一种混合储能三端口DC-DC变换器及其功率分配控制方法与流程

文档序号:18629099发布日期:2019-09-06 23:23阅读:559来源:国知局
一种混合储能三端口DC-DC变换器及其功率分配控制方法与流程

本发明属于变换器技术领域,特别是涉及一种混合储能三端口dc-dc变换器及其功率分配控制方法。



背景技术:

随着可再生能源发电技术与直流负荷的发展,直流电力系统得到广泛研究。但是,光伏出力与风机出力随外界环境变化而变化,具有间歇特性,同时系统中直流负荷变化也具有随机特性。这些功率的变化会引起直流电力系统中直流电压的波动,进而对系统的稳定运行产生影响。为了进一步提高直流电力系统的稳定性,可在系统中配置一定的超级电容组,并与传统蓄电池组形成混合储能,使超级电容缓冲系统中的暂态功率波动,蓄电池则提供长时间尺度能量缓冲,通过两者的优势互补达到稳定直流电压与延长使用寿命的目的。

良好的混合储能接口变换器是实现混合储能合理功率分配的必要条件,目前通常采用的方法有采用独立式变换器和采用多端口变换器两大类。前者中蓄电池和超级电容分别使用一个双端口变换器连接至直流母线,具有结构简单的特点,但存在体积大、成本高等问题。后者通过多端口变换器连接超级电容、蓄电池和直流母线,进一步减少了所需变换器的开关管数量和体积。多端口变换器主要可分为非隔离型和隔离型两大类,其中非隔离型升压范围有限,在蓄电池组、超级电容组与直流母线电压等级差别较大时并不适用。而隔离型变换器通过高频变换器实现高升压比,可减少蓄电池组和超级电容组中储能器件的串联数量。

现有的隔离型多端口变换器中,可分为全隔离型和部分隔离型两类,前者可实现各端口间的完全电气隔离,但变压器绕组较多,且开关管数量较多。部分隔离型通过开关管复用的方式降低变压器绕组与开关管数量,非常适用于混合储能系统中。例如,有学者提出一种部分隔离型三端口混合储能变换器,其中蓄电池组与超级电容组位于低压侧,并共享一条低压直流母线,但由于超级电容与直流母线间传递能量仍需要通过高频变压器,降低了超级电容输出功率的动态响应。



技术实现要素:

本发明目的是为了解决现有技术中的问题,提出了一种混合储能三端口dc-dc变换器及其功率分配控制方法。

本发明是通过以下技术方案实现的,本发明提出一种混合储能三端口dc-dc变换器,所述变换器包括全桥电路、隔离变压器和功率电感;所述变换器低压侧端口1连接蓄电池组,并通过一个低压侧全桥电路和一个功率电感连接至隔离变压器低压绕组a、b两端,高压侧端口2连接超级电容,并通过交错并联结构连接至隔离变压器高压绕组c、d两端,高压侧端口3则连接直流母线。

进一步地,所述交错并联结构包括交错并联电感l1和交错并联电感l2;所述变换器在双向有源全桥dc-dc变换器的基础上以交错并联结构在高压侧集成了buck-boost拓扑电路。

进一步地,所述变换器端口2与端口3间的功率传输通过改变开关管s5-s6、s7-s8的占空比实现调节,端口1与端口3间的功率传输通过改变开关管s1-s4、开关管s5-s8之间的移相角实现调节,用d、φ分别表示其中的占空比调节量和移相角调节量。

进一步地,通过开关管复用技术,超级电容部分的交错并联结构与蓄电池变换器的高压侧移相桥共享一个全桥电路。

本发明还提出一种混合储能三端口dc-dc变换器的功率分配控制方法,所述方法包括移相稳压环路、占空比稳压环路及虚拟阻抗环节;将采集的蓄电池电流iba、超级电容端电流isc和直流母线电压vo,经过功率分配方法和电压电流双闭环控制后分别输出控制三端口变换器中的移相角调节量φ和占空比调节量d,并最终驱动变换器中对应开关管工作。

进一步地,所述虚拟阻抗环节包括虚拟电感控制和虚拟电容控制。

进一步地,所述方法具体为:高压侧超级电容与直流母线间的功率传输通过控制占空比d来实现,在其占空比稳压环路中,其实际输出电压参考值vo_ref2由给定的初始电压参考值vo*减去超级电容电流与虚拟容抗的乘积得到,然后经过pi控制及限幅环节作为电流内环参考值,电流内环调节器则输出调节量d,经占空比调制后驱动开关管s5-s8工作;低压侧蓄电池与高压侧直流母线间的功率传输则通过控制移相角φ实现,在其移相稳压环路中,实际输出电压参考值vo_ref1由给定的初始电压参考值vo*减去虚拟感抗产生的压降得到,经过pi控制及限幅环节并通过电流调节器调节后输出调节量φ,经移相调制后驱动开关管s1-s8工作。

本发明的有益效果为:所述混合储能变换器属于部分隔离型三端口变换器,并充分采用开关管复用技术降低器件数量,从而降低系统复杂程度。其中蓄电池组位于低压侧,并通过隔离变压器与直流母线交换能量,而超级电容位于高压侧,为单级功率传输,相比多级结构响应更快。同时,针对所提出新型混合储能三端口dc-dc变换器结构特性,设计了基于虚拟阻抗方法与移相加占空比调制的混合储能功率分配控制方法,达到了超级电容响应系统中高频功率波动,蓄电池响应系统中低频功率波动的目的。

附图说明

图1为本发明所述混合储能三端口dc-dc变换器拓扑结构图;

图2为本发明所述混合储能三端口dc-dc变换器关键工作波形图;

图3为本发明所述混合储能三端口dc-dc变换器的功率分配控制方法示意图;

图4为混合储能三端口dc-dc变换器关键实验波形图;

图5为混合储能三端口dc-dc变换器功率分配控制方法实验验证结果图。

具体实施方式

下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

结合图1,本发明提出一种混合储能三端口dc-dc变换器,所述变换器包括全桥电路、隔离变压器和功率电感;所述变换器低压侧端口1连接蓄电池组,并通过一个低压侧全桥电路和一个功率电感连接至隔离变压器低压绕组a、b两端,高压侧端口2连接超级电容,并通过交错并联结构连接至隔离变压器高压绕组c、d两端,高压侧端口3则连接直流母线。

所述交错并联结构包括交错并联电感l1和交错并联电感l2;所述变换器在双向有源全桥dc-dc变换器的基础上以交错并联结构在高压侧集成了buck-boost拓扑电路。通过开关管复用技术,超级电容部分的交错并联结构与蓄电池变换器的高压侧移相桥共享一个全桥电路。端口1和端口3利用高频变压器进行能量传递,具有高升压比和电气隔离的特点;高压侧端口2通过集成的交错并联双向buck-boost电路直接与端口3进行能量交互。该拓扑开关器件较少,无需在原双向有源全桥dc-dc变换器电路中加入额外的开关器件。当该变换器作为混合储能接口变换器时,可将端口1与蓄电池组连接,端口2和端口3则分别连接超级电容组和直流母线。图1中开关管s1-s8为功率igbt,vba、vsc和vo分别表示蓄电池侧、超级电容侧及直流母线侧电压,iba、isc和io分别为流经端口1、端口2和端口3的电流,vab、vcd是原副边桥臂中点间电压,ilk、il1、il2分别为流经功率传输电感lk和交错并联电感l1和l2的电流,c1、c2、co分别为各端口并联的滤波电容,n1、n2则表示变压器匝数,rload为直流负载。

所述变换器端口2与端口3间的功率传输通过改变开关管s5-s6、s7-s8的占空比实现调节,端口1与端口3间的功率传输通过改变开关管s1-s4、开关管s5-s8之间的移相角实现调节,用d、φ分别表示其中的占空比调节量和移相角调节量。为进一步分析所述三端口dc-dc变换器工作原理,图2给出了当0.5<d<1且(0.5-d)π<φ<π/2情况下变换器的典型工作波形。图2中vgs_s1为开关管s1栅级与源级两端的驱动电压,vgs_s6为开关管s6栅级与源级两端的驱动电压,vgs_s8为开关管s8栅级与源级两端的驱动电压。

根据图2给出的该变换器关键工作波形可知,当对原边功率器件s1-s4进行移相调制,而对副边器件s5-s8进行占空比调制后,会在变压器两侧桥臂上产生存在一定相位差的方波,并且副边桥臂电压vcd由于占空比调制会存在电压平台。高低压侧能量的传输则是通过上述方波电压作用在功率传输电感lk上实现的。此外,由于采用交错并联结构,电感l1和l2将交错充放电,其电流il1和il2错开一定相位,使超级电容侧输出电流isc的电流纹波得到进一步降低。

本发明还提出一种混合储能三端口dc-dc变换器的功率分配控制方法,如图3所示,图中d1-d8为二极管,io_ref1表示移相稳压环路中实际输出电流参考值,io_ref2表示占空比稳压环路中实际输出电流参考值,lvs表示虚拟电感控制环节,cvs表示虚拟电容控制环节,lv和cv分别为虚拟电感和虚拟电容系数,s为拉普拉斯算子。所述方法包括移相稳压环路、占空比稳压环路及虚拟阻抗环节;所述虚拟阻抗环节包括虚拟电感控制和虚拟电容控制。将采集的蓄电池电流iba、超级电容端电流isc和直流母线电压vo,经过功率分配方法和电压电流双闭环控制后分别输出控制三端口变换器中的移相角调节量φ和占空比调节量d,并最终驱动变换器中对应开关管工作。

所述方法具体为:高压侧超级电容与直流母线间的功率传输通过控制占空比d来实现,在其占空比稳压环路中,其实际输出电压参考值vo_ref2由给定的初始电压参考值vo*减去超级电容电流与虚拟容抗的乘积得到,然后经过pi控制及限幅环节作为电流内环参考值,电流内环调节器则输出调节量d,经占空比调制后驱动开关管s5-s8工作;低压侧蓄电池与高压侧直流母线间的功率传输则通过控制移相角φ实现,在其移相稳压环路中,实际输出电压参考值vo_ref1由给定的初始电压参考值vo*减去虚拟感抗产生的压降得到,经过pi控制及限幅环节并通过电流调节器调节后输出调节量φ,经移相调制后驱动开关管s1-s8工作。本发明所述功率分配控制方法控制变量较少,因此控制简单,且容易实现模块化。

为了验证本发明的效果,对所述混合储能三端口dc-dc变换器的关键特性与功率分配效果进行了实验验证。实验参数如下:蓄电池输入电压24v,超级电容输入电压100v,负载阻值为1000ω,原边功率电感为5μh,副边功率电感为120μh。图4所示为变换器在稳态条件下变压器两侧的输出方波电压和原边功率传输电感电流的实验波形,此时开关管s6、s8工作在55%占空比情况下,可以看出其移相与占空比调制与理论分析一致。

图5为所述的混合储能功率分配控制方法下蓄电池和超级电容的稳态和瞬态响应,设定负载电阻阻值在1000ω和500ω之间变化,虚拟电容cv=0.03f,虚拟电感lv=1h。从图5中可以看出,在稳定状态下,蓄电池输出电流iba为2.3a,超级电容的输出电流isc保持为0a,蓄电池完全提供负载所需功率。当负载电阻从1000ω降到500ω时,超级电容输出电流isc可补偿负载瞬态功率,随后蓄电池输出电流iba平稳变化到4.6a,超级电容输出电流isc下降到0a。负载电阻从500ω突变到1000ω时,超级电容也能及时响应暂态功率,同时蓄电池承担最终的稳态功率。

以上对本发明所提供的一种混合储能三端口dc-dc变换器及其功率分配控制方法,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1