基于单相II型三电平伪图腾柱的直流充电器

文档序号:26145837发布日期:2021-08-03 14:31阅读:98来源:国知局
基于单相II型三电平伪图腾柱的直流充电器

本发明涉及电力电子电能变换技术领域,具体涉及一种基于单相ii型三电平伪图腾柱的直流充电器。



背景技术:

电动汽车等电动交通工具有能源利用率高,清洁无污染等优点,但为其充电的充电设备发展缓慢,同时交流、直流充电形式和不同功率等级的充电器在充电过程带来不同的充电速度慢级安全问题。另外,充电设备功率因数过低会加重电网的负载或者说会造成电网容量的浪费。国际电工委员会对各类交流变换直流的充电电源电流所含的谐波成分作了严格的限制标准。其中,伪图腾柱两电平功率因数校正电路与传统无桥功率因数校正电路相比,具有高效率、无桥臂直通等优点,但是该电路使得器件承受电网的全部电压,选择元器件时成本较高,同时限制了两电平直流充电器在中、高压功率直流充电设备场景下的应用。



技术实现要素:

为解决上述技术问题,本发明提供一种基于单相ii型三电平伪图腾柱的直流充电器,将传统的伪图腾柱式结构与三电平整流桥结合,该直流充电器提高了电路的可靠性、降低开关电压应力、提高电流正弦度、降低了谐波含量,在单相电网应用场景下的直流充电设备具有明显的竞争优势。

本发明采取的技术方案为:

基于单相ii型三电平伪图腾柱的直流充电器,该直流充电器包括:

伪图腾柱桥臂、滤波电路、单相ii型整流桥、;

所述伪图腾柱桥臂包括开关管s1、s2,二极管d3、d4;

所述滤波电路包括滤波电感l1、l2;

所述单相ii型整流桥包括二极管d1、d2,一对双向开关管,电容c1、c2,负载rl;

一对双向开关管包括开关管s3~s6;

交流电源us一端分别连接二极管d1阳极、二极管d2阴极,交流电源us另一端分别连接滤波电感l1一端、滤波电感l2一端;

滤波电感l1另一端分别连接二极管d3阳极、开关管s3源极、开关管s1漏极;

滤波电感l2另一端分别连接二极管d4阴极、开关管s2源极、开关管s5源极;

二极管d1阴极分别连接二极管d3阴极、开关管s2漏极、电容c1正极;

二极管d2阳极分别连接开关管s1源极、二极管d4阳极、电容c2负极;

开关管s3漏极连接开关管s4漏极,开关管s5漏极连接开关管s6漏极;

开关管s4源极分别连接开关管s6源极、电容c1负极、电容c2正极;

负载rl两端分别连接电容c1正极、电容c2负极。

所述伪图腾柱桥臂由开关管s1、s2和二极管d3、d4组成一对不对称的整流桥臂,每支整流桥臂包括一个功率开关管,功率开关管带有一个钳位二极管。

该直流充电器包含有ii型两开关串联双向开关管支路结构,由2个反向串联的全控型开关管组成,与电感l1相连的两开关串联双向开关管s3、s4为上双向开关管,与电感l2相连的两开关串联双向开关管s5、s6为下双向开关管。

所述开关管s1~s6均为带有体二极管的mosfet、或者igbt。

单相ii型整流桥中包含两个相同结构的两开关管串联式双向开关,分别与两并联电感l1、l2连接,用于控制电感电流在电容之间的双向流通,实现桥臂之间的三电平输出。

该直流充电器电路在交流电源的一端并联两个相同的电感,双管结构升压变换器使得部分开关管电压/电流应力较低,开关管的导通损耗小,电压增益更高。

该直流充电器中的桥臂采用了伪图腾住式结构,保留伪图腾柱式结构不存在桥臂直通隐患、无开关管体二极管反向恢复问题,可靠性高、效率高等优点。

本发明一种基于单相ii型三电平伪图腾柱的直流充电器,具有如下有益效果:

1)、本发明采用了伪图腾柱式结构,保留了伪图腾柱整流器无桥臂直通隐患、无开关管体二极管反向恢复问题、可靠性高、效率高等优点;

2)、本发明将伪图腾柱结构与三电平整流桥相结合,在传统的伪图腾整流器的基础上,增加一组二极管桥臂和ii型两开关串联式双向开关,降低了开关应力,解决了开关管耐压高的问题,适合高压输出场合。

3)、本发明采用两开关串联式双向开关支路分别与电感l1、l2相连,任一双向开关管的损坏不会影响电路的三电平输出,使得电路的可靠性大大提高。

4)、本发明基于单相ii型三电平伪图腾柱的直流充电器,融合伪图腾柱整流技术及三电平拓扑技术,相对于传统升压功率因数校正型的两电平直流充电器,能有效地降低开关管的应力,开关管的导通损耗小,且不存在桥臂直通现象;同时由于电路中存在ii型两开关管串联式双向开关支路,直流充电电路的可靠性被大大提高。

附图说明

图1为本发明一种基于单相ii型三电平伪图腾柱的直流充电器主拓扑结构图。

图2为本发明一种基于单相ii型三电平伪图腾柱的直流充电器工作状态阶段图一;

图3为本发明一种基于单相ii型三电平伪图腾柱的直流充电器工作状态阶段图二;

图4为本发明一种基于单相ii型三电平伪图腾柱的直流充电器工作状态阶段图三;

图5为本发明一种基于单相ii型三电平伪图腾柱的直流充电器工作状态阶段图四;

图6为本发明一种基于单相ii型三电平伪图腾柱的直流充电器工作状态阶段图五;

图7为本发明一种基于单相ii型三电平伪图腾柱的直流充电器工作状态阶段图六。

图8为本发明一种基于单相ii型三电平伪图腾柱的直流充电器中开关管s1~s6对应的脉冲分配图。

图9为本发明一种基于单相ii型三电平伪图腾柱的直流充电器稳定状态下输入侧电压电流波形图;

图10为本发明一种基于单相ii型三电平伪图腾柱的直流充电器稳定状态下电感l1的电流波形图;

图11为本发明一种基于单相ii型三电平伪图腾柱的直流充电器稳定状态下电感l2的电流波形图;

图12为本发明一种基于单相ii型三电平伪图腾柱的直流充电器稳定状态下电压ub1o波形图;

图13为本发明一种基于单相ii型三电平伪图腾柱的直流充电器稳定状态下电压ub2o波形图;

图14为本发明一种基于单相ii型三电平伪图腾柱的直流充电器稳定状态下直流输出电压udc波形图。

具体实施方式

如图1所示,一种基于单相ii型三电平伪图腾柱的直流充电器,该直流充电器包括一对伪图腾柱桥臂、滤波电路、单相ii型整流桥、ii型两开关管串联式双向开关支路、直流侧上下分裂电容。

一对伪图腾柱桥臂结构包括两个全控功率开关管s1、s2,2个普通二极管d3、d4,由全控功率开关管s1、s2和二极管d3、d4组成一对不对称的整流桥臂,每支桥臂包括1个功率开关器件,1个钳位二极管。s1漏极、电感l1、二极管d3阳极相连于节点b1,s2源极、电感l2、二极管d4阴极相连于节点b2。

滤波电路由滤波电感l1、l2组成,滤波电感l1、l2完全一致,滤波电感l1另一端、滤波电感l2另一端分别与全控开关管s1的漏极、s2的源极相连,滤波电感l1、l2一端并联接在交流电源us的正极上,定义交流电源us的负极为节点o。

单相ii型整流桥由2个二极管d1、d2、一对双向开关管以及2个电容c1、c2和一个负载rl组成。其中,二极管d1阳极连接二极管d2阴极,二极管d1、d2连接点连接交流电源us的负极于节点o。

ii型两开关管串联式双向开关支路由2个反向串联的全控型开关管组成,该单相ii型整流桥包含两开关管串联式双向开关,定义与电感l1相连的双向开关管为上双向开关管,与电感l2相连的双向开关管为下双向开关管。

以上双向开关管为例说明其结构:双向开关管包括2个全控型开关管s3、s4,全控型开关管s3的源极与电感l1连接于节点b1,全控型开关管s3的漏极与全控型开关管s4的漏极相连,全控型开关管s4的源极与串联电容c1、c2的连接点相连于节点n;下双向开关管与上双向开关管一致,全控型开关管s5的源极与电感l2连接于节点b2,全控型开关管s6的源极与开关管s4的源极相连。电容c1的正极和电容c2的负极分别与负载相连,二极管d1、d3的阴极与开关管s2的漏极相连,其连接点与电容c1的正极相交于节点p,二极管d2、d4的阳极与开关管s1的源极相连,其连接点与电容c2的负极相交于节点m。

具体实验参数如下:

本发明基于单相ii型三电平伪图腾柱的直流充电器,输入侧中电网电压有效值为220v,频率50hz,直流侧输出电压400v,开关频率为20khz,滤波电感l1=l2=3mh,负载rl的阻值为80ω,输出电容c1=c2=4700μf。

本发明基于单相ii型三电平伪图腾柱的直流充电器,电路正常工作时,稳定状态下电路包含6个工作模式:

(1)正半周期三种工作模式:电网电压us和输出电流is均大于0。

如图2所示,模式一:开关管s1~s6全部关断,交流电源us和电感l1与电感l2向负载rl提供能量,二极管d2、d3以及开关管s2上的体二极管正偏导通,直流输出电压udc>us,电感电流线性减少,电容c1、c2处于充电状态,充电电流等于is-idc,电压ub1o=ub2o=uc1+uc2=+udc;

如图3所示,模式二:开关管s1、s2、s3关断,开关管s4、s5、s6导通,电容c2充电,充电电流为is-idc,电容c1向负载放电,提供电流idc,电压ub1o=ub2o=uc1=+udc/2;

如图4所示,模式三:开关管s2~s6全部关断,开关管s1导通,二极管d2、d4正偏导通,交流电源us向电感l1充电,电感l1电流呈现线性上升,电容c1和c2向负载rl放电,电感l1此时电压ub1o=0;

(2)负半周期三种工作方式:电网电压us和输出电流is均小于0。

如图5所示,模式四:开关管s2导通,开关管s1、s3、s4、s5、s6关断,二极管d1正偏导通,交流电源us向电感l2充电,电感l2电流呈现线性上升,电容c1和c2继续向负载rl放电,此时电感l2电压ub2o=0;

如图6所示,模式五:开关管s3、s5导通,开关管s1、s2、s4、s6关断,电容c1充电,充电电流为-is-idc,电容c2向负载放电,提供电流idc,电压ub1o=ub2o=uc2=-udc/2;

如图7所示,模式六:开关管全关断,交流电源us和电感l1与电感l2向负载rl提供能量,二极管d4、d1和开关管s2上的体二极管正偏导通,直流输出电压udc>us,电感电流线性减少,电容c1、c2处于充电状态,充电电流等于is-idc,电压ub1o=ub2o=-uc1-uc2=-udc;

在图2~图7所示的六种工作模式下,两电感同时实现升压过程。

表1是本发明实施中开关管s1~s6在六种工作模式下的状态表

表1六种工作模式下的状态表

如表1所示,在一个周期内,电路共有六种工作模式,当us>0时,桥臂电压有0、+udc/2、+udc三种状态;当us<0时,桥臂电压有0、-udc/2、-udc三种状态,在不同的工作模式下,系统各参数也随之变化,其中,用1表示开关管的导通,用0表示开关管的关断。图8是本发明电路中开关管s1~s6在一个周期中的脉冲分配图,其中将门极驱动电压单位化,用1表示对该开关管施加门极电压,用0表示未对该开关管施加门极电压。

由图9所示,将交流电压乘以0.1倍的增益,与电感电流用一个示波器进行比较,交流输入电压与输入电流同相位,能实现高功率因数;

图10是流过电感l1的电流,用字母il1表示;图11是流过电感l2的电流,用字母il2表示。验证了在所有的工作模态下,两电感的电流同相位,电流波形呈正弦变化。

图12是桥臂电压ub1o波形图;图13是桥臂电压ub2o波形图;

如图12、图13所示,电压ub1o在整个周期能产生三电平电压,电压ub2o在整个周期产生与ub2o同相位的三电平电压;图14表明,该整流器实现了直流输出电压稳定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1