基于有源谐振腔的自相似超短脉冲放大系统及其工作方法

文档序号:9710371阅读:1557来源:国知局
基于有源谐振腔的自相似超短脉冲放大系统及其工作方法
【技术领域】
[0001]本发明属于超快激光技术领域,具体涉及一种基于有源谐振腔的自相似超短脉冲放大系统及其工作方法。
【背景技术】
[0002]随着激光技术的快速发展,具有极高的峰值功率,极窄的脉冲宽度的超短脉冲光源直接将研究和工业生产带入了微观超快过程领域。近年来,伴随着激光脉冲宽度降低到几十飞秒甚至几个飞秒,超短脉冲在光纤通信、非线性光学、光学传感、微纳加工、医疗、激光测量等领域扮演着越来越重要的角色。
[0003]当前的高峰值功率超短脉冲激光放大系统主要采用啁啾脉冲放大技术(CPAchirped-pulse amplificat1n)来提高脉冲峰值功率。其基本原理是,种子脉冲进入放大器之前,使用正色散元件将其脉冲宽度展宽至几百皮秒甚至几个纳秒,从而将其峰值功率降低几个数量级,然后啁啾脉冲在光纤放大器中被放大,最后通过负色散元件对其进行压缩。这样可以避免放大过程中非线性效应的积累,提高脉冲质量和放大效率。然而对于现有的激光增益介质,尽管都有很宽的原子增益线宽,但是只有在原子中心频率附近才有最大的受激辐射截面,所以在脉冲放大器中,脉冲两边缘处的频谱成分不能得到有效放大,而中心频率成分被充分放大,这就导致了放大后的脉冲光谱变窄,即所谓的增益窄化效应。增益窄化效应直接限制了高功率脉冲的频谱宽度,而激光器系统输出的最窄脉冲宽度又与频谱的宽度成反比。因此减小增益窄化效应对高功率超短脉冲激光器的影响,已经成为高功率飞秒激光研究领域的重要课题。
[0004]20世纪末提出的自相似放大技术(SSA,self-similarity amplif icat1n),利用较长的高增益正色散光纤作为增益介质,使飞秒脉冲在放大过程中经历自相似传输过程,频谱和脉冲宽度同时展宽,有效的抑制了增益窄化效应,具有高增益、高效率、结构简单的优点,近年来引起了科研机构的广泛关注。由于自相似放大技术属于利用了脉冲的非线性传输特性,相比以啁啾脉冲放大技术为代表的线性放大技术,能有效的抑制放大自发辐射(ASE)提高脉冲对比度。但是,现有自相似放大器都需要脉冲经过足够长的增益光纤,在正色散,非线性效应,增益的共同作用下形成自相似演化。而现有的增益光纤如单模增益光纤、双包层光纤,大模场光子晶体光纤等,在高功率时又会受限于自聚焦和模式不稳定效应的影响导致输出光斑质量劣化。这一缺陷严重限制了使用自相似放大技术获得高峰值功率的超短脉冲。

【发明内容】

[0005]本发明的目的是根据上述现有技术的不足之处,提供一种基于有源谐振腔的自相似超短脉冲放大系统及其工作方法,该自相似超短脉冲放大系统通过光学频率梳状发生器产生脉冲输入有源光学谐振腔内,同时控制该有源光学谐振腔的腔长和注入脉冲的色散量,实现注入脉冲在谐振腔内的相干叠加和光谱展宽,最后在脉冲输出后通过脉冲压缩装置对脉冲进行压缩,获得高峰值功率、宽带光谱的超短脉冲输出。
[0006]本发明目的实现由以下技术方案完成:
一种基于有源谐振腔的自相似超短脉冲放大系统,其特征在于所述自相似超短脉冲放大系统包括依次连接的光学频率梳状发生器、预啁啾管理装置、有源光学谐振腔以及色散补偿装置,其中,所述有源光学谐振腔上还连接有电子控制线路以及栗浦激光器。
[0007]所述有源光学谐振腔包括在光路上依次连接的输入耦合镜、非线性晶体、输出镜、曲面镜A、偏振控制装置、增益介质以及曲面镜B,其中,所述输入耦合镜接所述预啁啾管理装置,所述输出镜接所述色散补偿装置,所述曲面镜B的光路反射角度指向所述输入耦合镜,所述增益介质连接所述栗浦激光器。
[0008]所述预啁啾管理装置为啁啾镜、光栅、棱镜、棱栅中的一种或多种组合。
[0009]所述色散补偿装置为啁啾镜、光栅、棱镜、棱栅中的一种或多种组合。
[0010]—种涉及任一上述基于有源谐振腔的自相似超短脉冲放大系统的工作方法,其特征在于所述工作方法包括如下步骤:所述光学频率梳状发生器输出脉冲,经所述预啁啾管理装置对脉冲啁啾进行预补偿;之后脉冲经所述输入耦合镜进入所述有源光学谐振腔内,所述有源光学谐振腔腔长由所述电子控制线路进行调节并锁定,输入脉冲经所述输出镜反射到所述曲面镜A上,并由所述曲面镜A聚焦到所述增益介质上,在所述栗浦激光器激励的作用下,脉冲发生非线性光学放大,放大的脉冲经所述曲面镜B反射到所述输入耦合镜,与下一个进入所述有源光学谐振腔内的脉冲叠加,叠加后的脉冲继续在腔内传输放大,如此往复,脉冲形成自相似放大,经过所述非线性晶体在自相位调制的作用下光谱进一步展宽,光谱展宽后的脉冲经所述输出镜输出;输出的脉冲经所述色散补偿装置补偿由于自相似放大引入的色散。
[0011]所述有源光学谐振腔腔长由所述电子控制线路进行调节并锁定是指:将所述有源光学谐振腔腔长调整为与所述光学频率梳状发生器的激光腔长相等或呈整数倍关系。
[0012]本发明的优点是:
(1)采用有源谐振腔的结构,脉冲传输过程中被放大,补偿了在谐振腔内传输过程中的损耗,提高了谐振腔内的脉冲能量;
(2)采用外腔增强技术,使得脉冲在谐振腔内多次通过增益介质,增加脉冲与增益介质中放大的次数,提高了放大效率,有利于形成自相似脉冲传输,拓宽了输出脉冲的光谱宽度,有利于获得比入射脉冲更窄的超短脉冲;
(3)采用啁啾管理装置对谐振腔内的色散进行控制,提供了一种灵活控制超短脉冲自相似演化的机制;
(4)采用自相似脉冲传输这种非线性的传输方式,有效的抑制放大自发辐射,提高了脉冲对比度;
(5)采用光学频率梳状发生器作为种子源,其输出的光脉冲的载波包络偏移频率为0,重复频率稳定,降低了谐振腔腔长精密控制的难度,更容易获得相干叠加的脉冲;
(6)采用结构简单的放大结构,提高了系统的适用性,针对不同波段的光学频率梳状发生器可以选择不同的增益介质和元器件制作放大器;
(7)采用色散补偿元件控制谐振腔内的二阶色散和高阶色散,有效抑制色散引起的载波包络相位偏移,并且有效抑制高阶色散造成的脉冲畸变,提高脉冲质量。
【附图说明】
[0013]图1为本发明中基于有源谐振腔的自相似超短脉冲放大系统的原理示意图;
图2为本发明实施例2中基于有源谐振腔的自相似超短脉冲放大系统的示意图;
图3为本发明实施例3中基于有源谐振腔的自相似超短脉冲放大系统的示意图;
图4为本发明实施例4中基于有源谐振腔的自相似超短脉冲放大系统的示意图。
【具体实施方式】
[0014]以下结合附图通过实施例对本发明的特征及其它相关特征作进一步详细说明,以便于同行业技术人员的理解:
如图1-4,图中标记100-600分别为:
光学频率梳状发生器100;预啁啾管理装置200、啁啾镜201、啁啾镜202、声光移频器203、等腰棱镜204、等腰棱镜205、高低镜206、反射镜207、声光调制器208、布拉格闪耀光栅209、布拉格闪耀光栅210、高低镜211、反射镜212;有源光学谐振腔300、输入耦合镜301、输出镜302、曲面镜303、曲面镜304、增益介质305、腔长控制装置306、非线性晶体307、偏振控制装置308、电光调制器309 ;电子控制线路400;栗浦激光器500;色散补偿装置600、啁啾镜601、啁啾镜602、棱栅压缩器603、棱栅压缩器604、布拉格闪耀光栅605、布拉格闪耀光栅606。
[0015]实施例1:如图1所示,本实施例具体涉及一种基于有源谐振腔的自相似超短脉冲放大系统及其工作方法,该自相似超短脉冲放大系统包括依次连接的光学频率梳状发生器100、预啁啾管理装置200、有源光学谐振腔300以及色散补偿装置600,有源光学谐振腔300上还连接有电子控制线路400以及栗浦激光器500。其中:
光学频率梳状发生器100可以是任何锁定了重复频率和载波包络频率偏移频率为0的超短脉冲激光器,包括掺钛蓝宝石(T1: S)激光器,掺钕、掺镱、掺铒、
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1