一种分级变频式多路串联谐振逆变电源的制作方法

文档序号:12844773阅读:303来源:国知局
一种分级变频式多路串联谐振逆变电源的制作方法与工艺

本实用新型属于电力电子领域,更具体地,涉及一种分级变频式多路串联谐振逆变电源。



背景技术:

串联谐振逆变电源在感应加热电源、超声波电源、激光器电源和托卡马克电源等各种高频大功率电源设计中被广泛采用。串联谐振逆变电源通常采用AC-DC-AC拓扑,即AC-DC整流和DC-AC逆变。如图1所示,现有技术提供的串联谐振逆变电源主电路拓扑包括整流变压器1、三相全桥相控整流器2、LC滤波器3、H桥逆变器4、匹配变压器5、谐振电容器6、负载线圈7。整流变压器1输入端从10kV电网取电,输出端按相序依次连接三相全桥相控整流器2的三个桥臂输入端;三相全桥相控整流器2由晶闸管TR1、TR2、TR3、TR4、TR5、TR6组成;TR1和TR4、TR3和TR6、TR5和TR2分别组成三个桥臂;三个上管TR1、TR3、TR2共阴极,其输出端接LC滤波器输入正端;三个下管TR4、TR6、TR2共阳极,其输出端接LC滤波器输入负端;LC滤波器3由滤波电感Ld和滤波电容Cd组成;滤波电感Ld一端作为LC滤波器3的输入正端,另一端与滤波电容Cd的正端连接,连接点为LC滤波器3的输出正端;滤波电容Cd的负端同时作为LC滤波器3的输入负端和输出负端;H桥逆变器4由带有反并联二极管的绝缘栅双极型功率管(IGBT)TI1、TI2、TI3和TI4组成;TI1和TI2、TI3和TI4分别组成正桥臂和反桥臂,正桥臂输出端接匹配变压器5输入正端,反桥臂输出端接匹配变压器5输入负端;两个上管TI1和TI3共集电极,与LC滤波器3的输出正端连接;两个下管TI2和TI4共发射极,与LC滤波器的输出负端连接;谐振电容器6和负载线圈7串联成RLC谐振支路,RLC谐振支路自然谐振频率由其谐振电容器6的容值Cr和负载线圈7等效阻抗Lr、Rr共同决定;RLC谐振支路的正端与匹配变压器的输出正端连接,RLC谐振支路的负端与匹配变压器的输出负端连接。

为保证电源工作时处于谐振或准谐振状态,H桥逆变器4的驱动频率通常等于或略高于RLC谐振支路的自然谐振频率,此时电源输出电流的频率会稳定在RLC谐振支路的自然谐振频率点附近,无法在电源运行过程中改变。在实际应用中,某些场合(如托卡马克物理实验)要求串联谐振逆变电源输出电流的频率在电源运行过程中能够在多个频率点间自由平滑切换,即分级变频运行,现有技术无法满足相关应用的要求。



技术实现要素:

针对现有技术的缺陷,本实用新型的目的在于提供一种分级变频式多路串联谐振逆变电源,旨在解决现有串联谐振逆变电源无法分级变频运行的问题,以满足相关应用(如托卡马克物理实验)的要求。

本实用新型提供了一种分级变频式多路串联谐振逆变电源,包括整流变压器、三相全桥相控整流器、LC滤波器、H桥逆变器、匹配变压器和负载线圈:还包括:n个并联连接的分级变频单元,每个分级变频单元包括电荷泄放器、谐振电容器和切换开关,所述电荷泄放器与所述谐振电容器并联连接后,一端通过所述切换开关与所述匹配变压器连接,另一端与所述负载线圈连接;n为大于等于2的整数。

更进一步地,电荷泄放器包括:依次串联连接的石墨泄放电阻Rck和快速晶闸管泄放开关Tck;其中k=1,2,……n。

更进一步地,n个分级变频单元中谐振电容器Crk的容值不同。

更进一步地,切换开关与所述谐振电容器串联,且所述切换开关的负端与谐振电容器Crx的正端连接。

更进一步地,切换开关包括:反并联连接的正向晶闸管Tsk+和负向晶闸管Tsk-

更进一步地,当电源在fk频率运行时采用同步触发策略控制切换开关:切换开关正向晶闸管Tsk+的触发信号与H桥逆变器TI1、TI4的触发信号保持一致;切换开关负向晶闸管Tsk-的触发信号与H桥逆变器TI2、TI3的触发信号一致。为保证谐振支路电流连续、谐波畸变小,要求晶闸管触发信号适当超前于谐振支路电流信号,即正(负)向晶闸管导通时,适当提前触发负(正)向晶闸管,使得正(负)向晶闸管电流过零自动关断时,负(正)向晶闸管同时开通。由于谐振支路一般工作在准谐振状态,故输出电流相位会滞后于H桥逆变器输出电压相位,在谐振支路处于准谐振状态时采用所述同步触发策略,可使得晶闸管触发信号适当超前于谐振支路电流信号,满足上述要求,保证了谐振支路电流连续、谐波畸变小。

更进一步地,当电源运行频率在t0时刻由fa变频至fb时采用同步切换策略控制切换开关:在t0时刻前,H桥逆变器驱动频率为fa,采用同步触发策略控制fa频率对应的切换开关Tsa(Tsa+和Tsa-);t0时刻时,H桥逆变器驱动频率由fa变频至fb,采用同步触发策略控制fb频率对应的切换开关Tsb(Tsb+和Tsb-),同时撤去切换开关Tsa的触发控制信号,使之停止工作;其中,a=1,2,...,n;b=1,2,...,n;a≠b。若H桥逆变器驱动频率的切换时间点早于或晚于投切对应频率的分级变频单元的时间点,则电源处于不谐振状态,电流波形会紊乱,频率切换过程时间会变长。

通过本实用新型所构思的以上技术方案,与现有技术相比,本实用新型的增益效果是:在现有技术提供的电路拓扑的基础上,设计了n个分级变频单元,电源运行过程中,通过投切不同的分级变频单元和匹配对应的H桥逆变器驱动频率,实现电源的分级变频运行;电荷泄放器采用性能优良的石墨泄放电阻和快速晶闸管泄放开关,可在极短时间内(数十微秒)泄放谐振电容器中的残存电荷,及时消除切换开关承受的直流偏压,防止切换开关过压烧毁;切换开关采用反并联快速晶闸管组,工作频率高达数千赫兹,平均通态电流可达数千安培,开通速度可低至数微秒,保证了电源工作频率高、输出功率大;切换开关采用同步触发策略和同步切换策略控制,控制策略简单,保证电源输出电流频率的无缝切换,电流谐波畸变小。

附图说明

图1是现有技术提供的串联谐振逆变电源主电路拓扑图;

图2是本实用新型提供的分级变频式多路串联谐振逆变电源主电路拓扑图;

图3是本实用新型提供的分级变频式多路串联谐振逆变电源开关策略示意图;

图4是本实用新型提供的分级变频式多路串联谐振逆变电源放电测试结果示意图;

在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1为整流变压器、2为三相全桥相控整流器、3为LC滤波器、4为H桥逆变器、5为匹配变压器、6为谐振电容器、7为负载线圈、8为电荷泄放器、9为谐振电容器、10为切换开关、11为分级变频单元。

具体实施方式

为了使本实用新型的目的、技术方案及优点更加清楚明白,以下对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。

本实用新型包括:整流变压器,将10kV三相交流电转换成低压三相交流电;三相全桥相控整流器,将低压三相交流电整流成直流电,通过控制移相角来控制直流电大小,调节电源功率;LC滤波器,滤除直流电中高次谐波,保证H桥逆变器输入电压的平整度;H桥逆变器,将直流电变换成交流电,H桥逆变器驱动频率决定电源输出电流频率,为保证电源运行时处于谐振或准谐振状态,H桥逆变器驱动频率需等于或略高于谐振支路的谐振频率;匹配变压器,实现谐振支路阻抗的等效变换,提高电源的输出效率;n个分级变频单元,电源运行时通过投切不同的分级变频单元实现谐振支路自然谐振频率的改变,同时相应改变H桥逆变器的驱动频率,即可实现电源的分级变频运行。

分级变频单元包括电荷泄放器、谐振电容器和切换开关;谐振电容器与负载线圈构成谐振支路,两者共同决定谐振支路自然谐振频率,每个分级变频单元中谐振电容器容值不同,故n个分级变频单元对应n个不同的自然谐振频率点;切换开关用来投切不同的分级变频单元,以改变谐振支路自然谐振频率;电荷泄放器用来泄放谐振电容中残存的电荷,以消除电源运行时切换开关所承受的直流偏压,同时保证电源停机时的安全性。

电荷泄放器由石墨泄放电阻和快速晶闸管泄放开关组成。当电源从a频率变换至b频率时,a频率对应谐振电容器中会残存电荷,残存电荷会使得a频率对应谐振电容开关两端承受数百伏甚至上千伏的直流偏压。为消除该直流偏压,防止晶闸管因过压而烧毁,须在数十微秒内泄放完谐振电容中残存电荷,这要求泄放电阻阻值足够小、泄放开关开通时间足够短。石墨电阻在小阻值时具有体积小、功率大等优良性能,用作电荷泄放器的泄放电阻十分合适;快速晶闸管开通速度可低至数微秒,平均通态电流可达数千安培,能较好满足电荷泄放的要求。电荷泄放器投用的时间点应与频率切换的时间点一致,过早投入会造成电源工作不谐振,过晚投入则不能及时消除直流偏压,存在烧毁晶闸管的隐患。

切换开关采用反并联快速晶闸管组。电源工作频率为千赫兹级,输出电流幅值最大为2kA,谐波畸变率要求低于5%,频率切换过渡时间要求低于100us。快速晶闸管作为性能优良的固态开关,其工作频率高达数千赫兹,平均通态电流可达数千安培,开通速度可低至数微秒,能较好地满足电源的电气指标,十分适合作为切换开关。单个快速晶闸管无法导通交流电,故整体上采用反并联的晶闸管组作为切换开关。

切换开关在电源定频运行时采用同步触发策略控制。即当电源在fk频率运行时,切换开关正向晶闸管的触发信号与H桥逆变器正桥臂的触发信号保持一致;切换开关负向晶闸管的触发信号与H桥逆变器反桥臂的触发信号一致。为保证谐振支路电流连续、谐波畸变小,要求晶闸管触发信号适当超前于谐振支路电流信号,即正(负)向晶闸管导通时,适当提前触发负(正)向晶闸管,使得正(负)向晶闸管电流过零自动关断时,负(正)向晶闸管同时开通。由于谐振支路一般工作在准谐振状态,故输出电流相位会滞后于H桥逆变器输出电压相位,在谐振支路处于准谐振状态时采用所述同步触发策略,可使得晶闸管触发信号适当超前于谐振支路电流信号,满足上述要求,保证了谐振支路电流连续、谐波畸变小。

切换开关在电源变频时采用同步切换策略,即当H桥逆变器驱动频率由fa变频至fb时,采用同步触发策略控制fb频率对应的切换开关,同时撤去fa频率对应切换开关的触发控制信号,使之停止工作。若H桥逆变器驱动频率的切换时间点早于或晚于投切对应频率的分级变频单元的时间点,则电源处于不谐振状态,电流波形会紊乱,频率切换过程时间会变长。

为了更进一步的说明本实用新型实施例提供的分级变频式多路串联谐振逆变电源,现结合附图及实例详述如下:

如图2所示,本实用新型实施例中分级变频式多路串联谐振逆变电源主电路拓扑包括整流变压器1、三相全桥相控整流器2、LC滤波器3、H桥逆变器4、匹配变压器5和负载线圈7,n个分级变频单元11。

整流变压器1、三相全桥相控整流器2、LC滤波器3、H桥逆变器4和匹配变压器5的构成及连接方式与图1中本领域已知的串联谐振逆变电源拓扑一致,此处不再赘述;

分级变频单元包括电荷泄放器8、谐振电容器9和切换开关10;不同分级变频单元中谐振电容器Crk的容值不同;电荷泄放器8由石墨泄放电阻Rck和快速晶闸管泄放开关Tck串联而成,各个电荷泄放器中石墨泄放电阻Rck的阻值根据泄放时间要求确定;切换开关10由正向晶闸管Tsk+和反向晶闸管Tsk-反并联而成;

电荷泄放器8并联在谐振电容器9的两端,其中电荷泄放器8的快速晶闸管泄放开关Tck与谐振电容器Crk的负端连接;切换开关10与谐振电容器9串联,其中切换开关10的负端与谐振电容器Crx的正端连接;

n个分级变频单元11同向并联,并分别与负载线圈7串联成一路谐振支路,n个分级变频单元与负载线圈7分别串联成n路谐振支路,n路谐振支路对应n个自然谐振频率;其中切换开关正端与匹配变压器5输出正端连接,谐振电容器负端接负载线圈后与匹配变压器5输出负端连接。

图3为本实用新型实施例中分级变频式多路串联谐振逆变电源开关策略示意图(以fa→fb为例),其中uAB为匹配变压器副方电压,ir为谐振支路电流;

t0时刻前,电源在fa频率运行,对应切换开关正向晶闸管Tsa+的触发信号与H桥逆变器TI1、TI4的触发信号保持一致,对应切换开关负向晶闸管Tsa-的触发信号与H桥逆变器TI2、TI3的触发信号一致;

t0时刻H桥逆变器开关频率由fa变频至fb,H桥逆变器TI1、TI4开通,此时同步开通fb频率对应切换开关正向晶闸管Tsb+和fa频率对应电荷泄放器快晶闸管泄放开关Tca开通,负载电流平滑过渡;

t0时刻后,电源在fb频率运行,对应切换开关正向晶闸管Tsb+的触发信号与H桥逆变器TI1、TI4的触发信号保持一致,对应切换开关负向晶闸管Tsb-的触发信号与H桥逆变器TI2、TI3的触发信号一致。

电源工作时处于准谐振状态,谐振支路电流ir相位始终滞后于匹配变压器副方电压uAB,由于采用同步触发策略和同步切换策略,所以负(正)向晶闸管Tsx-(Tsx+)导通前会接收到触发信号,这保证了正(负)向晶闸管Tsx+(Tsx-)电流过零自动关断时,负(正)向晶闸管Tsx-(Tsx+)及时开通,使得电流谐波畸变小,频率切换过渡时间小。

图4为本实用新型实施例中分级变频式多路串联谐振逆变电源分级放电测试结果示意图,其中uAB为匹配变压器副方电压,ir为谐振支路电流;

由图4可以看出,本实用新型设计的分级变频式多路串联谐振逆变电源在实际运行时可较好地实现分级变频运行,输出电流谐波畸变小,频率切换过渡自然,波形平滑未紊乱。

本领域的技术人员容易理解,以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1