功率因数改善电路以及应用该电路的车辆充电器的制作方法

文档序号:12488121阅读:295来源:国知局
功率因数改善电路以及应用该电路的车辆充电器的制作方法与工艺

本发明涉及一种用于改善功率因数的电路以及应用该电路的车辆充电器。



背景技术:

近来,无污染的环境友好型车辆变得突出。这种环境友好型车辆通常使用以高压向电池充电的变换器。变换器需要意图升高电压并改善功率因数的功率因数校正(PFC)电路。

PFC电路需要高额定电压和高电容,因此使用在设计时考虑对封装最有利的电解电容器。

尽管电解电容器很小,但是电解电容器可满足高额定电压和高电容。然而,电解电容器具有液体物质的电介质,因此由于电流应力(电流纹波)导致的可靠性的劣化已出现严重的问题。

例如,当电解电容器暴露在大量纹波电流下时,电解质会蒸发。因此,电介质将不能适当地工作,而这样会导致电容器的电容下降。

此外,上述变换器利用高压交流电(AC)作为输入,并且涉及高频开关。因此,在电磁兼容性(EMC)方面,变换器具有明显缺点。

当不能建立对EMC的应对措施时,除了作为单个单元的变换器之外,整车的市销性也会降低。更严重地,会产生不满足车辆法规的风险。



技术实现要素:

因此,本发明旨在提出一种用于减少电流应力的功率因数改善电路以及应用该电路的车辆充电器,其大致消除由现有技术的限制和劣势所导致的一个或多个问题。

此外,本发明的另一目标是提供一种用于改善EMC性能的功率因数改善电路以及应用该电路的车辆充电器。

为了实现这些目标和其他优势,并且根据本发明的目的,如本文所体现和广泛描述的那样,一种功率因数改善电路包括:输入端;以及输出端,该输出端连接于输入端以通过输入端来改善功率因数,其中,输出端包括形成在用于输出的电解电容器的两侧的非电解电容器,以及形成在每个非电解电容器和电解电容器之间的第一电感器。

输入端可包括彼此串并联连接的输入电源、第二电感器、二极管,以及绝缘栅场效应晶体管(IGFET)电路。

每个非电解电容器可以都是薄膜电容器或陶瓷电容器。

第一电感器可以在电解电容器的两侧耦合。

非电解电容器可与第一电感器并联连接。

本发明的另一方面,提供一种用于为高压电池充电的车辆充电器,包括:功率因数改善电路,其包括输入端,以及连接于输入端且被配置成通过输入端改善功率因数的输出端;以及直流-直流变换器,其连接至输出端,其被配置成将包含从功率因数改善电路输出的正弦波在内的第一直流电压逆变成交流电压,并且被配置成将逆变的交流电压转换成第二直流电压。

输出端可包括形成在用于输出的电解电容器的两侧的非电解电容器,以及形成于每个非电解电容器和电解电容器之间的第一电感器。

输入端可包括彼此串并联连接的输入电源、第二电感器、二极管,以及绝缘栅场效应晶体管电路。

每个非电解电容器可以是薄膜电容器或陶瓷电容器。

第一电感器可在电解电容器的两侧耦合。

直流-直流变换器可对应于升压变换器。

非电解电容器可与第一电感器并联连接。

应当理解的是,以上对于本发明一般性描述以及下文的详细描述都是示例性和说明性的,其意图对权利要求所主张的本发明作进一步的说明。

附图说明

用于提供对本发明的进一步理解的、并且包含在本申请并构成本申请一部分的附图,示出本发明的实施方式,并且与描述一起起到阐 释本发明原理的作用。在附图中:

图1是示出功率因数改善电路的一个实施例的电路图;

图2是示出车辆充电器的一个实施例的电路图;

图3是示出与图1和图2的功率因数改善电路进行比较的常规功率因数改善电路的电路图;以及

图4是示出与图1和图2的功率因数改善电路进行比较的功率因数改善电路的电路图。

具体实施方式

现将详细参考本发明的实施方式,其中本发明的实施方式的实施例将在附图中示出。在任何情况下,贯穿附图,相同的附图标记用于表示相同或是相似的部件,并且其重复描述将被省略。

在下文实施例中描述的术语将仅用于描述特定的实施例,并且其不意在将本发明限制于此。

例如,在本说明书中所公开的后缀“端”是仅基于撰写说明书的简易性来应用或是结合的,并且后缀“端”不具有区别意思或功能。

此外,包括序数,例如在下文本发明的实施方式中描述的“第一”和“第二”的术语可用于描述各组件。然而,上述组件不受这些术语的限制。上述术语将用于将一个组件与另一组件区分开。

此外,应该理解的是,除非在上下文中的表达具有清晰的不同的意思,否则在本发明的各实施方式和权利要求的描述中所使用的单数表达包括复数表达。

此外,应当理解的是,在下文本发明的实施方式中公开的术语“和/或”包括在所列出的有关细节中的一个或多个项的任意或是全部可能的组合。

此外,除非另有提及,否则由于相应的元件可以是固有的,因此在下文的本发明的实施方式中所描述的术语“包括”,“形成”等不应当解释为排除其他元件,而是应当解释为还包括这些其他元件。

<功率因数改善电路的实施例>

图1示出功率因数改善电路100的实施例。

在图1中,功率因数改善电路100包括输入端110和输出端120 以改善功率因数。

输入端110可控制输入电流或输入电压,从而使输入电流的峰值跟随(follow)输入电压。

基于此目的,输入端110包括电源111、连接至电源111的电感器112、在电源111和电感器112之间并联连接的第一二极管113,连接至电感器112的第二二极管114,以及在电感器112和第二二极管114之间并联连接的绝缘栅场效应晶体管(IGFET)电路115。

同时,通过跟随输入端110的输入电压,输出端120可连接至输入端110以产生正弦波,因此,可改善功率因数并且应对谐波脉动率(harmonic regulation)。

基于该目的,输出端120可形成用于输出的电解电容器121以及与电解电容器121的两侧相连的非电解电容器122和122。

一般地,电解电容器121具有广为人知的液体物质的电介质,因此由于电流应力(电流纹波)而会产生可靠性的下降。

就这一点而言,为了防止因电流应力产生的可靠性的下降,可将非电解电容器122和122连接在电解电容器121的两侧,并且可以在每个非电解电容器122和122与电解电容器121之间形成第一电感器123和123。

在这种情况下,非电解电容器122和第一电感器123形成在电解电容器121的左侧。

在电路中彼此的连接关系如下文所述:左侧非电解电容器122可与输入端110并联连接,左侧第一电感器123可与左侧非电解电容器122并联连接,左侧第一电感器123可与用于输出的电解电容器121并联连接。

当非电解电容器122和第一电感器123如上所述形成在电解电容器121的左侧时,电容器和电感器可起到PFC电路的输出端120的CL滤波器的作用。如上所述,CL滤波器可减少因电解电容器121产生的电流应力(纹波电流)。

在此,左侧非电解电容器122可被制成为薄膜电容器或陶瓷电容器,并且在左侧非电解电容器122和电解电容器121之间形成的第一电感器123可具有耦合结构。

左侧第一电感器123具有用于改善EMC问题的耦合结构。

例如,当一个第一电感器123形成在左侧非电解电容器122和电解电容器121之间时,在从输入端110产生的高压之间会出现因噪声导致的相位差,因相位差而产生的高压共模噪声会留在输出端120,因此会引起严重的EMC问题。

因此,耦合的第一电感器123形成在左侧非电解电容器122和电解电容器121之间,来防止上述EMC问题。

同时,第一电感器123和非电解电容器122可形成在用于输出的电解电容器121的右侧。

在电路中彼此之间的连接关系将如下文所述:右侧第一电感器123可与电解电容器121并联连接,右侧非电解电容器122可与右侧第一电感器123并联连接。

当第一电感器123和非电解电容器122如上所述形成在电解电容器121的右侧时,电感器和电容器可起到PFC电路的输出端120的LC滤波器的作用。LC滤波器可减少与输出端120相连的直流-直流变换器的输入纹波电流,因此,如上所述,可最终减少因电解电容器121产生的电流应力(纹波电流)。

在此,右侧的非电解电容器122可被制造成薄膜电容器或陶瓷电容器,并且形成在电解电容器121与右侧非电解电容器122之间的第一电感器123可具有耦合结构。

右侧第一电感器123具有耦合结构以改善EMC问题。

例如,当一个第一电感器123形成于右侧非电解电容器122和电解电容器121之间时,在从输入端110产生的高压之间会出现因噪声导致的相位差,并且因相位差而产生的高压共模噪声会留在输出端120,从而引起严重的EMC问题。

因此,在右侧非电解电容器122和电解电容器121之间形成耦合的第一电感器123,以防止上述EMC问题。

如同从上文描述中所理解的,在电解电容器121的两端施加耦合的第一电感器123和123,从而平衡从输入端110产生的高压链路的(+)/(-)之间的电感,从而减少高压共模噪声。以这种方式,可以改善功率因数改善电路100的EMC性能。

<充电器实施例>

图2是示出车辆200的充电器的一个实施例。

参考图2,根据实施例的车辆200的充电器包括功率因数改善电路和DC-DC变换器230,用于向高压电池充电,并且功率因数改善电路包括输入端210和输出端220。

输入端210可控制输入电流或输入电压,从而使输入电流的峰值跟随输入电压。

基于该目的,输入端210包括电源211、连接至电源211的电感器212、在电源211和电感器212之间并联连接的第一二极管213,连接至电感器212的第二二极管214,以及在电感器212和第二二极管214之间并联连接的绝缘栅场效应晶体管(IGFET)电路215。

同时,通过跟随输入端210的输入电压,输出端220可连接至输入端210以产生正弦波,从而改善功率因数并应对谐波脉动率。

基于该目的,输出端220可形成用于输出的电解电容器221,以及与电解电容器221的两侧相连的非电解电容器222和222。

一般地,电解电容器221具有广为人知的液体物质的电介质,因此由于电流应力(电流纹波)会产生可靠性的下降。

在这方面,为了防止因电流应力导致的可靠性的下降,可在电解电容器221的两侧连接非电解电容器222和222,并且可在每个非电解电容器222和222与电解电容器221之间形成第一电感器223和223.

在这种情况下,在电解电容器221的左侧形成非电解电容器222和第一电感器223。

在电路中彼此的连接关系如下文所述:左侧非电解电容器222可与输入端210并联连接,左侧第一电感器223可与左侧非电解电容器222并联连接,并且左侧第一电感器223可与用于输出的电解电容器221并联连接。

当非电解电容器222和第一电感器223如上所述形成在电解电容器221的左侧时,电容器和电感器可起到PFC电路的输出端220的CL滤波器的作用。如上所述,CL滤波器可减少因电解电容器221产生的电流应力(纹波电流)。

在此,左侧非电解电容器222可制成为薄膜电容器或陶瓷电容器, 并且形成于左侧非电解电容器222和电解电容器221之间的第一电感器223可具有耦合结构。

左侧第一电感器223具有用于改善EMC问题的耦合结构。

例如,当一个第一电感器223形成于左侧非电解电容器222和电解电容器221之间时,在从输入端210产生的高压之间会出现因噪声导致的相位差,并且由于相位差而导致的高压共模噪声将留在输出端220,从而引起严重的EMC问题。

因此,在左侧非电解电容器222和电解电容器221之间形成耦合的第一电感器223,来防止上述EMC问题。

同时,第一电感器223和非电解电容器222可形成在用于输出的电解电容器221的右侧。

电路中彼此之间的连接关系如下文所述:右侧第一电感器223可与电解电容器221并联连接,右侧非电解电容器222可与右侧第一电感器223并联连接。

当第一电感器223和非电解电容器222如上所述形成在电解电容器221的右侧时,电感器和电容器可起到PFC电路的输出端220的LC滤波器的作用。LC滤波器可减少连接至输出端220的DC-DC变换器230的输入纹波电流,因此,如上所述,可被认为是最终减少因电解电容器221产生的电流应力(纹波电流)。

在此,右侧的非电解电容器222可被制成为薄膜电容器或陶瓷电容器,并且形成于电解电容器221和右侧非电解电容器222之间的第一电感器223可具有耦合结构。

右侧第一电感器223具有用来改善EMC问题的耦合结构。

例如,当一个第一电感器223形成于右侧非电解电容器222和电解电容器221之间时,在从输入端210产生的高压之间会出现因噪声导致的相位差,并且因相位差而导致的高压共模噪声会留在输出端220处,从而引起严重的EMC问题。

因此,耦合的第一电感器223形成在右侧非电解电容器222和电解电容器221之间,以防止上述EMC问题。

如同从上文描述所理解的,在电解电容器221的两端应用耦合的第一电感器223和223,从而平衡从输入端210产生的高压链路的(+) /(-)之间的电感,从而减少高压共模噪声。以这种方式,可以改善功率因数改善电路100的EMC性能。

在示例性实施例中,DC-DC变换器230连接至输出端220,以将包括从功率因数改善电路输出的正弦波的第一DC电压逆变成AC电压,并且将逆变的AC电压转换成第二DC电压。

DC-DC变换器230优选地对应于升压变换器。

例如,升压变换器可包括四个与输出端220并联连接的IGFET电路231,在IGFET电路231的上、下IGFET电路之间并联连接的一对电感器232,四个与电感器232并联连接的二极管233,连接至四个二极管233的输出端的电感器236,以及两个电解电容器235,其中每个电解电容器235都具有连接至四个二极管233的输入端的一端,以及连接至电感器236的另一端。

然而,本发明不限于上文所述的升压变换器的电路配置。此外,当使用与升压变换器不对应的变换器来改善功率因数并升高电压时,该变换器可被包含在本实施例中的DC-DC变换器的种类中。

<比较实施例>

图3是示出与图1和图2的功率因数改善电路进行比较的常规功率因数改善电路的电路图,图4是示出与图1和图2的功率因数改善电路进行比较的功率因数改善电路的电路图。

参考图3,常规功率因数改善电路包括具有与参考图1和图2所述的输入端110和210中的每个相同的电路配置的输入端。然而,与图1和图2的输出端120和220不同的是,常规功率因数改善电路在输出端10A仅包括一个电解电容器10。

当输出端10A中仅包括一个电解电容器10时,由于缺乏用于改善EMC和减少PFC输出电解电容器的电流应力的应对措施,因此充电器可靠性下降以及发生EMC问题的概率会明显增加。

同时,与参考图1和图2所描述的一样,图4中示出的功率因数改善电路的输出端20A包括用于输出的电解电容器121和与电解电容器121的两侧相连的非电解电容器122和122。与图1和图2的耦合的第一电感器123和223不同的是,可在电解电容器121和每个非电解电容器之间配置一个电感器20。

在这种情况下,可以发现,由于一个电感器20,因此在高压链路(+)/(-)之间会产生噪声的相位差,并且会产生因相位差而导致的共模噪声,从而引起严重的EMC问题。

就此而言,当与上文所述的图3和图4进行比较时,在图1和图2中实施的功率因数改善电路可减少纹波电流(电流应力),并且解决EMC问题。

如上所述,当与现有技术比较时,本发明的实施例可获得如下所述的有利效果:

首先,本发明的实施例通过形成于电解电容器左侧的CL电路,减少了PFC输出端的纹波电流(电流应力),并且通过形成在右侧的LC电路减少了DC-DC变换器的输入纹波电流(输入电流应力);

第二,由于可通过耦合电感器来平衡高压DC链路中的电感,因此本发明的实施方式减少了高压共模噪声,改善了EMC性能;

第三,由于使PFC输出电容器的静电容量最优,因此本发明的实施方式可使充电器的尺寸最优,并减少充电器的重量(改善质量)。

第四,由于减小了输入/输出EMC滤波器的尺寸,因此本发明的实施方式可使充电器的大小尺寸最优,并且减少充电器的重量(改善质量)。

第五,由于使用了低价滤波器配置而减小用于输出的高价电解电容器和充电器的输入/输出EMC滤波器的大小,因此,本发明的实施方式可减少制造成本。

已参考附图描述了本发明的实施方式。然而,本领域技术人员应当理解的是,在不违背本发明的精神和必要特征的情况下,本发明可以除本文所提出的其他特定的方式进行实施。因此上述实施例在所有方面应被解释为示例性的而不是限制性的。

本发明可应用于电动车辆(EV)、混合动力电动车辆(HEV)、插电式混合动力电动车辆(PHEV)、燃料电池电动车辆(FCEV)以及纯电动车辆(BEV)。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1