具有用于增强共源极电感的栅极线圈的逆变器开关器件的制作方法

文档序号:14594338发布日期:2018-06-05 03:03阅读:183来源:国知局

本发明大体涉及逆变桥中的功率开关器件,并且更具体地,涉及使用高开关效率的分立式功率开关器件的电动车辆的逆变器驱动系统。



背景技术:

例如混合动力电动车辆(hybrid electric vehicle,HEV)、插电式混合动力电动车辆(plug-in hybrid electric vehicle,PHEV)、电池电动车辆(battery electric vehicle,BEV)的电动车辆使用逆变驱动的电机提供牵引扭矩。典型的电驱动系统可以包括直流(Direct-current,DC)电源(例如电池组或燃料电池),DC电源通过接触器开关连接到可变电压转换器(variable voltage converter,VVC)来调节主DC链路电容器两端的主母线电压。逆变器连接在主母线和牵引马达之间,便于将DC母线功率转换成与马达的绕组相耦合的交流(Alternating current,AC)电压以推动车辆。

逆变器包括桥接有多个相脚的晶体管开关器件,例如绝缘栅双极晶体管(insulated gate bipolar transistor,IGBT)。典型配置包括由三相脚的逆变器驱动的三相马达。电子控制器通断开关以便于将来自母线的直流电压转换成施加到马达的交流电压。为了传递正弦电流输出的近似值而以期望的速度和扭矩来驱动电动机,逆变器可以对DC链路电压进行脉宽调制。施加到IGBT栅极的脉宽调制(Pulse Width Modulation,PWM)控制信号按需使栅极通断使得得到的电流与期望的电流相匹配。

因为逆变器的每个相脚具有跨接在DC链路两端的一对上下开关晶体管,重要的是相脚中的两个器件不会同时导通(即打开)。通常在PWM开关信号中插入短时间间隔(称为死区时间),在死区时间期间相脚的上下开关器件关闭以防直通。

共源极电感是指由功率开关晶体管中的主功率回路(即晶体管的漏极到源极或集电极到发射极的功率输出)和栅极驱动回路(即栅极到源极或栅极到发射极)共享的电感。共源极电感同时承载器件输出电流(例如漏极到源极或集电极到发射极的电流)和栅极充/放电电流。共源极电感的输出(功率回路)部分的电流以增强(例如,加速)开关性能的方式改变栅极电压。对于开关桥而言,减少的开关时间是可取的,这是由于其伴随有在开关转换期间消耗(即丢失)的相应能量减少。电路电压、电流、和开关操作的建模可以确定共源极电感的最佳值。需求一种可以将任何识别的电感以简单的方式和低成本内置在逆变器中的方法和装置。



技术实现要素:

根据本发明,提供一种半桥功率模块,包括:

一对晶体管芯片,所述一对晶体管芯片连接到正极线路、负极线路、和AC导电线路以用于承载桥接电流;

一对栅极驱动引脚;以及

一对栅极驱动线圈,所述一对栅极驱动线圈连接相应引脚和芯片,其中所述栅极驱动线圈设置在所述正极线路和所述负极线路之间的区域中,所述区域包含由所述电流产生的具有局部最大变化率的磁通量。

根据本发明的一个实施例,还包括辅助印刷电路板,其中所述栅极驱动线圈包括所述辅助印刷电路板上的迹线。

根据本发明的一个实施例,其中所述栅极驱动线圈设置在所述辅助印刷电路板的相对的平坦表面上。

根据本发明的一个实施例,还包括保持所述芯片和所述辅助印刷电路板的封装体。

根据本发明的一个实施例,其中所述一对栅极驱动引脚包括所述晶体管芯片的栅极侧上的栅极引脚。

根据本发明的一个实施例,其中所述栅极引脚是导通所述晶体管的导通引脚,其中所述模块还包括用于关断晶体管的一对栅极关断引脚,其中每个栅极驱动线圈具有多个匝,其中每个栅极驱动线圈在两个线圈端之间具有中间抽头,其中每个晶体管的所述导通引脚或所述关断引脚中的一个连接到所述相应栅极驱动线圈的所述中间抽头以获得第一共源极电感,并且每个晶体管的所述导通引脚或所述关断引脚中的另一个连接到所述线圈端以获得高于所述第一共源极电感的第二共源极电感。

根据本发明的一个实施例,其中所述一对栅极驱动引脚包括所述晶体管芯片的发射极侧上的开尔文发射极引脚。

根据本发明的一个实施例,还包括一对栅极钳位引脚,每个所述栅极钳位引脚绕过所述栅极驱动线圈连接到相应的栅极焊盘。

根据本发明的一个实施例,其中所述栅极驱动线圈包括包含在引线框架中的导体。

根据本发明的一个实施例,其中所述栅极驱动线圈包括沿所述区域内的线圈图形的间隔位置处的多个接合焊盘,并且其中所述栅极驱动线圈还包括将相应的接合焊盘互相连接的接合线段。

根据本发明的一个实施例,其中所述晶体管芯片各自包括绝缘栅双极晶体管(IGBT)。

根据本发明,提供一种功率转换器,包括:

具有正母线和负母线的DC链路,所述DC链路配置为接收DC电源电压;

在所述母线之间连接的多个半桥功率模块,每个功率模块包括:

一对晶体管芯片,所述一对晶体管芯片连接到正极线路、负极线路、和AC导电线路以用于承载桥接电流;

一对栅极驱动引脚;以及

一对栅极驱动线圈,所述一对栅极驱动线圈连接相应引脚和芯片,其中所述栅极驱动线圈设置在所述正极线路和所述负极线路之间的区域中,所述区域包含由所述电流产生的具有局部最大变化率的磁通量。

根据本发明的一个实施例,其中每个功率模块还包括辅助印刷电路板,其中所述栅极驱动线圈包括所述辅助印刷电路板上的迹线。

根据本发明的一个实施例,其中相应的所述栅极驱动线圈设置在相应的所述辅助印刷电路板的相对的平坦表面上。

根据本发明的一个实施例,其中每个功率模块还包括保持所述相应的芯片和辅助印刷电路板的封装体。

根据本发明的一个实施例,其中所述一对栅极驱动引脚包括所述晶体管芯片的栅极侧上的栅极引脚。

根据本发明的一个实施例,其中所述栅极引脚是导通所述晶体管的导通引脚,其中每个模块还包括用于关断相应晶体管的一对栅极关断引脚,其中每个栅极驱动线圈具有多个匝,其中每个栅极驱动线圈在两个线圈端之间具有中间抽头,其中每个晶体管的所述导通引脚或所述关断引脚中的一个连接到所述相应栅极驱动线圈的所述中间抽头以获得第一共源极电感,并且每个晶体管的所述导通引脚或所述关断引脚中的另一个连接到所述线圈端以获得高于所述第一共源极电感的第二共源极电感。

根据本发明的一个实施例,其中所述一对栅极驱动引脚包括所述晶体管芯片的发射极侧上的开尔文发射极引脚。

根据本发明的一个实施例,还包括一对栅极钳位引脚,每个所述栅极钳位引脚绕过所述栅极驱动线圈连接到相应的栅极焊盘。

根据本发明的一个实施例,其中所述栅极驱动线圈包括包含在相应的引线框架中的导体。

在本发明的一个方面,一种半桥功率模块包括连接到正极线路、负极线路、和AC导电线路以用于承载桥接电流的一对晶体管。该模块包括一对栅极驱动引脚以及一对连接相应引脚和芯片的栅极驱动线圈。栅极驱动线圈设置在正极和负极线路之间的区域中,该区域包含由电流产生的具有局部最大变化率的磁通量。

附图说明

图1是示出具有受控于共源极电感的一对IGBT的逆变器相脚的等效电路的示意图;

图2是具有一对IGBT和用于最小化共源极电感的电极结构的转模电源模块(transfer-molded power module,TPM)的平面图;

图3是示出了与共源极电感相关的栅极回路和功率回路的图2的转模电源模块(TPM)的平面图;

图4是根据本发明的一个实施例的转模电源模块(TPM)的平面图,其中栅极线圈增强了共源极电感;

图5是图4的电源模块沿着线5-5的横截面图;

图6是用于实施栅极线圈的图4的辅助印刷电路板的平面图;

图7是本发明另一实施例的转模电源模块的平面图;

图8是电源模块的示意图,其中每个晶体管包括与有源钳位一起使用的绕过栅极线圈的单独的栅极连接;

图9是示出了提供图8所示的电路的布局的转模电源模块(TPM)的平面图;

图10是示出了具有用于每个晶体管的多个栅极控制引脚,使得用于导通和关断晶体管的不同的共源极电感得以提供的实施例的示意图;

图11是提供了具有不同的共源极电感值的单独的栅极导通和栅极关断连接的辅助印刷电路板的平面图;

图12是本发明另一实施例的转模电源模块(TPM)的平面图,其中使用引线框架实现栅极线圈;

图13是本发明另一实施例的转模电源模块(TPM)的平面图,其中使用遵循在TPM基板上的接合焊盘的线圈图形的接合引线来实现栅极线圈;

图14是示出在栅极驱动电路内的栅极侧引入的增强的共源极电感的示意图;

图15是示出在栅极驱动电路内的发射极侧引入的增强的共源极电感的示意图。

具体实施方式

共源极电感是由晶体管开关器件的主功率回路和栅极驱动回路共享的电感。共源极电感通常来自与印刷电路板上的器件封装和迹线相关的寄生电感。就用于从直流到交流功率转换的开关桥而言,共源极电感的存在是有益的。图1示出了在电动车辆中的逆变器驱动系统中常用于驱动电动马达的类型的相脚10的示例,其中上部晶体管11示为具有上部栅极、集电极、和发射极端子的IGBT。也可以使用其它类型的半导体器件,例如MOSFET(金属氧化物半导体场效应晶体管)。如本文所使用的,IGBT的栅极、集电极、和发射极端子也指MOSFET的栅极、漏极、和源极端子。,具有下部栅极、集电极、和发射极端子的下部晶体管12与上部晶体管11串联在正极母线13和负极母线14之间,以限定中间连接点15。反向并联二极管16和17跨接晶体管11和12。

上部栅极和发射极端子产生上部共源极电感,上部共源极电感包括与功率回路(即发射极侧)电感19磁耦合的栅极回路电感18。栅极驱动电路20和栅极电阻器21耦合到栅极端子以便于控制上部晶体管11的开关。下部栅极和发射极端子产生下部共源极电感,下部共源极电感包括与功率回路电感23磁耦合的栅极回路电感22。栅极驱动电路24和栅极电阻器25耦合到栅极端子以便控制下部晶体管12的开关。

图2示出了配置为具有最小共源极电感的转模电源模块(TPM)29。2合1模块携带一对开关晶体管,该对开关晶体管为实现逆变桥的相脚而连接。具体地,成型体30承载多个导电迹线或引线框架元件31、32、和33,多个导电迹线或引线框架元件31、32、和33延伸超过主体30的边缘34以形成用于分别连接正母线DC+、负母线DC-、和相脚输出AC的电源端子。第一(上部)IGBT 35是形成为芯片的半导体器件,半导体器件具有在焊接到迹线31的底面上形成的集电极端子或焊盘。芯片的上表面设置有栅极端子/焊盘36,而焊盘36的周围区域设置有发射极端子/焊盘,该发射极端子/焊盘焊接到接合引线板或突片37的一端。板37的第二端38焊接到迹线33以将IGBT 35的发射极连接到第二(下部)IGBT 40的集电极和AC相脚输出。IGBT 40的芯片的上表面设置有栅极端子/焊盘43,而焊盘43的周围区域设置有发射极端子/焊盘,该发射极端子/焊盘焊接到接合引线板或突片41的一端。板41的第二端42焊接到迹线32以将IGBT 40的发射极连接到负母线DC-。迹线31-33以及板37和41都彼此电绝缘,并由(可由环氧树脂构成的)成型体30保持在适当位置。

一组连接器引脚,包括栅极引脚46和48以及开尔文发射极引脚47和49,延伸超过主体30的第二边缘45。接合的跳线50和51将栅极引脚46和48分别连接到栅极端子36和43。接合的跳线52和53将开尔文发射极引脚47和49分别连接到IGBT 35和40的发射极焊盘。开尔文发射极引脚布置为不承载IGBT的输出电流(即开尔文发射极引脚垂直于IGBT的输出电流)。

图3示出了IGBT 35的栅极电流流动的栅极回路54和包括主母线电流的功率回路55。回路54和55具有最小的重叠,这意味着共源极电感很低。用于正母线和负母线的导电迹线31和32之间的区域56包括由相脚输出电流产生的呈现局部最大变化率的磁通量。在IGBT的开关瞬变期间,在DC+和DC-端子处产生大的di/dt,而在AC端子处的电流变化相对较慢。区域56由于对应于由IGBT电流产生的磁通量的最高变化率,因而具有产生共源极电感的最大电位。但是由于栅极回路54与区域56不重叠,IGBT输入和输出电流之间的耦合较低。

栅极回路电感和/或功率回路电感的大小以及二者之间的相互耦合程度可以通过选择适当的布局和/或在PCB迹线中包括附加的重叠线圈形成到晶体管栅极或发射极的导电路径来容易地操纵(例如增强),以便于获得所需的共源极电感。在本发明中,通过将一个或多个栅极线圈靠近区域56(即将栅极线圈设置在IGBT和正负母线之间的导电路径之间的区域附近)来提高在栅极回路和功率回路之间获得充分耦合的能力。

图4和图5示出了2合1的转模电源模块(TPM)60,其中包覆成型体61承载引线框架的多个导电迹线62、63、和64以形成分别连接正母线DC+、负母线DC-、和相脚输出AC的电源端子。上部IGBT 65具有形成在焊接到迹线62的底面上的集电极端子或焊盘。IGBT 65的上表面设置有栅极端子/焊盘66,而焊盘66的周围区域设置有焊接到接合引线板或突片67的一端的发射极端子/焊盘。板67焊接到迹线64以将IGBT 65的发射极连接到下部IGBT 68的集电极和AC相脚输出。IGBT 68的上表面设置有栅极端子/焊盘69,而焊盘69的周围区域设置有焊接到接合引线板或突片70的一端的发射极端子/焊盘。板70也焊接到迹线63以便于将IGBT 68的发射极连接到负母线DC-。迹线62-64以及板67和70都由主体61彼此电绝缘。铜分隔件83可用于连接芯片和引线框架。

为IGBT 65提供开尔文发射极引脚71和栅极引脚72。为IGBT 68提供栅73和开尔文发射极引脚74。接合的跳线75和76将发射极引脚71和74分别连接到IGBT 65和68的发射极焊盘。栅极线圈以下述方式在栅极引脚72和73与栅极焊盘(gate pad)66和69之间分别连接。图4和5中示出了辅助印刷电路板(printed circuit board,PCB)80(可以实现为柔性PCB),其中平面T形基板承载由沿着回路图形的导电迹线形成的在上表面上的第一栅极线圈81和在下表面上的第二栅极线圈82。PCB 80设置在正极和负极迹线62和63之间的区域中以便于将线圈81和82暴露在由流入或流出DC+和DC-母线的电流产生的磁通量中,其中磁通量具有局部最大的变化率。由于磁通量垂直于模块60的平面方向,PCB 80可以直接设置在线圈81和82之间,或者可以在磁通量的方向上稍微垂直偏移并且仍然保持在该区域中。由功率回路中的电流在栅极回路中磁感生的电压与磁通量的变化率成正比。通过将栅极线圈定位在识别的区域中,可以容易地达到足够的耦合。通过调节线圈的尺寸和/或向线圈添加匝数,共源极电感可以调节到任何所需的幅度。

栅极线圈81的一端焊接到栅极引脚72,并且另一端通过接合的跳线连接到栅极焊盘66。栅极线圈82的一端焊接到栅极引脚73,并且另一端通过接合的跳线连接到栅极焊盘69。

通过在辅助PCB 80的相对侧上定位栅极线圈81和82,可获得紧凑的结构,同时能够实现大的共源极电感值。在栅极线圈之间的寄生电容大到足以产生关注的情况下,栅极线圈可以布置成使得彼此不重叠。例如,图6示出了具有第一栅极线圈86和第二栅极线圈87的辅助PCB 85的另一个实施例,该第一栅极线圈86和第二栅极线圈87可以由同一表面上的导电迹线形成。导电迹线的端部可以包括放大的接合焊盘以便于将栅极线圈86和87连接到功率模块的晶体管和/或栅极引脚。

如图7所示,栅极引脚72和73可以替代地通过接合的跳线连接到相应的栅极线圈。因此,功率模块60'包括经修改的辅助PCB 80',其中栅极线圈81'和82'适于通过接合线88和89连接到栅极引脚72和73。

在功率模块的一些应用中,可能需要提供诸如有源栅极钳位功能的电路保护功能,其中使用MOSFET或其他晶体管可以将一个IGBT的栅极端子选择性地连接到相应的发射极,使得即使存在电压瞬变也可以保持IGBT关断。然而,由栅极线圈引入的增强的栅极电感可能会干扰这种有源钳位功能。因此,可以使用如图8所示的添加的栅极端子,其中相脚90采用包含于功率模块中的上部和下部晶体管91和92。由于与每个晶体管相关联的部件基本相同,因此仅描述晶体管91的部件。晶体管91具有栅极端子93和开尔文发射极端子94。栅极驱动器95(例如德国慕尼黑的英飞凌科技公司(Infineon Technologies AG)的SP001080574 IGBT驱动器IC)具有连接到开尔文发射极端子94的端子96。驱动器95具有各自连接到栅极端子93的端子97和99。端子99直接连接到栅极端子93,并且端子97通过增强的共源极电感98连接。因此,驱动器95使用端子97来控制IGBT 91的开关状态,并且使用端子99将IGBT 91有源钳位到关闭状态。

图8的电路在图9所示的TPM功率模块60”中实施。辅助PCB 80上的栅极线圈81在一端具有焊盘100。接合线101将焊盘100连接到IGBT 65上的栅极焊盘66。第二接合线103还将焊盘100连接到栅极钳位引脚102。类似地,栅极线圈82具有接合焊盘105,接合焊盘105通过接合线106连接到栅极钳位引脚107并且通过接合线108连接到IGBT 68上的栅极焊盘69。因此,钳位引脚102和107绕过栅极线圈连接到各个IGBT栅极。

可以在本发明中使用的另一个特征是为器件导通和器件关断设置不同的共源极电感值。在这种情况下,该器件可以优选地包括多个栅极控制引脚。一个引脚用于控制导通开关行为,并且另一个用于控制关断开关行为。每个栅极控制引脚可能具有不同尺寸、不同绕组匝数、或不同位置的栅极线圈,以为了开启和关闭而实现独特的共源极电感。用于同一器件的栅极线圈可以共享绕组的公共部分以节省空间。例如,图10中的本发明的实施例使用用于导通晶体管的一对栅极导通引脚和用于关断晶体管的一对栅极关断引脚。每个栅极线圈可以包括适应共源极电感的多个匝以提供用于导通和关断的所需性能。另外,提供一对栅极钳位引脚以绕过所有增加的电感。

图11示出了承载电路迹线的辅助柔性PCB 110,电路迹线形成用于分隔导通和关断电感的多匝、多抽头栅极线圈111。接合焊盘112在线圈111的一端连接到IGBT栅极焊盘(未示出)并且通过接合线114连接到钳位引脚113。线圈111中的中间抽头115通过接合线117连接到栅极导通引脚116。在引脚116和焊盘112之间仅存在约一个绕组匝,使得在导通期间第一共源极电感可用。线圈111的第二端120通过接合线122连接到栅极关断引脚121。跳线123用于在引脚121和焊盘112之间生成第二匝,使得在关断期间大于第一共源极电感的第二共源极电感可用。

在图12中,使用引线框架技术来实现栅极线圈。因此,TPM功率模块124具有栅极引脚125,其中引线框架延伸到模块中以在高磁通量变化的区域中形成栅极线圈126。引线框架还在高磁通量变化的区域中形成栅极引脚127和栅极线圈128。如图所示在通过接合线进行连接后,模块内嵌有绝缘材料的封装体。

在图13中,使用接合线实现线圈。此外,在栅极电路的开尔文发射极侧(即驱动器IC和IGBT的发射极之间)增强了共源极电感。开尔文发射极管脚131通过一系列接合线段(其中一些编号为132)连接到IGBT芯片134的发射极焊盘,这些接合线段与多个接合焊盘中的相应接合焊盘(其中一些编号为133)相互连接。形成为引线框架的一部分并且封装在成型体中的接合焊盘133沿着高磁通量变化区域内的线圈图形处于分隔位置。同样地,开尔文发射极引脚135通过接合线段137连接到IGBT芯片138的发射极焊盘,接合线段137符合接合焊盘136的图形。在图13的实施例中,栅极引脚140和142使用短接合线分别连接到栅极焊盘141和143,导致栅极侧的低电感。

图14示出了增强的共源极电感150,其中功率回路电感151与增强的栅极电感152紧密耦合。相反地,图15示出了具有增强的共源极电感153的替代实施例,其中功率回路电感154与增强的开尔文发射极电感155紧密耦合。特别地,增强的电感优选通过使用布置在由功率回路中的电流产生的磁通量具有局部最大变化率的区域中的线圈匝来获得。在每种情况下,栅极驱动线圈通过可以最有效地获得期望的增强的区域传送栅极驱动信号。换句话说,用于增强共源极电感的结构可以放置在栅极侧(如图14所示在功率模块栅极引脚和晶体管芯片之间)、在发射极侧(如图15所示在功率模块开尔文发射极引脚和晶体管芯片之间)、或两边都设置。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1