一种便携式清洁能源微型存储设备的制备方法

文档序号:9328528阅读:539来源:国知局
一种便携式清洁能源微型存储设备的制备方法
【技术领域】
[0001]本发明涉及一种便携式清洁能源微型存储设备的制备方法。
【背景技术】
[0002]随着人们对能源的不断需求,以及环境污染日益加剧,研制高能量存储,可循环利用,无环境污染,便于携带的微型能源存储设备将成为研究热点。对于能源的开发与利用,人们目前使用的有风能,水能,太阳能,潮汐能,电能等。然而,电能与其它能源相比,可在任何场合进行使用,无需外界环境的限制。锂离子电池和超级电容器作为电能的存储装置,有着各自的优势与不足之处。锂离子电池能够提供高的能量密度,然而功率密度却小于超级电容器。目前,人们的研究是如何减少体积膨胀,增大材料的比表面积以及导电性来提高其功率密度,以及循环使用寿命。相反,超级电容器具有着高的功率密度,和较长的循环使用寿命,却伴随着低的能量密度。人们报道的是通过提高比容量以及电压窗口使用范围从而来提高其能量密度。然而,通过选择兼具锂电和超电性能的材料,通过调控条件参数来实现高能量密度和高功率密度的电能存储装置将会解决上述锂电和超电出现的问题所在。对于材料的选择,要含量丰富,价格适宜,并且性能优异。
[0003]氧化钴和钼酸钴兼有锂电和超电的性能,并且钴元素地球储量丰富,价格低廉。氧化钴作为锂电和超电材料,具有着高的理论比容量,然而稳定性和倍率性能却远远不如钼酸钴。因此,单一材料已经不能满足功能多样化的现代应用领域。

【发明内容】

[0004]本发明要解决现有锂电和超电材料不能同时满足价格低廉、稳定性和倍率性能优异的问题,而提供了一种便携式清洁能源微型存储设备的制备方法。
[0005]本发明一种便携式清洁能源微型存储设备的制备方法是通过以下步骤进行的:
[0006]—、集流体的清洗:将集流体置于水中超声清洗5min?120min,然后置于乙醇中超声清洗5min?300min,最后置于浓度为0.01mol/L?6mol/L的稀盐酸溶液中超声清洗5min?200min,得到洁净的集流体;
[0007]二、将浓度为0.0001mol/L?lmol/L的硝酸钴溶液和浓度为0.0001mol/L?lmol/L的尿素溶液混合后搅拌5min?720min,得到混合溶液A,将步骤一得到的洁净的集流体浸入混合溶液A中,然后转移到反应釜中,在温度为90°C?200°C的条件下加热0.5h?72h后,将产物从反应釜中取出,产物采用水清洗3?5次,再采用乙醇清洗3?5次,得到表面生长有氧化钴的集流体;所述浓度为0.0001mol/L?lmol/L的硝酸钴溶液与浓度为0.0001mol/L?lmol/L的尿素溶液的体积比为1:50 ;
[0008]三、将浓度为0.0001mol/L?2mol/L的硝酸钴溶液和浓度为0.0001mol/L?3mol/L的钼酸钠溶液混合后搅拌5min?720min,得到混合溶液B,将步骤二得到的表面生长有氧化钴的集流体浸入混合溶液B中,然后转移到反应釜中,在温度为90°C?220°C的条件下加热0.5h?48h后,将产物从反应釜中取出,产物采用水清洗3?5次,,再采用乙醇清洗3?5次,得到表面生长有氧化钴和钼酸钴的集流体;所述浓度为0.0OOlmol/L?2mol/L的硝酸钴溶液与浓度为0.0001mol/L?3mol/L的钼酸钠溶液的体积比为1:60 ;
[0009]四、将PVA和KOH混合后放入水中搅拌Ih?96h,得到混合溶液C ;所述PVA与KOH的体积比为1: (I?30);
[0010]五、在两片步骤三得到的表面生长有氧化钴和钼酸钴的集流体之间设置一层厚度为0.1mm的纤维树脂隔膜,得到三层结构的组件,然后将三层结构的组件浸入到步骤四得到的混合溶液C中,浸泡Imin?120min,然后在温度为40°C?120°C的烘箱中干燥Ih?72h;然后在其外部包覆上金属外壳,得到便携式清洁能源微型存储设备。
[0011]本发明的有益效果在于:
[0012]本发明通过将两种或多种材料进行复合,并设计一个特殊的结构,以实现材料的多功能应用,根据协同效应从而提高单一材料的不足之处。再将此性能优异的复合材料制备成所需大小,组装成固态器件形式,质轻,便于携带。材料的制备工艺简单,易于操作,材料能够直接生长并且均匀的分布在集流体上,无需任何添加剂和模版的使用,既环保又提高了材料与集流体的良好导电性。该微型存储设备的构筑和制备简便,可操作性好,易于工业化。在本实验中,该存储设备件实现了给电致变色器件提供电能,实现电致变色材料的颜色的变化。
【附图说明】
[0013]图1为实施例一得到的便携式清洁能源微型存储设备的循环伏安曲线;
[0014]图2为实施例一得到的便携式清洁能源微型存储设备在电流密度5安培/克条件下做的放电曲线;
[0015]图3为实施例一得到的便携式清洁能源微型存储设备对电致变色材料氧化钼器件供电后的透过率变化图;其中I是着色态,2是退色态;
[0016]图4为实施例二得到的便携式清洁能源微型存储设备的循环伏安曲线;
[0017]图5为实施例二得到的便携式清洁能源微型存储设备在电流密度6安培/克条件下做的放电曲线;
[0018]图6为实施例二得到的便携式清洁能源微型存储设备对电致变色材料氧化钼器件供电后的透过率变化图;其中I是着色态,2是退色态;
[0019]图7为实施例三得到的便携式清洁能源微型存储设备的循环伏安曲线;
[0020]图8为实施例三得到的便携式清洁能源微型存储设备在电流密度8安培/克条件下做的放电曲线;
[0021]图9为实施例三得到的便携式清洁能源微型存储设备对电致变色材料氧化钼器件供电后的透过率变化图;其中I是着色态,2是退色态。
【具体实施方式】
[0022]【具体实施方式】一:本实施方式是一种便携式清洁能源微型存储设备的制备方法是通过以下步骤进行的:
[0023]—、集流体的清洗:将集流体置于水中超声清洗5min?120min,然后置于乙醇中超声清洗5min?300min,最后置于浓度为0.01mol/L?6mol/L的稀盐酸溶液中超声清洗5min?200min,得到洁净的集流体;
[0024]二、将浓度为0.0001mol/L?lmol/L的硝酸钴溶液和浓度为0.0001mol/L?lmol/L的尿素溶液混合后搅拌5min?720min,得到混合溶液A,将步骤一得到的洁净的集流体浸入混合溶液A中,然后转移到反应釜中,在温度为90°C?200°C的条件下加热0.5h?72h后,将产物从反应釜中取出,产物采用水清洗3?5次,再采用乙醇清洗3?5次,得到表面生长有氧化钴的集流体;所述浓度为0.0001mol/L?lmol/L的硝酸钴溶液与浓度为0.0001mol/L?lmol/L的尿素溶液的体积比为1:50 ;
[0025]三、将浓度为0.0001mol/L?2mol/L的硝酸钴溶液和浓度为0.0001mol/L?3mol/L的钼酸钠溶液混合后搅拌5min?720min,得到混合溶液B,将步骤二得到的表面生长有氧化钴的集流体浸入混合溶液B中,然后转移到反应釜中,在温度为90°C?220°C的条件下加热0.5h?48h后,将产物从反应釜中取出,产物采用水清洗3?5次,再采用乙醇清洗3?5次,得到表面生长有氧化钴和钼酸钴的集流体;所述浓度为0.0001mol/L?2mol/L的硝酸钴溶液与浓度为0.0001mol/L?3mol/L的钼酸钠溶液的体积比为1:60 ;
[0026]四、将PVA和KOH混合后放入水中搅拌Ih?96h,得到混合溶液C ;所述PVA与KOH的体积比为1: (I?30);
[0027]五、在两片步骤三得到的表面生长有氧化钴和钼酸钴的集流体之间设置一层厚度为0.1mm的纤维树脂隔膜,得到三层结构的组件,然后将三层结构的组件浸入到步骤四得到的混合溶液C中,浸泡Imin?120min,然后在温度为40°C?120°C的烘箱中干燥Ih?72h;然后在其外部包覆上金属外壳,得到便携式清洁能源微型存储设备。
[0028]本实施方式步骤五中所述三层结构的组件可根据实际需要裁剪成所需大小和形状。
[0029]本实施方式通过将两种或多种材料进行复合,并设计一个特殊的结构,以实现材料的多功能应用,根据协同效应从而提高单一材料的不足之处。再将此性能优异的复合材料制备成所需大小,组装成固态器件形式,质轻,便于携带。材料的制备工艺简单,易于操作,材料能够直接生长并且均匀的分布在集流体上,无需任何添加剂和模版的使用,既环保又提高了材料与集流体的良好导电性。该微型存储设备的构筑和制备简便,可操作性好,易于工业化。在本实验中,该存储设备件实现了给电致变色器件提供电能,实现电致变色材料的颜色的变化。
[0030]【具体实施方式】二:本实施方式与【具体实施方式】一不同的是:步骤一中置于浓度为0.08mol/L的稀盐酸溶液中超声清洗40min。其他与【具体实施方式】一相同。
[0031]【具体实施方式】三:本实施方式与【具体实施方式】一或二不同的是:步骤二中在温度为100°C的条件下加热lh。其他与【具体实施方式】一或二相同。
[0032]【具体实施方式】四:本实施方式与【具体实施方式】一至三之一不同的是:步骤二中在温度为110°C的条件下加热2h。其他与【具体实施方式】一至三之一相同。
[0033]【具体实施方式】五:本实施方式与【具体实施方式】一至四之一不同的是:步骤三中在温度为100°C的条件下加热0.8h。其他与【具体实施方式】一至四之一相同。
[0034]【具体实施方式】六:本实施方式与【具体实施方式】一至五之一不同的是:步骤四中所述PVA与KOH的体积比为1:3。其他与【具体实施方式】一至五之一相同。
[0035]【具体实施方式】七:本实施方式与【具体实施方式】一至六之一不同的是:步骤四中所述PVA与KOH的体积比为1:8。其他与【具体实施方式】一至六之一相同。
[0036]【具体实施方式】八:本实施方式与【具体实施方式】一至七之一不同的是:步骤五中在温度为60°C的烘箱中干燥24h。其他与【具体实施方式】一至七之一相同。
[0037]通过以下实施例验证本发明的有益效果:
[0038]实施例一:一种便携式清洁能源微型存储设备的制备方法是通过以下步骤进行的:
[0039]—、集流体的清洗:将集流体置于水中超声清洗lOmin,然后置于乙醇中超声清洗5min,最后置于浓度为0.05mol/L的稀盐酸溶液中超声清洗20min,得到洁净的集流体;
[0040]二、将浓度为0.0005mol/L的硝酸钴溶液和浓度为0.05mol/L的尿素溶液混合后搅拌30min,得到混合溶液A,将步骤一得到的洁净的集流体浸入混合溶液A中,然后转移到反应釜中,在温度为100°C的条件下加热Ih后,将产物从反应釜中取出,产物采用水清洗3?5次,再采用乙醇清洗3?5次,得到表面生长有氧化钴的集流体;所述浓度为0.0005mol/L的硝酸钴溶液与浓度为0.05mol/L的尿素溶液的体积比为1:50 ;
[0041]三、将浓度为0.05mol/L的硝酸钴溶液和浓度
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1