一种燃料电池系统的热管理系统的制作方法

文档序号:10319651阅读:672来源:国知局
一种燃料电池系统的热管理系统的制作方法
【技术领域】
[0001]本实用新型涉及燃料电池领域,尤其涉及一种燃料电池系统的热管理系统。
【背景技术】
[0002]燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。常见的两种燃料电池为质子交换膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)。质子交换膜燃料电池通常使用氢气之类的气体作为燃料,其在较低的温度下就可以将化学能转化为电能。固体氧化物燃料电池则基于高温反应过程进行能量转化,它通常可以使用各种不同高浓度的气体燃料,比如说一氧化碳、氢气。
[0003]SOFCs很大的一个优势在于:产生电能的气体燃料可以从酒精、汽油、柴油、天然气、甚至生物质或煤等各种物质中获得。这些物质可以在一个燃料重整反应装置中进行气化,从而可以产生丰富的一氧化碳和氢气。该燃料重整反应装置中包含催化剂,该催化剂使得燃料气体反应产生一氧化碳和氢气。
[0004]大多SOFCs在陶瓷基片上进行制造,为两维的平板式结构。平板式SOFCs的多个平板堆叠在一起成为一个电池堆。平板式SOFCs的最大的缺陷在于陶瓷基片单元容易破裂。虽然,在一定程度上,可以通过减缓加热或者冷却陶瓷基片的时间来减少这种破裂的可能;但是如果这样的话,产生电能的过程将花费很长的时间,比如若干小时或者若干天。
[0005]为了克服上述热膨胀导致的破裂问题,管式燃料电池逐渐发展起来。这种管式燃料电池的管子比较小,比如长度为50mm或60mm、外径为4mm至6mm、内径为3mm至4mm。管子的基本材料可以是纯陶瓷,或者含有较多镍的类金属。这种含有较多镍的类金属使得气体或者气体离子扩散更方便。在管子的内壁和外壁涂有涂层,这些涂层形成了燃料电池的阳极和阴极。
[0006]请参图1所示的一种管式燃料电池。该管式燃料电池由阳极层、阴极层以及两极之间的电解质层组成。在阳极层一侧通入H2或者其他燃料气体,在阴极层一侧通进02或者包含02的空气。
[0007]SOFCs工作的时候,需要燃料气体保持一定的浓度;同样的,氧气或者包含氧气的空气也需要保持一定的浓度。所以,持续均匀浓度的燃料气体和氧气/空气对于SOFCs的正常工作来讲,是非常重要的。
[0008]另外,SOFCs启动工作需要较高的温度;通常,该温度需要超过600摄氏度。一个典型的工作温度区间为600?850摄氏度。如果低于600摄氏度,该固体氧化物燃料电池将无法正常工作。但是,随着SOFCs输出的电能增大,其产生的废热能也越多,电池本身的温度也升高的越多,此时又需要通过某种方式对其进行降温处理以防止电池过热。所以,如何对燃料电池系统进行热管理是当前需要解决的问题。
【实用新型内容】
[0009]有鉴于此,本实用新型提供一种燃料电池系统热管理系统。
[0010]该燃料电池系统包括燃料电池堆,该燃料电池堆系统还包括收容燃料电池堆的收容部,助燃气体温度调节装置;该助燃气体温度调节装置对通入燃料电池堆的助燃气体的温度进行调节;所述调节了温度的助燃气体和所述收容部中的所述燃料电池堆进行热交换,使燃料电池堆温度在各工作阶段处于预设的温度范围内。
[0011]本实用新型燃料电池系统具有很好的热管理能力,能很好的利用废热能、废燃料气体,并且能很好的对燃料电池进行热管理。
【附图说明】
[0012]图1是现有的一种管式燃料电池示意图。
[0013]图2是本实用新型一种燃料电池系统结构示意图。
【具体实施方式】
[0014]本实用新型提供一种燃料电池系统的热管理系统。该燃料电池系统包括燃料电池堆,该燃料电池堆系统还包括收容燃料电池堆的收容部,助燃气体温度调节装置;该助燃气体温度调节装置对通入燃料电池堆的助燃气体的温度进行调节;所述调节了温度的助燃气体和所述收容部中的所述燃料电池堆进行热交换,使燃料电池堆温度在各工作阶段处于预设的温度范围内。该燃料电池系统热管理方法能很好的利用废热能、废燃料气体。以下通过燃料电池系统启动阶段、工作阶段和停止工作阶段三个方面来详细说明。
[0015](一)、燃料电池系统启动阶段
[0016]初始,燃料电池堆的温度达不到启动工作所需要的高温条件。为了使其温度能上升到启动工作所需的最低温度,本实用新型实施例采用高温度的助燃气体流与燃料电池堆充分进行热交换,从而加热该燃料电池堆,使其达到启动工作所需要的最低温度。
[0017]具有较高温度的助燃气体可以通过以下两种方式得到:
[0018]A、燃烧燃料气体产生的热量加热通入燃料电池堆的助燃气体
[0019]初始时,燃料气体通入燃料电池堆后,由于燃料电池堆的温度较低,这些燃料气体将流入到废气腔中。通过设置的废气补燃器对该废气腔中的燃料气体进行燃烧。燃烧产生的巨大热量加热进气腔中的助燃气体使其温度升高。废气腔、废气补燃器请参图2的一个例子。
[0020]B、使用加热元件加热助燃气体
[0021]加热元件可以设置在燃料电池系统的不同位置。比如说,可以设置在进气腔中;更优的,可以设置在进气腔的第三腔体中。还可以设置在燃料电池堆收容部中,尤其是其第一侧壁中。加热元件的开启或者关闭由燃料电池系统的控制模块进行控制。另外,加热元件可以多档调节,不同档,具有不同的加热功率。在使用加热元件加热助燃气体流时,需要由温感器件检测当前助燃气体的温度。系统的控制模块获取到温感器件检测到的温度后,控制加热元件加热与否。加热元件、进气腔、第三腔体、收容部、第一侧壁参见图2的一个例子。
[0022]需要说明的是,为了防止热应力产生而损坏燃料电池堆,无论是通过A方式还是B方式,都要保证助燃气体流温度非瞬间上升到很高。所以对于A方式来讲,可以由控制模块控制逐渐增加通入的燃料气体的浓度或者燃料气体的流速。对于B方式来讲,可以由控制模块控制逐渐增加加热元件的加热功率。
[0023]方式A和方式B同时使用,效果更佳。
[0024]当温度越来越高的助燃气体流将燃料电池堆加热的反应所需的最低温度时,燃料电池堆将产生电能。
[0025](二)燃料电池系统工作阶段
[0026]若燃料电池堆开始产生电能则意味着燃料电池系统进入到工作阶段。
[0027]在燃料电池堆对外界供电时,由于外界所需的电功率是一定的,所以燃料电池堆需要提供该一定电功率的电能。
[0028]由于燃料电池堆产生的电功率与燃料电池堆的温度以及通入的助燃气体的流速相关。所以,针对一个燃料电池堆,如果当前需要其输出X瓦的功率,那么可以通过调节通入的助燃气体的量(单位时间的量)和温度来实现。这里,O S X S Pmax,Pmax为该燃料电池堆所能产生的最大功率。具体地,可以按照以下步骤实施:
[0029]通入该X瓦电功率对应流速的助燃气体;
[0030]温感器件检测所述助燃气体的温度;
[0031]如果检测到的温度小于一预设温度,则提高所述助燃气体的温度;如果检测到的温度高于另一预设温度,则降低所述助燃气体的温度。
[0032]这里的两个预设的温度和当前需要该燃料电池堆输出的电功率相关,这个可以根据实验得出,可以预先在系统中保存好预设温度与输出电功率的对应关系,然后根据温感器件检测到的助燃气体的温度,由控制模块来控制加热元件进行加热与否。当需要提高助燃气体的温度的时候,控制模块控制开启加热元件或增大加热元件加热功率;当需要降低所述助燃气体的温度的时候,控制模块控制关闭加热元件或降低加热元件加热功率。
[0033]由于燃料电池堆进行化学反应时能产生热量,这些热量(废热能)将被用来加热通入的助燃气体,这样就可以降低加热元件加热的功率。另外,未参加反应的废燃料气体将通过废气补燃器燃烧,燃烧产生的热量也能加热通入的助燃气体,这样也可以降低加热元件加热的功率。这里降低加热元件加热的功率包括不再使用该加热元件对助燃气体进行加热。比如说,持续通入超过反应所需的燃料气体,这样多余的未参与反应的燃料气体可以进一步燃烧以产生热量来加热进气腔中的助燃气体。关于通入的超过反应所需的燃料气体的量的多少可以通过所需的温度的大小来确定。具体可以在废气补燃器109出口设置温度传感器,如果该温度传感器检测到的温度小于设定的温度值,可以增加通入的燃料气体的量。需要说明的是,这里的通入的燃料气体的量均是指单位时间通入的燃料气体的量,即燃料气体的流速。
[0034](三)、燃料电池系统停止工作阶段
[0035]当不需要燃料电池堆供电时,可以由控制模块停止给燃料电池堆通入燃料气体。另外,还可以由控制模块控制在燃料电池堆中通入惰性气体,使该燃料电池堆停止反应。进一步地,可能存在的多余的未反应的燃料气体将由废气补燃器进行燃烧,以防止污染空气和形成安全隐患。
[0036]当不需要燃料电池堆供电时,需要逐渐降低通入的助燃气体的温度。具体可以由控制模块逐渐降低加热元件的加热功率,直到关闭该加热元件。之所以要逐渐降低加热元件的加热功率,是为了防止温度变化过快产生的应力损坏该燃料电池堆。具体可以通过温感器件感应温度,控制模块获取该感应的温度,然后控制加热元件逐渐降低加热功率直到关闭该加热元件。另外,如果通入的助燃气体的温度的升高是通过废气补燃器燃烧燃料气体所得,那么这里逐渐降低通入的助燃气体的温度就可以直接通过逐渐减少燃料气体的供给实现。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1