接合性(bondability)的观点出发,具有使用高纯度(4n以上)的cu芯材而避免使用低纯度的cu芯材的倾向。含有特定元素的本发明的接合线,特别适合于使用如上述那样cu纯度低的cu合金芯材的情况,从而实现了车载用装置所要求的在高温高湿环境中的球接合部的接合可靠性。在另一优选的实施方式中,本发明的接合线的cu合金芯材包含选自b、p、mg、ca、la中的至少1种元素,以使得相对于线整体,上述元素的浓度分别成为1~200质量ppm。该浓度的合适的数值范围如前所述。在优选的另一实施方式中,本发明的接合线的cu合金芯材包含总计为0.1~3.0质量%的元素周期表第10族的金属元素。该浓度的合适的数值范围如前所述。

也可通过在线制造工序的途中使上述成分覆着于线表面来含有。在该情况下,可以在线制造工序的任一时间点组入覆着步骤,可以反复进行多次覆着。可以组入到多个工序中。可以向pd被覆前的cu表面添加,可以向pd被覆后的pd表面添加,可以向au被覆后的au表面添加,可以组入到各被覆工序中。作为覆着方法,可以从(1)水溶液的(2)镀敷法(湿式)、(3)蒸镀法(干式)中选择。

在采用水溶液的的方法的情况下,首先用包含上述成分元素的水溶性化合物调制出适当浓度的水溶液。由此,能够将上述成分纳入线材料中。可以在线制造工序的任一时间点组入覆着步骤,可以反复进行多次覆着。可以组入到多个工序中。可以向pd被覆前的cu表面添加,可以向pd被覆后的pd表面添加,可以向au被覆后的au表面添加,可以组入到各被覆工序中。

在使用镀敷法(湿式)的情况下,镀敷法可以应用电解镀敷法、无电解镀敷法中的任何方法。在电解镀敷法中,除了通常的电解镀敷以外,还可以应用被称为闪镀的镀敷速度快且与基材的密着性也良好的镀敷法。用于无电解镀敷的溶液有置换型和还原型。一般而言,在镀层厚度薄的情况下可应用置换型镀敷,在镀层厚度厚的情况下可应用还原型镀敷,但是不论哪种都可以应用,只要按照想要添加的浓度来选择并调节镀液浓度、时间即可。电解镀敷法、无电解镀敷法均可以在线制造工序的任一时间点组入,可以反复进行多次。可以组入到多个工序中。可以向pd被覆前的cu表面添加,可以向pd被覆后的pd表面添加,可以向au被覆后的au表面添加,可以组入到各被覆工序中。

在蒸镀法(干式)中有溅射法、离子镀法、真空蒸镀法、等离子体cvd等。由于是干式的,因此不需要预处理和后处理,不用担心污染,这是优点。一般而言,蒸镀法存在作为目标的元素的添加速度慢的问题,但是由于上述成分元素的添加浓度比较低,因此是适合本发明的目的的方法之一。

各蒸镀法,可以在线制造工序的任一时间点组入,可以反复进行多次。可以组入到多个工序中。可以向pd被覆前的cu表面添加,可以向pd被覆后的pd表面添加,可以向au被覆后的au表面添加,可以组入到各被覆工序中。

对用于在对与接合线的线轴垂直的方向的芯材截面测定晶体取向所得到的结果中,使线长度方向的晶体取向之中的相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率成为30%以上、使与接合线的线轴垂直的方向的芯材截面的平均结晶粒径成为0.9~1.5μm的制造方法进行说明。

作为接合线,当使cu合金芯材中含有赋予高温环境下的连接可靠性的元素时,线的材料强度(硬度)变高。因而,在对cu芯线的接合线进行拉丝加工时,将拉丝时的减面率设为低为5~8%的减面率。另外,在拉丝后的热处理中,硬度依然高,因此,为了进行软化直到可以作为接合线使用的水平,在600℃以上的温度下进行了热处理。由于是较高的热处理温度,因此线长度方向的<100>取向比率变得小于30%,同时芯材截面的平均结晶粒径变得超过1.5μm,耐力比变得超过1.6。另一方面,当要降低耐力比而降低热处理温度时,芯材截面的平均结晶粒径变得小于0.9μm,耐力比变得小于1.1,楔接合性差。

与此相对,在本发明中,在使用了拉模的拉丝时,对于总拉模数之中的一半以上的拉模,将减面率设为10%以上,而且将拉丝后的热处理中的热处理温度设为低为500℃以下的温度。其结果是,在对与接合线的线轴垂直的方向的芯材截面测定晶体取向所得到的结果中,能够使线长度方向的晶体取向之中相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率成为30%以上,能够使与接合线的线轴垂直的方向的芯材截面的平均结晶粒径成为0.9~1.5μm。通过应用最新的拉丝加工技术,且作为润滑液,将润滑液中所含有的非离子系表面活性剂的浓度设计成比以往高,作为拉模形状,将拉模的接近角(approachangle)设计成比以往的角度缓和,将拉模的冷却水温度设定成比以往低等的协同效应,尽管在cu合金芯材中含有总计为0.03质量%以上的ni等成分而硬质化,也能够实现减面率为10%以上的拉丝加工。

在测定线截面的晶体取向时,优选使用电子背散射衍射法(ebsd:electronbackscattereddiffraction)。ebsd法具有能够观察观察面的晶体取向、并图示在相邻的测定点间的晶体取向的角度差这样的特征,即使是如接合线那样的细线,也能够比较简便且精度良好地观察晶体取向。关于粒径测定,能够通过针对采用ebsd法得到的测定结果利用装置中所装备的解析软件来求出。在本发明中规定的结晶粒径(晶体粒径)是对测定区域内所含有的晶粒的当量直径(与晶粒的面积相当的圆的直径;圆相当直径)进行算术平均而得到的值。

本发明并不被上述实施方式限定,能够在本发明的主旨的范围内进行适当变更。

实施例

以下一边示出实施例一边对本发明的实施方式涉及的接合线进行具体说明。

<本发明例1~59和比较例1~16>

(样品的制作)

首先,对样品的制作方法进行说明。成为芯材的原材料的cu使用了纯度为99.99质量%以上且其余量由不可避免的杂质构成的cu。au、pd、ni、zn、rh、in、ir、pt使用了纯度为99质量%以上且其余量由不可避免的杂质构成的材料。调配向芯材中添加的元素(ni、zn、rh、in、ir、pt),使得线或芯材的组成达到目标组成。关于ni、zn、rh、in、ir、pt的添加,可以是用单质来进行调配,但是在为单质具有高熔点的元素、和/或添加量为极微量的情况下,也可以预先制作包含添加元素的cu母合金来调配以使得成为目标的添加量。在本发明例27~47中,还含有ga、ge、as、te、sn、sb、bi、se、b、p、mg、ca、la之中的1种以上。

芯材的cu合金通过连铸来制造使得成为几毫米的线径。对于所得到的几毫米的合金进行拉拔加工,制作了ф0.3~1.4mm的线。拉丝时使用市售的润滑液,拉丝速度设为20~150m/分。为了除去线表面的氧化膜,采用盐酸等进行酸洗处理,然后,以覆盖芯材的cu合金的表面整体的方式形成了厚1~15μm的pd被覆层。进而,一部分的线在pd被覆层上形成了厚0.05~1.5μm的包含au和pd的合金表皮层。对于pd被覆层、包含au和pd的合金表皮层的形成,使用了电解镀敷法。镀液使用了市售的半导体用镀液。然后,主要使用减面率10~21%的拉模进行拉丝加工,进而通过在途中在200~500℃的温度下进行1至3次的热处理,从而加工到直径20μm为止。在加工后,最终进行了热处理以使得断裂伸长率成为约5~15%。热处理方法是一边使线连续地扫掠通过一边进行,一边流通n2或者ar气体一边进行。线的输送速度设为10~90m/分,热处理温度为350~500℃,热处理时间设为1~10秒。

(评价方法)

关于线中的ni、zn、rh、in、ir、pt、ga、ge、as、te、sn、sb、bi、se、b、p、mg、ca、la含量,利用icp发射光谱分析装置,作为接合线整体中所含有的元素的浓度进行了分析。

关于pd被覆层、包含au和pd的合金表皮层的浓度分析,一边采用溅射等从接合线的表面向深度方向切削,一边实施了俄歇电子能谱分析。从所得到的深度方向的浓度廓线,求出pd被覆层的厚度、pd的最大浓度、包含au和pd的合金表皮层的厚度。

关于与接合线的线轴垂直的方向的芯材截面中的线长度方向的晶体取向之中相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率,采用ebsd法观察了观察面(即,与线轴垂直个方向的芯材截面)的晶体取向之后算出。在ebsd测定数据的解析中,利用了专用软件(tslソリューションズ制oimanalisis等)。关于与线轴垂直的方向的芯材截面中的平均结晶粒径,采用ebsd法观察了观察面的晶体取向之后算出。在ebsd测定数据的解析中利用了专用软件(tslソリューションズ制oimanalisis等)。结晶粒径是对测定区域内所含有的晶粒的当量直径(与晶粒的面积相当的圆的直径;等效圆直径)进行算术平均而得到的值。

关于0.2%耐力和最大耐力,通过将标点间距离设为100mm进行拉伸试验来进行了评价。作为拉伸试验装置,使用了インストロン公司制的万能材料试验机5542型。0.2%耐力使用装置中所装备的专用软件来算出。另外,将断裂时的载荷作为最大耐力。从下述(1)式算出耐力比。

耐力比=最大耐力/0.2%耐力(1)

关于线接合部中的楔接合性的评价,对bga基板的楔接合部进行1000根的接合,根据接合部的剥离的发生频度来判定。所使用的bga基板是实施了镀ni以及镀au的基板。在本评价中,设想比通常严格的接合条件,将台(stage)温度设定为比一般的设定温度域低的150℃。在上述的评价中,在发生了11个以上的不良的情况下,判断为有问题而标记为×,如果不良为6~10个,则判断为能够实用但稍有问题而标记为△,在不良为1~5个的情况下,判断为无问题而标记为○,在没有发生不良的情况下,判断为优异而标记为◎,都记载在表1~表4的“楔接合性”栏中。

高温高湿环境或高温环境下的球接合部的接合可靠性是通过制作接合可靠性评价用的样品,进行hts评价,根据球接合部的接合寿命来判定的。接合可靠性评价用的样品,是对于在一般的金属框上的si基板上形成厚度0.8μm的al-1.0%si-0.5%cu合金膜而形成的电极,利用市售的焊线机进行球接合,利用市售的环氧树脂进行封装而制作的。球是一边以0.4~0.6l/分钟的流量流通n2+5%h2气体一边进行形成,其大小设为ф33~34μm的范围。

关于hts评价,使用高温恒温器,将制作出的接合可靠性评价用的样品暴露于温度200℃的高温环境中。球接合部的接合寿命设为每500小时就实施球接合部的剪切试验,剪切强度的值成为初始所得到的剪切强度的1/2的时间。高温高湿试验后的剪切试验,是通过酸处理来除去树脂从而使球接合部露出后进行的。

hts评价的剪切试验机使用了dage公司制的试验机。剪切强度的值采用了随机选择的球接合部的10处的测定值的平均值。在上述的评价中,如果接合寿命低于500小时,则判断为不能实用而标记为×,如果为500小时以上且低于1000小时则判断为能够实用但需要改善而标记为△,如果为1000小时以上且低于3000小时则判断为在实用上没有问题而标记为○,如果为3000小时以上则判断为特别优异而标记为◎,都记载于表1~表4的“hts”栏中。

球形成性(fab形状)的评价,是采取进行接合之前的球来进行观察,判定球表面有无气泡、本来为圆球的球有无变形。在发生了上述任一现象的情况下都判断为不良。关于球的形成,为了抑制熔融工序中的氧化,一边以0.5l/min的流量喷吹n2气体一边进行。球的大小设为34μm。对于1个条件观察50个球。观察时使用了sem。在球形成性的评价中,在发生了5个以上的不良的情况下,判断为有问题而标记为×,如果不良为3~4个,则判断为能够实用但稍有问题而标记为△,在不良为1~2个的情况下,判断为无问题而标记为○,在没有发生不良的情况下,判断为优异而标记为◎,都记载在表1~表4的“fab形状”栏中。

关于在温度为130℃、相对湿度为85%的高温高湿环境下的球接合部的接合寿命,可以用以下的hast评价来评价。关于hast评价,使用不饱和型压力锅蒸煮试验机,将制作出的接合可靠性评价用的样品暴露于温度130℃、相对湿度85%的高温高湿环境中,施加了5v的偏电压。球接合部的接合寿命设为每48小时就实施球接合部的剪切试验,剪切强度的值成为初始所得到的剪切强度的1/2的时间。高温高湿试验后的剪切试验,是通过酸处理来除去树脂从而使球接合部露出后进行的。

hast评价的剪切试验机使用了dage公司制的试验机。剪切强度的值采用了随机选择的球接合部的10处的测定值的平均值。在上述的评价中,如果接合寿命低于144小时,则判断为不能实用而标记为×,如果为144小时以上且低于288小时则判断为在实用上没有问题而标记为○,如果为288小时以上且低于384小时则判断为优异而标记为◎,如果为384小时以上则判断为特别优异而标记为◎◎,都记载于表1~表4的“hast”栏中。

球接合部的压溃形状的评价,是从正上方观察进行接合而得到的球接合部,根据其圆形度来判定。接合对象使用了在si基板上形成了厚度1.0μm的al-0.5%cu合金膜的电极。观察时使用光学显微镜,对于1个条件观察200处。将与正圆的偏差大的椭圆状的情形、在变形方面具有各向异性的情形判断为球接合部的压溃形状不良。在上述的评价中,在不良为1~3个的情况下判断为无问题而标记为○,在全部得到良好的圆形度的情况下判断为特别优异而标记为◎,都记载于表1~表4的“压溃形状”栏中。

(评价结果)

本发明例1~59涉及的接合线具有cu合金芯材和形成于cu合金芯材的表面的pd被覆层,pd被覆层的厚度处于作为合适范围的0.015~0.150μm的范围内,fab形状均良好。另外,这些接合线包含选自ni、zn、rh、in、ir、pt之中的至少1种元素,相对于线整体,上述元素的浓度合计为0.011~2质量%,因此基于hts评价的球接合部高温可靠性也良好。

另外,关于本发明例,由于将拉丝时的减面率设为10%以上,将拉丝后的热处理中的热处理温度设为低为500℃以下的温度,因此在对与接合线的线轴垂直的方向的芯材截面测定晶体取向所得到的结果中,能够使线长度方向的晶体取向之中相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率成为30%以上,使与接合线的线轴垂直的方向的芯材截面的平均结晶粒径成为0.9~1.5μm。其结果是,尽管在线中含有ni、zn、rh、in、ir、pt,但是耐力比(=最大耐力/0.2%耐力)均落入1.1~1.6的范围内。因而,楔接合性均为良好的结果。

另一方面,关于比较例4~7、12~14,由于将热处理温度设为高达600℃以上的温度,因此线长度方向的<100>取向比率变得小于30%。另外,关于比较例2、6、8、9、14,由于将热处理温度设为高达620℃以上的温度,因此线长度方向的<100>取向比率变得小于30%,并且芯材截面的平均结晶粒径变得超过1.5μm。因而,比较例2、4~9、12~14均耐力比超过1.6,楔接合性不良或者存在问题。

另外,关于比较例1、3,由于将拉模的减面率设为小于10%,因此芯材截面的平均结晶粒径变得小于0.9μm,耐力比变得小于1.1,楔接合性均不良。在比较例10和11中,线长度方向的<100>取向比率变得小于30%,并且芯材截面的平均结晶粒径小于0.9μm,楔接合性均不良。在比较例15中,平均结晶粒径为0.9~1.5μm,并且线长度方向的<100>取向比率为30%以上,但由于不包含赋予高温环境下的连接可靠性的元素,因此hts、hast、以及楔连接性均不良。在比较例16中,由于不包含赋予高温环境下的连接可靠性的元素,因此hts和hast为不良。

<本发明例2-1~2-44>

(样品)

首先,对样品的制作方法进行说明。成为芯材的原材料的cu使用了纯度为99.99质量%以上且其余量由不可避免的杂质构成的cu。ga、ge、ni、ir、pt、pd、b、p、mg均使用了纯度为99质量%以上且其余量由不可避免的杂质构成的材料。调配作为向芯材添加的元素的ga、ge、ni、ir、pt、pd、b、p、mg,使得线或芯材的组成成为目标组成。关于ga、ge、ni、ir、pt、pd、b、p、mg的添加,可以是用单质来进行调配,但是在为单质具有高熔点的元素、和/或添加量为极微量的情况下,也可以预先制作包含添加元素的cu母合金来调配以使得成为目标的添加量。

芯材的cu合金通过以下过程来制造出:向加工成直径为ф3~6mm的圆柱形的碳坩埚中装填原料,使用高频炉,在真空中或者n2、ar气体等惰性气氛下加热到1090~1300℃使其熔化后,进行炉冷。对所得到的ф3~6mm的合金进行拉拔加工,加工到ф0.9~1.2mm后,使用拉模连续地进行拉丝加工等,由此制作出ф300~600μm的线。拉丝时使用市售的润滑液,拉丝速度设为20~150m/分。为了除去线表面的氧化膜,采用盐酸进行酸洗处理,然后,以覆盖芯材的cu合金的表面整体的方式形成了厚1~15μm的pd被覆层。进而,一部分的线在pd被覆层上形成了厚0.05~1.5μm的包含au和pd的合金表皮层。对于pd被覆层、包含au和pd的合金表皮层的形成,使用了电解镀敷法。镀液使用了市售的半导体用镀液。然后,通过反复进行200~500℃的热处理和拉丝加工,加工到直径20μm。在加工后,最终一边流通n2或者ar气体一边进行了热处理以使得断裂伸长率成为约5~15%。热处理方法是一边使线连续地扫掠通过一边进行,一边流通n2或者ar气体一边进行。线的输送速度设为20~200m/分,热处理温度为200~600℃,热处理时间设为0.2~1.0秒。

关于pd被覆层、包含au和pd的合金表皮层的浓度分析,一边采用ar离子从接合线的表面向深度方向溅射,一边使用俄歇电子能谱分析装置进行分析。被覆层和合金表皮层的厚度从所得到的深度方向的浓度廓线(深度的单位是按sio2换算)求出。将pd的浓度为50原子%以上且au的浓度小于10原子%的区域作为pd被覆层,将处于pd被覆层的表面的au浓度为10原子%以上的范围的区域作为合金表皮层。将被覆层和合金表皮层的厚度以及pd最大浓度分别记载于表5和表6中。cu合金芯材中的pd的浓度通过以下方法测定出:使线截面露出,采用在扫描电镜中装备的电子射线显微分析仪进行线分析、点分析等。作为使线截面露出的方法,利用了机械研磨、离子蚀刻法等。接合线中的ga、ge、ni、ir、pt、b、p、mg的浓度,是利用icp发射光谱分析装置、icp质谱分析装置来分析用强酸溶解接合线所得到的液体,作为接合线整体中所含有的元素的浓度来检测出。

在下述表5和表6中示出采用上述的步骤制作出的各样品的构成。

(评价方法)

将线表面作为观察面,进行了晶体组织的评价。作为评价方法,使用了电子背散射衍射法(ebsd:electronbackscattereddiffraction)。ebsd法具有能够观察观察面的晶体取向、并图示在相邻的测定点间的晶体取向的角度差这样的特征,即使是如接合线那样的细线,也能够比较简便且精度良好地观察晶体取向。

在将如线表面那样的曲面作为对象来实施ebsd法的情况下需要注意。当测定曲率大的部位时,难以进行精度高的测定。但是,通过在平面上将供测定的接合线固定成直线状,测定该接合线的中心附近的平坦部,就能够进行精度高的测定。具体而言,设为如下那样的测定区域即可。圆周方向的尺寸以线长度方向的中心为轴,设为线径的50%以下,线长度方向的尺寸设为100μm以下。优选的是,圆周方向的尺寸设为线径的40%以下,线长度方向的尺寸设为40μm以下,如果这样的话则通过测定时间的缩短来提高测定效率。为了进一步提高精度,优选测定3处以上,来得到考虑到偏差的平均信息。测定位置相距1mm以上以避免接近即可。

关于与接合线的线轴垂直的方向的芯材截面中的线长度方向的晶体取向之中、相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率、以及与线轴垂直的方向的芯材截面中的平均结晶粒径(μm),采用与本发明例1~59同样的方法求出。另外,关于0.2%耐力以及最大耐力,采用与本发明例1~59同样的方法进行评价,由上述(1)式算出耐力比。

高温高湿环境或高温环境下的球接合部的接合可靠性,是通过制作接合可靠性评价用的样品,进行hast和hts评价,根据各试验中的球接合部的接合寿命来判定的。接合可靠性评价用的样品,是对于在一般的金属框上的si基板上形成厚度0.8μm的al-1.0%si-0.5%cu合金膜而形成的电极,利用市售的焊线机进行球接合,利用市售的环氧树脂进行封装而制作的。球是一边以0.4~0.6l/分钟的流量流通n2+5%h2气体一边进行形成,其大小设为ф33~34μm的范围。

关于hast评价,使用不饱和型压力锅蒸煮试验机,将制作出的接合可靠性评价用的样品暴露于温度130℃、相对湿度85%的高温高湿环境中,施加了7v的偏电压。球接合部的接合寿命设为每48小时就实施球接合部的剪切试验,剪切强度的值成为初始所得到的剪切强度的1/2的时间。高温高湿试验后的剪切试验,是通过酸处理来除去树脂从而使球接合部露出后进行的。

hast评价的剪切试验机使用了dage公司制的试验机。剪切强度的值采用了随机选择的球接合部的10处的测定值的平均值。在上述的评价中,接合寿命如果低于96小时则判断为在实用上存在问题而标记为×,如果为96小时以上且低于144小时则判断为能够实用但稍有问题而标记为△,如果为144小时以上且低于288小时则判断为在实用上没有问题而标记为○,如果为288小时以上则判断为特别优异而标记为◎,都记载于表5和表6的“hast”栏中。

关于hts评价,使用高温恒温器,将制作出的接合可靠性评价用的样品暴露于温度200℃的高温环境中。球接合部的接合寿命设为每500小时就实施球接合部的剪切试验,剪切强度的值成为初始所得到的剪切强度的1/2的时间。高温高湿试验后的剪切试验,是通过酸处理来除去树脂从而使球接合部露出后进行的。

hts评价的剪切试验机使用了dage公司制的试验机。剪切强度的值采用了随机选择的球接合部的10处的测定值的平均值。在上述的评价中,接合寿命如果为500小时以上且低于1000小时则判断为能够实用但需要改善而标记为△,如果为1000小时以上且低于3000小时则判断为在实用上没有问题而标记为○,如果为3000小时以上则判断为特别优异而标记为◎。

球形成性(fab形状)的评价,是采取进行接合之前的球来进行观察,判定球表面有无气泡、本来为圆球的球有无变形。在发生了上述任一现象的情况下都判断为不良。关于球的形成,为了抑制熔融工序中的氧化,一边以0.5l/min的流量喷吹n2气体一边进行。球的大小设为34μm。对于1个条件观察50个球。观察时使用了sem。在球形成性的评价中,在发生了5个以上的不良的情况下判断为有问题而标记为×,如果不良为3~4个则判断为能够实用但稍有问题而标记为△,在不良为1~2个的情况下判断为无问题而标记为○,在没有发生不良的情况下判断为优异而标记为◎,都记载在表5和表6的“fab形状”栏中。

线接合部中的楔接合性的评价,是在引线框的引线部分进行1000根的接合,根据接合部的剥离的发生频度来判定的。引线框使用了施加了厚度1~3μm的镀ag层的fe-42原子%ni合金引线框。在本评价中,设想比通常严格的接合条件,将台(stage)温度设定为比一般的设定温度域低的150℃。在上述的评价中,在发生了11个以上的不良的情况下判断为有问题而标记为×,如果不良为6~10个,则判断为能够实用但稍有问题而标记为△,在不良为1~5个的情况下,判断为无问题而标记为○,在没有发生不良的情况下,判断为优异而标记为◎,都记载在表5和表6的“楔接合性”栏中。

球接合部的压溃形状的评价,是从正上方观察进行接合而得到的球接合部,根据其圆形度来判定。接合对象使用了在si基板上形成了厚度1.0μm的al-0.5%cu合金膜的电极。观察时使用光学显微镜,对于1个条件观察200处。将与正圆的偏差大的椭圆状的情形、在变形方面具有各向异性的情形判断为球接合部的压溃形状不良。在上述的评价中,在发生了6个以上的不良的情况下判断为有问题而标记为×,如果不良为4~5个则判断为能够实用但稍有问题而标记为△,在不良为1~3个的情况下判断为没有问题而标记为○,在全部得到了良好的圆形度的情况下判断为特别优异而标记为◎,都记载于表5和表6的“压溃形状”栏中。

[倾斜]

对评价用的引线框,以环长5mm、环高度0.5mm接合了100根。作为评价方法,从芯片水平方向观察线直立部,用经过球接合部的中心的垂线与线直立部的间隔最大时的间隔(倾斜间隔)进行了评价。在倾斜间隔小于线径的情况下倾斜为良好,在倾斜间隔大于线径的情况下直立部倾斜,因此判断为倾斜不良。使用光学显微镜观察100根进行了接合的线,数出倾斜不良的根数。在发生了7个以上的不良的情况下判断为有问题而标记为×,如果不良为4~6个则判断为能够实用但稍有问题而标记为△,在不良为1~3个的情况下判断为没有问题而标记为○,在没有发生不良的情况下判断为优异而标记为◎,都记载于表5和表6的“倾斜”栏中。

(评价结果)

如表5和表6所示,本发明例2-1~2-44涉及的接合线具有cu合金芯材和形成于cu合金芯材的表面的pd被覆层,接合线包含选自ga、ge之中的1种以上的元素,相对于线整体,上述元素的浓度合计为0.011~1.5质量%。由此确认出,本发明例2-1~2-44涉及的接合线在温度为130℃、相对湿度为85%的高温高湿环境下的hast试验中能得到球接合部可靠性。

关于在pd被覆层上还具有包含au和pd的合金表皮层的本发明例,确认出:通过包含au和pd的合金表皮层的厚度为0.0005~0.050μm,能得到优异的楔接合性。

接合线还包含选自ni、ir、pt、pd之中的至少1种元素的本发明例,确认出基于hts评价的球接合部高温可靠性更加良好。

接合线还包含选自b、p、mg之中的至少1种元素的本发明例,通过相对于线整体,上述元素的浓度分别为1~200质量ppm,球接合部的压溃形状良好。

<本发明例3-1~3-50>

(样品)

首先,对样品的制作方法进行说明。成为芯材的原材料的cu使用了纯度为99.99质量%以上且其余量由不可避免的杂质构成的cu。as、te、sn、sb、bi、se、ni、zn、rh、in、ir、pt、ga、ge、pd、b、p、mg、ca、la使用了纯度为99质量%以上且其余量由不可避免的杂质构成的材料。调配作为向芯材添加的元素的as、te、sn、sb、bi、se、ni、zn、rh、in、ir、pt、ga、ge、pd、b、p、mg、ca、la,使得线或芯材的组成成为目标组成。关于as、te、sn、sb、bi、se、ni、zn、rh、in、ir、pt、ga、ge、pd、b、p、mg、ca、la的添加,可以是用单质来进行调配,但在为单质具有高熔点的元素、和/或添加量为极微量的情况下,也可以预先制作包含添加元素的cu母合金来调配以使得成为目标的添加量。

芯材的cu合金通过以下过程来制造出:向加工成直径为ф3~6mm的圆柱形的碳坩埚中装填原料,使用高频炉,在真空中或者n2、ar气体等惰性气氛下加热到1090~1300℃使其熔化后,进行炉冷。对所得到的ф3~6mm的合金进行拉拔加工,加工到ф0.9~1.2mm后,使用拉模连续地进行拉丝加工等,由此制作出ф300~600μm的线。拉丝时使用市售的润滑液,拉丝速度设为20~150m/分。为了除去线表面的氧化膜,采用盐酸进行酸洗处理,然后,以覆盖芯材的cu合金的表面整体的方式形成了厚1~15μm的pd被覆层。进而,一部分的线在pd被覆层上形成了厚0.05~1.5μm的包含au和pd的合金表皮层。对于pd被覆层、包含au和pd的合金表皮层的形成,使用了电解镀敷法。镀液使用了市售的半导体用镀液。然后,通过反复进行200~500℃的热处理和拉丝加工,加工到直径20μm。在加工后,最终一边流通n2或者ar气体一边进行了热处理以使得断裂伸长率成为约5~15%。热处理方法是一边使线连续地扫掠通过一边进行,一边流通n2或者ar气体一边进行。线的输送速度设为20~200m/分,热处理温度为200~600℃,热处理时间设为0.2~1.0秒。

关于pd被覆层、包含au和pd的合金表皮层的浓度分析,一边采用溅射等从接合线的表面向深度方向切削,一边实施了俄歇电子能谱分析。从所得到的深度方向的浓度廓线,求出pd被覆层的厚度、包含au和pd的合金表皮层的厚度和pd最大浓度。

关于本发明例3-1~3-50,在芯材中含有选自as、te、sn、sb、bi、se之中的元素。

关于本发明例3-34~3-44,使接合线的最表面存在cu。因此,在表7中设置“线表面cu浓度”的栏,记载了利用俄歇电子能谱装置测定了接合线的表面的结果。通过选择接合线的热处理温度和时间,而使最表面含有规定浓度的cu。关于本发明例3-1~3-33、3-45~3-50,设为不使最表面存在cu的热处理条件,即使用俄歇电子能谱装置也检测不出cu。

在表7和表8中示出采用上述的步骤制作出的各样品的构成。

(评价方法)

将线表面作为观察面,进行了晶体组织的评价。作为评价方法,使用了电子背散射衍射法(ebsd:electronbackscattereddiffraction)。ebsd法具有能够观察观察面的晶体取向、并图示在相邻的测定点间的晶体取向的角度差这样的特征,即使是如接合线那样的细线,也能够比较简便且精度良好地观察晶体取向。

在将如线表面那样的曲面作为对象来实施ebsd法的情况下需要注意。当测定曲率大的部位时,难以进行精度高的测定。但是,通过在平面上将供测定的接合线固定成直线状,测定该接合线的中心附近的平坦部,就能够进行精度高的测定。具体而言,设为如下那样的测定区域即可。圆周方向的尺寸以线长度方向的中心为轴,设为线径的50%以下,线长度方向的尺寸设为100μm以下。优选的是,圆周方向的尺寸设为线径的40%以下,线长度方向的尺寸设为40μm以下,如果这样的话则通过测定时间的缩短来提高测定效率。为了进一步提高精度,优选测定3处以上来得到考虑到偏差的平均信息。测定位置相距1mm以上以避免接近即可。

关于与接合线的线轴垂直的方向的芯材截面中的线长度方向的晶体取向之中相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率、以及与线轴垂直的方向的芯材截面的平均结晶粒径(μm),采用与本发明例1~59同样的方法求出。另外,关于0.2%耐力以及最大耐力,采用与本发明例1~59同样的方法进行评价,由上述(1)式算出耐力比。

高温高湿环境或高温环境下的球接合部的接合可靠性,是通过制作接合可靠性评价用的样品,进行hast和hts评价,根据各试验中的球接合部的接合寿命来判定的。接合可靠性评价用的样品,是对在一般的金属框上的si基板上形成厚度0.8μm的al-1.0%si-0.5%cu合金膜而形成的电极,利用市售的焊线机进行球接合,利用市售的环氧树脂进行封装而制作的。球是一边以0.4~0.6l/分钟的流量流通n2+5%h2气体一边进行形成,其大小设为ф33~34μm的范围。

关于hast评价,使用不饱和型压力锅蒸煮试验机,将制作出的接合可靠性评价用的样品暴露于温度130℃、相对湿度85%的高温高湿环境中,施加了5v的偏电压。球接合部的接合寿命设为每48小时就实施球接合部的剪切试验,剪切强度的值成为初始所得到的剪切强度的1/2的时间。高温高湿试验后的剪切试验,是通过酸处理来除去树脂从而使球接合部露出后进行的。

hast评价的剪切试验机使用了dage公司制的试验机。剪切强度的值采用了随机选择的球接合部的10处的测定值的平均值。在上述的评价中,接合寿命如果低于96小时则判断为在实用上存在问题而标记为×,如果为96小时以上且低于144小时则判断为能够实用但稍有问题而标记为△,如果为144小时以上且低于288小时则判断为在实用上没有问题而标记为○,如果为288小时以上且低于384小时则判断为优异而标记为◎,如果为384小时以上,则判断为特别优异而标记为◎◎,都记载于表7和表8的“hast”栏中。

关于hts评价,使用高温恒温器,将制作出的接合可靠性评价用的样品暴露于温度200℃的高温环境中。球接合部的接合寿命设为每500小时就实施球接合部的剪切试验,剪切强度的值成为初始所得到的剪切强度的1/2的时间。高温高湿试验后的剪切试验,是通过酸处理来除去树脂从而使球接合部露出后进行的。

hts评价的剪切试验机使用了dage公司制的试验机。剪切强度的值采用了随机选择的球接合部的10处的测定值的平均值。在上述的评价中,接合寿命如果为500小时以上且低于1000小时则判断为能够实用但需要改善而标记为△,如果为1000小时以上且低于3000小时则判断为在实用上没有问题而标记为○,如果为3000小时以上则判断为特别优异而标记为◎,都记载于表7和表8的“hts”栏中。

球形成性(fab形状)的评价,是采取进行接合之前的球来进行观察,判定球表面有无气泡、本来为圆球的球有无变形。在发生了上述任一现象的情况下都判断为不良。关于球的形成,为了抑制熔融工序中的氧化,一边以0.5l/min的流量喷吹n2气体一边进行。球的大小设为34μm。对于1个条件观察50个球。观察时使用了sem。在球形成性的评价中,在发生了5个以上的不良的情况下,判断为有问题而标记为×,如果不良为3~4个,则判断为能够实用但稍有问题而标记为△,在不良为1~2个的情况下,判断为无问题而标记为○,在没有发生不良的情况下,判断为优异而标记为◎,都记载在表7和表8的“fab形状”栏中。

线接合部中的楔接合性的评价,是在引线框的引线部分进行1000根的接合,根据接合部的剥离的发生频度来判定的。引线框使用了施加了厚1~3μm的镀ag层的fe-42原子%ni合金引线框。在本评价中,设想比通常严格的接合条件,将台(stage)温度设定为比一般的设定温度域低的150℃。在上述的评价中,在发生了11个以上的不良的情况下,判断为有问题而标记为×,如果不良为6~10个,则判断为能够实用但稍有问题而标记为△,在不良为1~5个的情况下,判断为无问题而标记为○,在没有发生不良的情况下,判断为优异而标记为◎,都记载在表7和表8的“楔接合性”栏中。

球接合部的压溃形状的评价,是从正上方观察进行接合而得到的球接合部,根据其圆形度来判定。接合对象使用了在si基板上形成了厚度1.0μm的al-0.5%cu合金膜的电极。观察时使用光学显微镜,对于1个条件观察200处。将与正圆的偏差大的椭圆状的情形、在变形方面具有各向异性的情形判断为球接合部的压溃形状不良。在上述的评价中,在发生了6个以上的不良的情况下判断为有问题而标记为×,如果不良为4~5个则判断为能够实用但稍有问题而标记为△,在不良为1~3个的情况下判断为没有问题而标记为○,在全部得到了良好的圆形度的情况下判断为特别优异而标记为◎,都记载于表7和表8的“压溃形状”栏中。

[倾斜]

对评价用的引线框,以环长5mm、环高度0.5mm接合了100根。作为评价方法,从芯片水平方向观察线直立部,用经过球接合部的中心的垂线与线直立部的间隔最大时的间隔(倾斜间隔)进行了评价。在倾斜间隔小于线径的情况下倾斜为良好,在倾斜间隔大于线径的情况下直立部倾斜,因此判断为倾斜不良。使用光学显微镜观察100根进行了接合的线,数出倾斜不良的根数。在发生了7个以上的不良的情况下判断为有问题而标记为×,如果不良为4~6个则判断为能够实用但稍有问题而标记为△,在不良为1~3个的情况下判断为没有问题而标记为○,在没有发生不良的情况下判断为优异而标记为◎,都记载于表7和表8的“倾斜”栏中。

(评价结果)

本发明例3-1~3-50涉及的接合线具有cu合金芯材和形成于cu合金芯材的表面的pd被覆层,接合线包含选自as、te、sn、sb、bi、se之中的至少1种元素,相对于线整体,上述元素的浓度合计为0.1~100质量ppm。由此,确认出本发明例3-1~3-50涉及的接合线在温度为130℃、相对湿度为85%的高温高湿环境下的hast试验中能得到球接合部可靠性。

关于在pd被覆层上还具有包含au和pd的合金表皮层的本发明例,确认出:通过包含au和pd的合金表皮层的层厚为0.0005~0.050μm,能得到优异的楔接合性。

关于本发明例3-21~3-33、3-35、3-37、3-39~3-44,确认出:通过接合线还包含选自ni、zn、rh、in、ir、pt、ga、ge之中的至少1种元素,相对于线整体,上述元素的浓度分别为0.011~1.2质量%,cu合金芯材中所含有的pd的浓度为0.05~1.2质量%,由此基于hts评价的球接合部高温可靠性良好。

关于本发明例3-22~3-26、3-29~3-32,通过接合线还包含选自b、p、mg、ca、la之中的至少1种元素,相对于线整体,上述元素的浓度分别为1~100质量ppm,由此fab形状良好,并且楔接合性良好。

关于本发明例3-34~3-44,线含有as、te、sn、sb、bi、se,并且在线的最表面存在cu。由此,关于本发明例3-34~3-44,hast评价结果为◎◎或◎,观察到使最表面存在cu的效果。

<本发明例4-1~4-15>

作为接合线的原料,为了制造cu合金芯材,准备纯度为99.99质量%以上的cu,作为添加元素,准备ni、pd、pt、au、p、b、be、fe、mg、ti、zn、ag、si,为了形成被覆层,准备纯度为99.99质量%以上的pd,为了形成合金表皮层,准备纯度为99.99质量%以上的au。通过将cu和添加元素原料作为起始材料称量后,将其在高真空下加热并熔化,得到了直径10mm左右的铜合金锭。然后,对该锭进行锻造、轧制、拉丝,制作了直径500μm的cu合金线。接着,通过电解镀敷在cu合金线表面施加1~3μm厚的pd被覆层,并在该被覆层的表面施加0.05~0.2μm厚的au表皮层,从而得到了多层线。在表8中记载了pd被覆层、aupd合金表皮层的最终厚度。在此,芯材与被覆层的边界设在pd浓度为50原子%的位置,被覆层与合金表皮层的边界设在au浓度为10原子%的位置。然后,在拉丝速度为100~700m/min、拉模减面率为8~30%的条件下进行连续拉丝加工,形成为表8中所记载的最终线径。合金表皮层的厚度、au最大浓度、表面cu浓度、被覆层的厚度通过在拉丝加工之间实施2次到3次的热处理来控制。关于该时的条件,在线直径为200~250μm的情况下为温度500~700℃、速度10~70m/min,在线直径为70~100μm的情况下为温度450~650℃、速度20~90m/min,在最终线径细的情况下,进而线直径为40~70μm时,为温度300~500℃、速度30~100m/min。然后,以最终线径在表8的温度、速度30~120m/min的条件下实施了热处理。另外,为了使cu扩散到表面,若仅为1次热处理,就将热处理炉中的氧浓度设定成比通常高的0.2~0.7%。该热处理,如果可能的话,在最后进行为好,其理由是因为,当cu出现在表面后反复进行拉丝加工时,容易引起cu的氧化。在其以外的热处理中,使热处理炉中的氧浓度小于0.2%,由此抑制合金表皮层的过度的氧化,并且控制了稳定的厚度、组成等。这样就得到了直径为15~25μm的接合线。

关于被覆层、合金表皮层的浓度分析、cu合金芯材中的ni、pd、pt、au的浓度分析,一边用ar离子从接合线的表面向深度方向进行溅射,一边使用aes装置进行了分析。被覆层和合金表皮层的厚度从所得到的深度方向的浓度廓线(深度的单位按sio2换算)求出。在元素分布的观察中,也利用epma、edx装置等进行分析。将pd的浓度为50原子%以上且au的浓度小于10原子%的区域作为被覆层,将处于被覆层的表面的au浓度为10原子%以上的范围的区域作为合金表皮层。在表8中记载了被覆层和合金表皮层的厚度以及组成。接合线中的p、b、be、fe、mg、ti、zn、ag、si的浓度采用icp发射光谱分析装置、icp质谱分析装置等进行了测定。关于与接合线的线轴垂直的方向的芯材截面中的线长度方向的晶体取向之中、相对于线长度方向角度差为15度以下的晶体取向<100>的取向比率、以及与线轴垂直的方向的芯材截面的平均结晶粒径(μm),采用与本发明例1~59同样的方法求出。另外,关于0.2%耐力以及最大耐力,采用与本发明例1~59同样的方法进行评价,并由上述(1)式算出耐力比。

对于接合线的连接,使用了市售的自动焊线机。在即将接合之前,通过电弧放电在接合线的尖端制作了球部,但其直径以成为接合线的直径的1.7倍的方式进行了选择。球部制作时的气氛设为氮气。

作为接合线的接合的对象,分别使用了形成于si芯片上的厚度为1μm的al电极、和表面镀pd的引线框的引线。在将制作出的球部与加热到260℃的所述电极进行球接合后,将接合线的母线部与加热到260℃的所述引线进行楔接合,再次制作球部,由此连续地反复进行接合。环长设为3mm和5mm这两种,环高度设为0.3mm和0.5mm这两种。

关于接合线的楔接合性,对接合性、鱼尾对称性进行了评价。关于接合性,观察100个进行了楔接合的状态的接合线的接合部,将接合部剥离了的线计数并记为ng。关于鱼尾对称性,观察100个进行了楔接合的状态的接合线的接合部,评价了其对称性。测量鱼尾状压接部的从中央到左端的长度、从中央到右端的长度,将其差为10%以上的线计数并记为ng。关于接合性和鱼尾对称性,将ng为0个的情形记为◎,将ng为1~10个的情形记为○,将ng为11个以上的情形记为×。

关于接合线的1st接合性(球接合性),针对hts试验、hast试验、fab形状进行了评价。关于hts试验,采用与本发明例1~59同样的方法进行了评价。为了评价hast试验中的球接合部的健全性,关于进行了接合的半导体装置,放置在温度为130℃、相对湿度为85%rh(relativehumidityhumidity)、5v这样的高温高湿炉中,每隔48小时就取出来进行评价。作为评价方法,测定电阻,将电阻上升了的样品记为ng。将直到变为ng的时间为480小时以上的情形记为◎,为384小时以上且小于480小时的情形记为○,小于384小时的情形记为×。

关于fab形状,在引线框上制作100个fab,用sem进行了观察。将圆球状的情形记为ok,将偏芯、缩孔记为ng,对其数量进行计数。关于fab形状,将ng为0个记为◎,将ng为1~5个记为○,将ng为6~10个记为△,将ng为11个以上记为×。◎和○为合格,△为合格但品质稍微不良。表9中的ni、pd和pt的浓度(质量%*)表示cu合金芯材中的浓度。

关于本发明例4-1~4-15,cu合金芯材含有总计为0.1~3.0质量%的选自ni、pd和rt中的1种以上元素(元素周期表第10族的金属元素),接合线最表面的cu浓度为1~10原子%。由此,关于本发明例4-1~4-15,楔接合部的接合性以及鱼尾对称性优异,在hts、fab形状以及hast方面也良好。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1