用于断路器的跳闸控制电路的制作方法

文档序号:12907759阅读:303来源:国知局
用于断路器的跳闸控制电路的制作方法与工艺

本公开涉及一种用于断路器的跳闸控制电路,并且具体地,涉及以下用于断路器的跳闸控制电路,该跳闸控制电路能够通过检测甚至还不能被现有断路器检测到的电路上流动的dc电流分量及在电路上流动的ac,来在交流电流(ac)或直流电流(dc)的过载电流或者ac或dc的漏电发生时切断电路。



背景技术:

断路器是在多极ac电力电路、典型地三相ac电力电路(在下文中,简称为“电路”)中由于漏电而造成的多极(相)电流之间出现不平衡或者在至少任何一相电流中出现过载电流时用于切断电路的电装置。

特别地,能够切断漏电的断路器被称作接地漏电断路器(elcb)。

在这样的断路器中,电流互感器被用作用于检测电路的相电流的装置,并且在接地漏电断路器的情况下,零相电流互感器(zct)被用于检测漏电电流的量。断路器将由电流互感器检测到的电路的相电流的值与预设参考电流值进行比较,并且当检测到的相电流的值是参考电流值或更大时,断路器切断电路。此外,在接地漏电断路器的情况下,zct将检测到的漏电电流的值与预设参考漏电电流进行比较,并且当检测到的漏电电流值是参考漏电电流值或更大时,接地漏电断路器切断电路。

将参考图1描述根据相关技术的示例的断路器的电路配置。

在图1中,从ac电源10提供的ac电流通过电路流向电负载50。

目前,仅ac电流在其中流动的电负载几乎不存在,并且dc分量的非线性负载(比如led照明、现代控制装置、电力电子装置、逆变器/转换器等)占据了全部负载的一半多。因此,如参考图1可被提到的,流向负载50的负载电流(i1、i2)被形成为ac电流和dc电流同时流动。

电流检测装置20可以包括安装成使得电路穿过的环形核,以及次级线圈30,其被缠绕在环形核周围并且用于提供与流过电路的相电流或漏电电流成比例的电流检测信号。控制电路部分60-1被连接到电流检测装置20的次级线圈30以从次级线圈30接收电流检测信号(lc),并且当由电流检测信号(lc)指示的相电流值或漏电电流值是预设参考电流值或更大时,控制部分60-1输出跳闸控制信号。跳闸控制信号磁化被包括在跳闸机构(比如磁性跳闸装置)中的线圈,并且通过使用对应线圈的磁性驱动力来移动柱塞(输出部分)以触发开关机构40来执行跳闸操作。然后,包括可移动触点和固定触点的开关机构40对电路打开位置进行操作以切断电路,即,执行跳闸操作。

然而,在如图1所示的断路器中,电流检测装置20是一种互感器,并且因此其能够检测电路的ac分量,但是在负载50上流动的dc分量无法被感应到次级线圈,并且因此不可能检测到dc分量。

因此,根据相关技术的断路器的跳闸控制电路在出现了负载上流动的dc分量的过载电流或漏电时不能够切断电路。



技术实现要素:

因此,本发明的目标是提供一种用于断路器的跳闸控制电路,该跳闸控制电路能够通过检测在电路上流动的电流的dc分量和ac分量,在发生dc分量的过载电流或漏电时切断电路,并且在发生ac分量的过载电流或由于ac分量短路而造成的漏电时切断电路。

为了实现本发明的上述目标,提供了一种根据本发明的用于断路器的跳闸控制电路,该跳闸控制电路包括:电流互感器,其具有允许电路穿过的环形核以及缠绕在核的周围的用于检测在电路上流动的电流并且提供电流检测信号的次级线圈;振荡电路部分,其被配置为将电信号施加到电流互感器的次级线圈以增加电流互感器的磁滞回线的斜率来允许次级线圈检测在电路上流动的dc电流及ac电流;以及跳闸确定电路部分,其被配置为将从电流互感器的次级线圈输出的具有ac分量和dc分量的电流检测信号指示的电流值与预定的参考电流值进行比较,并且当由电流检测信号指示的电流值超过参考电流值时输出跳闸控制信号。

根据本公开的一个方面,根据本公开的用于断路器的跳闸控制电路还包括连接到电流互感器的次级线圈的感测电阻器,其将作为由次级线圈提供的电流检测信号的电流信号转换成电压信号,并且输出经转换的电压信号。

根据本公开的另一方面,被振荡电路部分施加的电信号是利用方波信号配置的。

根据本公开的又一方面,被振荡电路部分施加的电信号是利用具有高频的正弦波信号配置的。

根据本公开的又一方面,跳闸确定电路部分被配置为基于电流检测信号来确定根据时间变化的在电路上流动的电流量,并且确定通过振荡电路部分被供应给次级线圈的电信号的波形和频率。

根据本公开的又一方面,跳闸确定电路部分被配置为基于在次级线圈中生成的磁场强度随着时间流逝的变化和与其对应的磁通密度的变化之间的关系,来确定由振荡电路部分输出的波形的信号。

根据本公开的又一方面,根据本公开的用于断路器的跳闸控制电路还包括第一显示单元,其显示与被振荡电路部分施加到次级线圈的信号对应的次级线圈的磁通密度和磁场强度。

根据本公开的又一方面,根据本公开的用于断路器的跳闸控制电路还包括第二显示单元,其被配置为在检测到在穿过电流互感器的核的电路上流动的dc分量时,显示指示了dc分量被检测到的信息。

根据本公开的又一方面,跳闸确定电路部分被配置为从已经检测到包括了在电路上流动的dc电流分量和ac电流分量中的至少一个或dc电流与ac电流的混合电流的电流的次级线圈接收电流检测信号。

根据本公开的又一方面,跳闸确定电路部分包括低通滤波器电路部分,其去除可被混合在用于被次级线圈感应的电流的电流检测信号中的高频信号。

本申请的适用性的进一步范围会根据下文中所给出的详细描述而变得更显而易见。然而,应当理解,由于在本公开的范围内的各种改变和修改根据详细描述对于本领域的技术人员会变得显而易见,因此同时指示了本公开的优选实施例的详细描述和具体示例仅以例示方式给出。

附图说明

被包括以用于提供本公开的进一步理解的并且被包含在本说明书中并构成本说明书的一部分的附图示出了示例实施例,并且与描述一起用于解释本公开的原理。

在附图中:

图1是示出根据相关技术的用于断路器的跳闸控制电路的配置的框图。

图2是示出根据本公开的第一实施例的用于断路器的跳闸控制电路的配置的框图。

图3是示出根据本公开的第二实施例的用于断路器的跳闸控制电路的配置的框图。

图4是示出根据本公开的第三实施例的用于断路器的跳闸控制电路的配置的框图。

图5是示出根据本公开的用于断路器的跳闸控制电路的信号处理操作的框图和信号波形视图。

图6是示出根据本公开的用于断路器的跳闸控制电路中的处于电信号不被施加到电流互感器的次级线圈的状态下的电流互感器的磁滞回线hl1与处于电信号被施加到电流互感器的次级线圈的状态下的电流互感器的磁滞回线hl2之间的比较的视图。

图7是示出根据本公开的用于断路器的跳闸控制电路中的关于作为电流互感器的输入信号的在电路上流动的dc分量的波形和从振荡电路部分施加的方波的波形的波形视图。

图8是根据本公开的用于断路器的跳闸控制电路中的与电路上流动的dc分量有关的从电流互感器的次级线圈输出的检测输出电流的波形视图。

具体实施方式

现将通过参考附图以示例实施例的细节来给予描述。为了通过参考附图进行简要说明,相同或等效的部件会提供有相同的附图标记,并且其描述不会被重复。

如图2所示,根据本公开的第一实施例的用于断路器的跳闸控制电路包括电流互感器20、振荡电路部分61以及跳闸确定电路部分63。

在图2至图4中,参考标号60表示不包括电流互感器20的跳闸控制电路部分。

电流互感器20具有允许电路穿过的环形核20a、以及缠绕在核20a周围的用于检测在电路上流动的电流i1和i2并且用于提供电流检测信号的次级线圈20b。

这里,当断路器是接地漏电断路器时,电流互感器20可以被替代为零相电流互感器(简称为zct)。

图6是示出了根据本公开的用于断路器的跳闸控制电路中的处于电信号不被施加到电流互感器的次级线圈上的状态的电流互感器的磁滞回线hl1、和处于电信号被施加到电流互感器的次级线圈上的状态的电流互感器的磁滞回线hl2之间的比较的视图。

参考图6,当处于电信号不被施加到次级线圈上的状态下的电流互感器的磁滞回线hl1的斜率是第一斜率s1时,第一斜率s1小,从而根据磁场强度h的增加或降低的变化而进行的磁通密度b的变化不迅速。此外,可以看出,与磁滞回线hl2的饱和点p2相比,磁滞回线hl1的饱和点p1在相对大的磁场强度及相对低的磁通密度处形成。

这里,当其中混合了ac分量和dc分量的负载电流流动穿过具有磁滞回线hl1的这种特性的电流互感器的核时,仅ac分量被感应并且被输出至与电流互感器的输出部分对应的次级线圈,并且dc分量不被感应输出。

然而,例如当具有比如方波的波形的电信号通过振荡电路被施加到电流互感器的次级线圈时,电流互感器的磁滞回线hl2具有大于第一斜率s1的第二斜率s2。此外,根据磁场强度h的增加或降低的变化而进行的磁通密度b的变化是迅速的。

此外,可以看出,与磁滞回线hl1的饱和点p1相比,磁滞回线hl2的饱和点p2在相对小的磁场强度及相对大的磁通密度中形成。因此,可以看出,例如当具有比如方波的波形的电信号通过振荡电路被施加到次级线圈时,饱和点也移动。

因此,当其中混合了ac分量和dc分量的负载电流流动穿过具有大斜率的磁滞回线hl2的特性的电流互感器的核时,dc分量以及ac分量也被感应并输出至与电流互感器中的输出部分对应的次级线圈。

如下文参考图7和图8所描述的,该特性可以通过图7和图8的波形而被看出。

在图7中,假定当在电路上流动的电流(即在负载上流动的电流)是lp时,dc分量的lp(dc)随着时间的流逝具有常数值的波形,并且通过振荡电路部分被施加的方波的波形与下面所示的dc分量的lp(dc)的波形相同。

然后,如图8所示,电流互感器的次级线圈的输出波形可以通过示波器被查看。

如图7和图8所示,可以看出,在时间点t1、t2和t3处的方波的边缘处发生失真,但是在除了发生失真的时间点以外的大部分时间持续期间检测到具有预定电流值的dc波形。

此外,由于失真可以被跳闸确定电路部分63中所包括的低通滤波器电路部分63-1(参见图3或图4)去除,并且因此检测到在电路上流动的dc分量没有问题。

如上面所提到的,本发明是基于以下事实:当电信号被施加到电流互感器的次级线圈时,由于电流互感器的磁滞回线的斜率增加,因此dc分量及ac分量可以被检测到。

在根据本公开的用于断路器的跳闸控制电路中,在根据本公开的用于断路器的跳闸控制电路中的电流互感器20的磁滞回线特性可以被表达为等式1。

这里,μ0是核20a的相对磁导率,μm是核的最大相对磁导率,以及lr是核的半径。

此外,在等式1中,比例常数k可以如由等式2所表达的来限定。

这里,μ0是核20a的磁导率,μm是核的磁导率的最大值,以及bs是在核的饱和阶段处的磁通密度。

此外,当在电路上流动的电流,即,初级侧电流是ip(t)并且在次级线圈上流动的次级侧电流是il(t)时,初级侧电流、次级侧电流及磁场强度h具有下面关系。

这里,ip(t)表示在电路上流动的根据时间的变化的电流,n表示次级线圈的匝数,il(t)表示通过将被振荡电路部分61供应给次级线圈的根据时间的变化的电流iosc(t)添加到所获得的电流,以及l表示次级线圈的长度。

因此,通过等式1至3,可以看出磁场通量h和磁通密度b由被供应给次级线圈的根据时间的变化的电流iosc(t)而被改变。

即,由于电流互感器的磁场强度和磁通密度可以通过将电信号通过振荡电路部分施加到次级线圈而被改变,所以电流互感器的磁滞回线特性可以被改变。特别地,当根据时间而迅速改变的方波信号或高频正弦波信号被施加到次级线圈时,电流互感器的磁滞回线的斜率增加。

如图2所示,振荡电路部分61将电信号施加到电流互感器的次级线圈20b以增加电流互感器20的磁滞回线的斜率,使得在次级线圈上流动的dc电流及ac电流被检测到。

根据本公开的实施例,由振荡电路部分61施加的电信号包括方波信号。因此,根据本公开的实施例,振荡电路部分61可以被配置为方波振荡电路部分。

根据本公开的实施例,由振荡电路部分61施加的电信号包括高频的正弦波信号。因此,根据本公开的实施例,振荡电路部分61可以被配置为正弦波振荡电路部分。

当振荡电路部分61将低频的正弦波信号施加到次级线圈时,电流互感器20的磁滞回线的斜率几乎相似于处于低频正弦信号不被施加到次级线圈的状态下的电流互感器20的磁滞回线的斜率,并且在电路上流动的仅ac被次级线圈感应到并且被检测到。因此,没有检测在电路上流动的dc分量的效果。因此,当振荡电路部分61振荡了正弦波信号时,振荡电路部分61应振荡高频的正弦波信号,并且将信号施加到次级线圈,使得在电路上流动的dc分量及ac分量可以通过电流互感器被检测到。

此外,根据本公开的另一实施例,振荡电路部分61可以被配置为振荡具有多个预定的不同频率的方波信号或正弦波信号的波形,并且选择性地输出波形。此外,振荡电路部分61可以被配置为响应于来自跳闸确定电路部分63的选择控制信号,来输出在方波和正弦波中的具有对应频率和对应波形的电信号。此外,振荡电路部分61可以被配置为当没有从跳闸确定电路部分63接收到选择控制信号时,停止电信号的输出。

跳闸确定电路部分63将由从电流互感器20的次级线圈20b输出的具有ac分量和dc分量的电流检测信号指示的电流值与预定的参考电流值进行比较,并且当由电流检测信号指示的电流值超过参考电流值时输出跳闸控制信号。

跳闸确定电路部分63可以包括模拟-数字转换器及中央处理单元(cpu)。基于被模拟-数字转换器在某个时间处采样并且进行数字转换的电流检测信号,跳闸确定电路部分53的cpu可以确定在电路上流动的电流量。

跳闸确定电路部分63可以被配置为基于电流检测信号来确定要通过振荡电路部分61被供应到次级线圈20b的电信号的波形和频率。详细地,其可以是在由电流检测信号指示的电流值根据时间流逝没有变化的具有预定值的dc。此外,当由电流检测信号指示的电流值具有dc与ac的混合波形的特性时,即当电流检测信号是具有dc与ac的混合的波形的信号时,在对应波形中的正最大值的绝对值与负最小值的绝对值是不同的,并且因此一个周期的两半形成不对称。当跳闸确定电路部分63确定由电流检测信号指示的电流值是指示出dc特性的波形或者是混合了dc与ac的波形时,跳闸确定电路部分63可以将选择控制信号传输给振荡电路部分61使得具有多个预定频率中的任何一个频率的方波或高频的正弦波被选择。

如果跳闸确定电路部分63确定出:由于正最大值的绝对值与负最小值的绝对值相同而在一个周期波形中的半周期波形是对称的所以由电流检测信号指示的电流值具有纯ac分量的波形,那么跳闸确定电路部分63可以不将选择控制信号输出给振荡电路部分61,并且振荡电路61可以停止电信号的输出以作为响应。

此外,根据另一实施例的跳闸确定电路部分63可以被配置为基于在次级线圈20b中生成的时隙(timeslot)造成的磁场强度的变化和与其对应的磁通密度的变化之间的关系,来确定振荡电路部分61要输出的波形的信号。

为此,跳闸确定电路部分63可以具有磁场传感器和/或霍尔传感器(未示出),以提供在次级线圈20b中生成的时隙造成的磁场强度的变化以及与其对应的磁通密度的变化的信号通过模拟-数字转换器作为数字信号,并且根据接收到的数字信号确定电流磁滞回线的形式和斜率。

因此,跳闸确定电路部分63将已确定的电流磁滞回线的斜率与预设的参考斜率进行比较,并且当已确定的电流磁滞回线的斜率大于预设的参考斜率时,跳闸确定电路部分63可以不将选择控制信号输出到振荡电路部分61,并且振荡电路部分61可以停止电信号的输出以作为响应。这里,预设的参考斜率可以是关于磁滞回线的斜率的使在电路上流动的ac分量和dc分量两者均能够被检测的阈值斜率,并且可以被用户通过数据输入装置预先设置在跳闸确定电路部分63中包括的存储器中。

因此,跳闸确定电路部分63将已确定的电流磁滞回线的斜率与预设的参考斜率进行比较,并且当已确定的斜率小于参考斜率时,例如跳闸确定电路部分63对选择了具有第一频率的方波信号的选择控制信号进行输出,并且振荡电路部分61将方波信号输出至次级线圈20b,使得电流互感器的磁滞回线的斜率增加以使在电路上流动的dc分量及ac分量能够被检测。

跳闸确定电路部分63从次级线圈20b接收关于包括在电路上流动的dc分量和ac分量中的至少一个分量的电流的电流检测信号,或者关于dc电流和ac电流的复合电流的电流检测信号。

此外,如图3或图4所示,根据另一实施例的跳闸确定电路部分63可以进一步包括低通滤波器电路部分63-1。低通滤波器电路部分63-1可以去除可被混合在电流检测信号中的高频分量。因此,在图8中的作为从次级线圈20b提供的电流检测信号中的高频分量的失真部分可以被低通滤波器电路部分63-1去除。

如图3或图4所示,根据本公开的另一实施例的用于断路器的跳闸控制电路还可以包括感测电阻器62。

感测电阻器62被连接到电流互感器20的次级线圈20b,并且通过将电阻施加到电流信号的效果,即通过将电阻值乘以电流信号的值,而将作为由次级线圈20b提供的电流检测信号的电流信号转换成电压信号并且输出。

如图4所示,根据本公开的另一实施例的用于断路器的跳闸控制电路还可以包括第一显示单元64和第二显示单元65。

第一显示单元64可以显示次级线圈的与被振荡电路部分施加到次级线圈的信号对应的磁通密度和磁场强度。这里,如上所述,跳闸确定电路部分63可以从磁场传感器和/或霍尔传感器接收在次级线圈20b中生成的时隙造成的磁场强度的变化以及与其对应的磁通密度的变化通过模拟-数字转换器作为数字信号,并且因此可以将次级线圈的磁通密度和磁场强度的信息从跳闸确定电路部分63提供给第一显示单元64以便被显示。

当检测到在穿过电流互感器的环核的电路上流动的dc分量时,第二显示单元65可以显示指示了检测到dc分量的信息。

如上所述,当由电流检测信号指示的电流值表示具有统一值而根据时间的流逝没有变化的纯dc特性时,或者当由电流检测信号指示的电流值表示dc与ac的混合波形的特性时,跳闸确定电路部分63可以确定从在电路上流动的电流检测到dc分量,并且将对应信息提供给第二显示单元65。这里,例如该信息可以是具有比如“dc分量已经被检测到”之类的消息的内容的信息。

此外,当跳闸确定电路部分63确定了在电流检测信号的一个周期波形中的半周期波形是对称的并且因此由电流检测信号指示的波形是纯ac分量的波形时,跳闸确定电路部分63可以确定在在电路上流动的电流中没有检测到dc分量,并且将对应信息提供给第二显示单元65。这里,例如该信息可以是具有比如“没有dc分量被检测到”之类的消息的内容的信息。

根据实施例,第一显示单元65和第二显示单元65可以被配置为单个液晶显示器(lcd),并且对应的lcd可以被配置使得关于显示信息的选择性输入被选择输入单元(比如按键开关或选择按钮开关(未示出))接合。

在图2中,参考标号30表示跳闸机构,比如磁性跳闸装置。

对应跳闸机构30可以包括例如作为输出部件的柱塞、以及用于通过磁力驱动输出部件的线圈。

在图2中,参考标号40表示包括固定触点、可移动触点的开关机构,以及用于驱动断路器中的可移动触点的机构部件,并且参考标号50表示电负载。

在另一方面,将通过参考图2至图8来描述根据本公开的实施例的被配置为如上所述用于断路器的跳闸控制电路的操作。

如图2或图5所示,当在穿过电流互感器20的核20a的电路上流动的电流是初级电流lp或i1或i2时,初级电流lp或i1或i2可以包括ac分量和dc分量。

在电路上流动的初级电流lp或i1或i2被次级线圈20b检测到并且作为电流检测信号被提供给跳闸确定电路部分63。

当跳闸确定电路部分63基于电流检测信号确定了由电流检测信号指示的电流值是指示dc特性的波形或者是其中混合了dc与ac的波形时,跳闸确定电路部分63可以将选择控制信号传输给振荡电路部分61使得具有多个预定频率中的任何一个频率的方波或高频的正弦波被选择。

如果跳闸确定电路部分63确定了由电流检测信号指示的电流值具有纯ac分量的波形,那么跳闸确定电路部分63可以不将选择控制信号输出到振荡电路部分61,并且振荡电路部分61可以停止电信号的输出以作为响应。

然后,振荡电路部分61振荡并且输出与选择控制信号对应的具有多个频率中的任何一个频率的方波或高频正弦波的电信号,并且电信号被提供给次级线圈20b。如图6所示,方波或高频正弦波的电信号增加了由虚线指示的电流互感器20的第一磁滞回线hl1的第一斜率s1来改变电流互感器20的磁滞特性以具有第二磁滞回线hl2的第二斜率s2。

因此,在电路上流动的dc电流(dc电流分量)及ac电流在电流互感器20的次级线圈20b中被检测到。

跳闸确定电路部分63将由从电流互感器20的次级线圈20b输出的具有ac分量和dc分量的电流检测信号指示的电流值与预定的参考电流值进行比较,并且当由电流检测信号指示的电流值超过参考电流值时,跳闸确定电路部分63输出跳闸控制信号。

当基于比较结果由电流检测信号指示的电流值小于参考电流值时,跳闸确定电路部分63不输出跳闸控制信号。

跳闸控制信号对在跳闸机构(比如磁跳闸装置30)中包括的线圈进行磁化并且通过移动输出部件(例如,柱塞)来触发开关机构40。然后,包括可移动触点和固定触点的开关机构40操作到电路打开位置以切断电路,即执行跳闸操作。

图3所示的本公开的其他实施例与前述实施例的不同之处在于添加了感测电阻器62和低通滤波器电路部分63-1。

因此,将仅描述与感测电阻器62和低通滤波器电路部分63-1有关的操作。

感测电阻器62通过其电阻基于作为由次级线圈20b提供的电流检测信号的电流信号而形成电压,将电流信号转换成电压信号,并且将经转换的电压信号提供给跳闸确定电路部分63。

低通滤波器电路部分63-1去除可被混合在电流检测信号中的高频分量。因此,如图8所示,作为在由次级线圈20b提供的电流检测信号中包括的高频分量的失真部分被低通滤波器电路部分63-1去除。

图4所示的本公开的另一实施例与前述实施例的不同之处在于进一步提供了第一显示单元64和第二显示单元65。

因此,为了避免重复的描述,将仅描述与第一显示单元64和第二显示单元65有关的操作。

如上所述,跳闸确定电路部分63可以从磁场传感器(未示出)和/或霍尔传感器(未示出)接收通过模拟-数字转换器的在次级线圈20b中生成的时隙造成的磁场强度的变化以及对应磁通密度的信号作为数字信号,并且因此,次级线圈的磁通密度和磁场强度的信息从跳闸确定电路部分63被提供给第一显示单元64。

第一显示单元64可以显示由跳闸确定电路部分63提供的、次级线圈的磁通密度和磁场强度。

当由电流检测信号指示的电流值表示具有预定值而根据时间的流逝没有变化的纯dc特性时或者当由电流检测信号指示的电流值表示dc与ac的混合波形的特性时,跳闸确定电路单元63确定在在电路上流动的电流中检测到dc分量,并且将对应的信息提供给第二显示单元65。

然后,例如第二显示单元65将指示了dc分量被检测到的信息显示为具有比如“dc分量已经被检测到”之类的内容的消息。

此外,当跳闸确定电路部分63确定了由电流检测信号根据电流值表示的波形是纯ac分量的波形时,跳闸确定电路部分63可以确定在在电路上流动的电流中没有检测到dc分量,并且提供待被显示在第二显示单元65上的对应信息。因此,例如第二显示单元65可以显示具有比如“dc分量还没有被检测到”之类的消息的内容的信息。

此外,当用户通过前述的电连接到跳闸确定电路部分63的选择输入单元来输入关于显示信息的选择时,跳闸确定电路部分63根据用户的显示信息选择输入通过例如形成第一显示单元64和第二显示单元65的液晶显示器来对显示的信息进行显示。

例如,当用户通过前述的选择输入单元来请求对根据在电路上流动的电流的电流互感器20的磁通密度和磁场强度的信息进行显示时,跳闸确定电路部分63控制例如形成第一显示单元64的液晶显示器以显示对应信息。

例如,当用户通过前述的选择输入单元来请求对指示了在电路上流动的电流中是否存在dc分量的信息进行显示时,跳闸确定电路部分63通过形成第二显示单元65的液晶显示器来显示对应信息。

如上所述,由于根据本公开的用于断路器的跳闸控制电路包括将电信号施加到电流互感器的次级线圈的振荡电路部分,因此获得了以下效果:次级线圈通过增加电流互感器的磁滞回线的斜率来检测在电路上流动的dc电流及ac电流。

如上所述,由于根据本公开的用于断路器的跳闸控制电路还包括感测电阻器,其将作为由次级线圈提供的电流检测信号的电流信号转换成电压信号并且输出经转换的电压信号,因此可以获得以下效果:将作为电压信号的电流检测信号输入到跳闸确定电路并且将电压信号与参考电压进行比较以用于确定跳闸。

在根据本公开的用于断路器的跳闸控制电路中,由于被振荡电路部分施加的电信号包括迅速改变的方波信号或高频的正弦波信号,因此当对应的电信号通过振荡电路部分被施加到次级线圈时,可以改变电流互感器的磁场强度和磁通密度并且可以改变电流互感器的磁滞回线特性。特别地,获得了以下效果:通过迅速改变的方波信号或高频的正弦波信号增加了电流互感器的磁滞回线的斜率。

在根据本公开的用于断路器的跳闸控制电路中,由于跳闸确定电路部分被配置为基于电流检测信号来确定根据时间的变化的在电路上流动的电流量,因此可以根据基于时间的变化的电流检测信号的波形的变化来确定根据电流检测信号的在电路上流动的电流是纯ac或纯dc、还是ac与dc的混合波,并且可以获得以下效果:根据电流检测信号确定了通过振荡电路部分被供应给次级线圈的电信号的波形和频率。

在根据本公开的用于断路器的跳闸控制电路中,由于跳闸确定电路部分被配置成基于在次级线圈中生成的时隙造成的磁场强度的变化和与其对应的磁通密度的变化之间的关系由振荡电路单元输出的波形的信号,因此跳闸确定电路部分可以将对应的选择控制信号输出到振荡电路部分,使得振荡电路部分根据电流互感器的磁滞回线的斜率来输出对应频率的方波信号或对应高频的正弦波信号。

由于根据本公开的用于断路器的跳闸控制电路还包括第一显示单元,因此可以获得以下效果:振荡电路部分显示与被施加到次级线圈的信号对应的、次级线圈的磁通密度和磁场强度。

由于根据本公开的用于断路器的跳闸控制电路还包括第二显示单元,因此当检测到在穿过电流互感器的环形核的电路上流动的dc分量时,跳闸控制电路可以获得以下效果:对指示了检测到dc分量的信息进行显示。

在根据本公开的用于断路器的跳闸控制电路中,由于跳闸确定电路部分从次级线圈接收检测到在电路上流动的dc电流或ac电流或dc与ac的混合电流的电流检测信号,因此跳闸确定电路部分可以当故障发生在dc、ac和复合信号中时基于接收到的信号来切断电路。

在根据本公开的用于断路器的跳闸控制电路中,由于跳闸确定电路部分包括低通滤波器电路部分,因此可以去除可被混合在由次级线圈感应的电流的信号中的高频信号,以最小化在根据高频噪声确定跳闸中的误差的生成。

上述实施例和优势仅是示例性的并且不应被认为限制本公开。本教导可以容易地被施加到其他类型的设备。本描述意图是示例性的,并且不限制权利要求的范围。许多替代、修改和改变对于本领域的技术人员将是显而易见的。本文所描述的示例实施例的特征、结构、方法和其他特性可以以各种方式被组合以获得附加的和/或替代的示例实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1