用于光电压电力分配的方法和设备的制作方法

文档序号:7306470阅读:210来源:国知局
专利名称:用于光电压电力分配的方法和设备的制作方法
技术领域
本发明涉及产生光电压电力和将这些电力分配给居民区内住处和商业处的方法和设备。
世界各地居民区的人们都不能够从一个电网中获得通常实用的电力,或者说,即使是能够获得这种电力,这种电力也是不可靠的,已经尝试了很多提供交替的电力源以满足这种居民区内人们的需要。考虑到向这种居民区提供电力的一种技术是在居民区的当地使用太阳能在光电压电力产生设备中产生电力。
一种被建议的用于向人们提供光电压电力的方法是向一个地区内每个单独的住处和商业处都提供一个光电压电力产生设备。但是,在当前情况下,这种光电压电力产生设备非常昂贵并超出了很多人的财务支出能力。另外,这种单独提供的光电压电力产生设备在电力供应方面以及在使用可以获得的光电压电力产生能力方面效率常常都是极低的。
另一种被建议的方法是提供一种中央光电压电力产生设备,该设备使用电力传送线连接到各个住处和商业处。这种系统可以有效地减少对每个所连用户来说光电压电力产生设备的成本并可以在供应和使用可获得光电压电力方面产生较高的效率。但是,这种系统的一个主要问题是包括附加设备和维修在内的电力传送线的成本经常使价格非常昂贵。对于那些住户和商店比较分散但又对电力具有较大需求的乡村居民区来讲更是如此。
基于上述,希望提供一种用于向住户提供电力的方法,这种方法能够避免高成本并能够克服与用于住处和商业处的单独的电力产生设备相关和与需要昂贵传送线的更大、更集中的中央光电压电力产生系统相关的问题。
本发明提供一种用于向一个居民区的住处和商业处分配光电压电力的方法,这种方法包括在一个单一的分配设备处产生光电压电力,该单一分配设备能够临时接收来自一单个用户的电池以便对该电池进行充电。在分配设备附近生活或工作的每个人都可以使用一个或多个电池以满足它们的住处和商业处的对电力的需要,并可以将电池带到所述分配设备以便根据付款对电池进行充电,借此,只需交纳他们实际消耗电力的费用。当所述电池被充满电时,所述单个人可以从分配设备处取走该电池,并可以将它带给该电池所存储电能被消耗的住处和商业处。本发明的电力分配方法对于住处和商业处比较分散的乡村居民区是特别有用的。该电力分配方法允许单个住处和商业处根据他们自己的需要去消耗电力,而不必大量投资到与单独的光电压电力产生设备相关的项目上。另外,通过将所产生的电力从分配设备通过使用电池传输给消费者,可以节省使用电力传输线分配电力的可观投资和维修费用。
本发明还提供了一种光电压电力分配设备,该设备包括一个用于从太阳产生光电压电力的太阳能电力源、多个用于暂时接收电池以便进行充电的电池充电站、和一个在太阳能电力源和所述电池充电站之间电互连的电力转换系统,该系统用于控制和调节将所述电力提供给需要被充电的电池和在适当的时候自动停止充电。每个电池充电站能够接收并与对于住处和商业处店使用来讲是足够的一种可被可运输的电池进行电互连。铅酸性蓄电池组(lead-acid batteries)通常被用于这个目的,并且经常工作于6、12或24伏电压下,虽然较高的电压也是可能的。但是最好使用具有12伏或较高电压的电池。另外,电池通常被密封在一个容器内,以便于运输和包容从电池中泄露的电解液。
本发明光电压电力分配方法和设备的一个明显的优点是多个人可以根据他们的特殊需要在每个充电的基础上购买电力并可以因此而调节他们的电力消费。在本发明的一个实施例中,光电压电力分配设备具有如下的能力,即它可以用电子方法从消费者收集电池充电费用,借此以使该设备具有使用和操作的灵活性。即使是在所述设备无人管理的情况下,消费者也可以使用一个记录有资金信息的事先得到许可的卡执行与电池充电相关的设备操作。另外,所述设备还可以具有监视提供给每个被充电个体电池的电力数量的能力,从而允许消费者只交付实际所接收电力量的费用而不是对充电预付一定费用,通过仅交付实际消耗电力的费用,消费者就不大可能在使用期间将所述电池消耗到可能降低电池使用寿命的那样一种低电平。
在另外一个实施例中,所述光电压电力分配设备能够测量电池的放电程度,从而提供一个有用信息给可以对所需充电电平进行估计的消费者。进而,所述设备还可以对电池进行测量以便确定该电池的状态,从而提供一个关于是否需要更换电池的指示。由于作为一个电源,需要被更换的电池比起处于良好状态的电池来讲其效率极差,所以,这样一个信息是极有价值的。通过更换一个不能使用的电池,消费者将节省否则将会花在电池充电上的一笔可观费用。另外,由太阳能电源产生的电能将不会浪费在对坏损电池的无效充电方面,借此以允许更多的消费者有效使用所产生的电力。
诸如充电费用、电池放电状态的测试和电池状态的测试的电子付款的特性可以通过使用具有消费者接口和直接与电力转换系统相连接的一个单一控制器加以实现。
在另一个实施例中,所述的光电压电力分配设备具有诸如是电容或电池的与所述太阳能电力源电互连的一个能量存储器。当来自太阳能电力发生器的电力超过了在电池接收站中被连接并需要进行有效充电的消费者的电池所需要的电力时,能量存储器能够收集用于存储的电力。当被充电的消费者电池的有效充电需求超过了可以从所述太阳能电源能够获得的电力时,能量存储器可以将所存储的电力提供给电力转换系统,以便补充可以从太阳能电源得到的电力。在这种方式下,光电压电力可以被更加有效地用于充电消费者电池和所述设备的运行时间可以被延长至从清早到晚上的很晚时候。


图1的方框图示出了本发明的一个光电压电力分配设备。
图2的方框图示出了图1所示电力转换系统的控制器。
图2A示出了由图2的控制器产生并提供给多个直流-直流转换器的典型的控制信号。
图3的方框图示出了图1所示电力转换系统的一个直流-直流转换器。
图4的流程图示出了由所述控制器执行的一个算法,用于确定电流信号的最大值。
图5的流程图示出了由所述控制器执行的一个算法,用于确定一个浮动电压信号。
图6的透视图示出了本发明一个电力传输系统,该系统用于在控制器和多个直流-直流转换器之间提供电连接。
图7示出了根据本发明单个人带一个可充电电池给光电压电力分配设备。
图8的方框图示出了本发明光电压电力分配设备的另一个实施例。
本发明包括产生和分配光电压电力,一方面,提供一个在附图中通常用标号10表示的光电压电力分配设备,用于传输来自诸如电池的光电压电力存储设备的输出电力,所述存储设备可以为了向该电池充电的目的而被暂时连接到所述设备上,并且可以在充电之后从所述设备上移开。被充电的电力存储设备被分配给当地的个住处和/或商业处以便分配光电压产生的电力。参看图1,这里示出了一个光电压电力分配设备10的电路图,所述设备10包括一个太阳能阵列12、多个电池14和一个电力转换系统11,该系统11用于控制和调节从太阳能阵列12向所述电池14的电力分配。电力转换系统11包括一个控制器16、电源总线18、控制总线20、公用总线21和多个直流-直流转换器22。其中的每一个直流-直流转换器向所述多个电池中单个电池充电。
电力转换系统11能够允许具有不同充电电平的多个可拆卸电池的独立充电。在一个典型的操作中,任何数量的电池都可以被加到所述系统上且可以在任何时间将充完电的电池从该系统中折卸下来。控制器16不采集任何考虑单个电池充电状态的信息,而是通过经控制总线20向直流-直流转换器提供适当的控制信号来监视太阳能阵列12的输出能量和控制来自所述太阳能阵列的直流-直流转换器的组合提取电流。所述太阳能阵列最好包括一个或多个40个太阳能模块的集合或面板,其中的每一个模块在最大绝缘状态下在最佳电流0.75amp时通常能够产生的最大峰值输出功率为24瓦特。所述系统控制直流-直流转换器以响应绝缘状态的变化来调节来自所述阵列输出的提取(draw)电流。
当电力转换系统工作于最佳电流时,将直流-直流转换系统加到该系统上以便向可充电电池进行充电,这将增加来自太阳能阵列的提取电流,而减少该阵列的输出功率。控制器探测在阵列输出电力方面的减少并通过增加一个控制信号使系统返回到最佳电流电平,直到它的阵列的输出电力中遇到一个峰值时为止。直流-直流转换器再次从太阳能阵列得到最大可获得电力。
在电池14的电压达到一个浮动电压之前,它们被以一个恒定的电流进行充电,因此所述电池以一个缓慢的充电电流浮动,直到被从电力转换系统11中拆卸下来为止。电池的浮动电压取决于电池的种类和温度。例如,铅酸性蓄电池组的浮动电压通常是在华氏15度的约14.7伏到华氏120度的约12.7伏之间变化。因此,所述控制器还能够监视周围温度并提供信息给根据所述温度有适当浮动电压的直流-直流转换器22。最好,所述浮动电压信息被包括在经过控制总线20提供给直流-直流转换器的控制信号中。
参照附图2、2A和4对控制器16的操作进行适当的描述。控制器16包括一个微处理器24和一个用于监视太阳能阵列12的输出电流和输出电压并经过控制总线20向直流-直流转换器22提供控制信号的附加电路。特别是,电压传感器26测量太阳能阵列的输出电压,电流传感器28测量太阳能阵列的输出电流。电流传感器28可以包括与公用总线21串联的例如是20毫欧姆的低阻抗黄铜带(brass ribbon)(未示出),该黄铜带被用做电源总线18的回路,所述电流传感器28还可以包括一个并联电压传感器(未示出),用于测量所述黄铜带两侧的压降。来自电压传感器26的电压测量结果和来自电流传感器28的电流测量结果分别在线30和32上传送给微处理器24。该微处理器24执行一个算法(示于图4并将在下面讨论)以产生一个将要被提供给直流一直流转换器22的控制信号,该控制信号被用于设定电池的充电电流和电池的浮动电压。
最好,控制总线20是一个单一的导线,控制信号图(图2A)是一个多路复用双相脉冲信号,该脉冲信号包括交替的正浮动电压脉冲和负最大电流脉冲。该控制器16采用包括数-模(D/A)转换器34、反相器36、多路器38和行缓冲器40的电路来产生该控制信号。更具体地说,微处理器24具有用于产生控制信号的十条输出线42。八条输出线连到D/A转换器。微处理器将与控制信号的所需电平相关的数字字或号数置于八条输出线上。其它二条输出线被连到多路器并被用作将所需信号极性多路复用到控制总线20的单个线上。
更具体地讲,控制信号(图2A)包括具有负电压幅值的最大电流脉冲44和具有正电压幅值的浮动电压脉冲46。最大电流脉冲的负电压幅值表示提取电流而浮动电压脉冲的正电压幅值表示到直流一直流转换器22的浮动电压电平。由于下面将讨论的原因,具有-5.0V幅值的最大电流脉冲使直流-直流转换器提取一最小或零电流,而具有零电压的最大电流脉冲使直流-直流转换器提取最大电流。同样地,具有+5.0V幅值的浮动电压脉冲使浮动电压到一最大值,而具有0V信号的浮动电压脉冲使浮动电压到一最小值。
微处理器24通过在前述8个输出线上产生8比特字来建立控制信号的正和负幅值。这8个输出线中的每一个输出线都被连接到数/模转换器34的电阻阵列47中的一个输入电阻上。输入电阻中的每一个都被连接到一个具有反馈电阻52的运算放大器50的求和结点(summing node)48上。在电阻阵列中的电阻和反馈电阻的规模被测定以用于实现一个所希望的转换系统。例如,为了实现所述数字化字的二进制转换,电阻阵列的第一输入电阻和反馈电阻具有一个标准的电阻值R、第二输入电阻的电阻值为2R、第三输入电阻的电阻值为4R等等,直到其电阻值为128R的第八电阻为止。因此,所述电阻具有二进制的关系,该关系规定了256个步骤以允许在数/模转换器的模拟信号有0.4%的递增。反相器36将所述模拟信号反相以便提供一个负的模拟信号。
多路复用器38具有两个输入线54、一个输出线56、一个启动输入线58和一个选择输入线60。所述多路复用器的一个输入线被直接连接到D/A转换器34的输出端,另外一个输入线被连接到反相器36的输出端。因此,多路复用器在一个输入线上接收模拟信号的正幅值脉冲,在另一个输入线上接收模拟信号的负幅值脉冲。
在运行过程中,微处理器24将表示所希望的浮动电压脉冲46幅值的二进制数置于所述8个输出线上并设定选择输入线60,从而使多路复用器38选择一个用于在多路复用器输出线上输出的正模拟信号。微处理器然后触发启动输入线58,以便将正模拟脉冲或信号置于多路复用器的输出线上。所述微处理器然后将表示最大电流脉冲44的所期望值的二进制数置于8个输出线上,并设定被选择的输入线,以便使多路复用器选择用于在所述多路复用器输出线上输出的负电压信号。然后微处理器触发多路复用器的启动输入线,以便将该负电压脉冲或信号置于多路复用器的输出线上。在微处理器将所述二进制数置于8个线上并设定了选择输入线之后,该微处理器在触发多路复用器的启动线之前提供一个短暂的延时,以便允许所述数/模转换器34稳定下来,由此以避免在控制总线20上的电压脉冲尖峰。这个设定最大电流脉冲和浮动电压脉冲的处理每50毫秒重复一次。缓冲放大器40仅仅接收在多路复用器输出线上的控制信号,并利用控制信号控制所述总线。
当电池14被充满电时,充电电流被减小到进行一个点滴式充电,直到该电池从所述系统上取走为止。因此,直流-直流转换器必须具有一个电池浮动电压的指示以避免电池的损坏并延长电池的使用寿命。这个浮动电压随着周围温度的变化是已知的。提供了一个诸如是热敏电耦的电子温度计62,用于测量周围温度(T)和向控制器16提供一个温度信号。所述控制器使用该温度信号调节向多个直流-直流转换器22指出适当浮动电压的浮动电压脉冲46的幅值。在这方面,假设所有的电池都具有或接近所测量周围温度T的温度。
为了设定最大电流脉冲,控制器16执行一个如图4所述的算法。在起始步骤100,控制器读出太阳能阵列12的输出电压(V)和输出电流(I)。然后在步骤102该控制器计算太阳能阵列的输出电力,和在步骤104,或者阶跃到最大电流脉冲Im,或者阶跃到低一级电平(近似0.4%)。控制器在步骤106再次读出太阳能阵列的输出电压和输出电流并在步骤108计算新的输出电力。然后控制器前进到步骤110,在该步骤,它确定新计算的电力是大于还是小于先前计算的电力。如果大于先前计算的电力,则控制器返回到在同一个方向上阶跃最大电流脉冲电平的步骤104。另一方面,如果它在步骤110确定新计算的输出电力保持不变或是减少了,那么,控制器前进到步骤112,在该步骤,它改变电流阶跃命令的方向,然后返回到阶跃最大电流脉冲电平的步骤104,这时使它在相反的方向上阶跃。
借助于这个例子,如果由直流-直流转换器22提取的组合电流小于用于消耗来自太阳能阵列12的峰值可用电力的最佳电流,则在组合电流中向下阶跃将使得太阳能阵列输出电力减少,随后,控制器16使电流阶跃的方向反向。组合提取电流的增加将增加太阳能阵列的输出电力,并且控制器将通过增加阶跃递增来增加幅值最大电流脉冲44,直到输出电力减少为止,随后控制器16使电流阶跃的方向反向。如果直流-直流转换器的组合提取电流大于所述最佳电流,那么,组合提取电流的增加将使得太阳能阵列的输出电力减小,随后,控制器16将使电流阶跃的方向反向。提取电流的减小将使得太阳能阵列输出电力增加。因此,控制器将继续减小提取电流,直到太阳能阵列的输出电力再次开始减小为止。
应当注意,即使是来自太阳能阵列12的峰值可用电力保持不变,但在控制总线20上的最大电流脉冲的幅值也决不会保持为常数。如果电源系统11工作于最大可用电力的最佳点,则控制器16将从稍微减少太阳能阵列的输出电力的那个点增加电流脉冲的幅值一个阶跃。作为响应,控制器将使电流脉冲幅值增加阶跃的方向反向并使系统返回到最大输出电力的那个点。由于太阳能阵列的输出电力将被减少,所以,控制器将在相同方向上继续增加电流脉冲的幅值,最后,太阳能阵列的输出电力将再次减少。作为对这个减少的再次响应,控制器将使增加方向反向,等等。由此,电力转换系统11将工作于最佳电流的0.4%范围以内,并且,除非太阳能可用电力输出、也就是最佳输出电流改变,否则将不会在任何方向上增加大于两个的阶跃。在充电电流中,0.4%的轻微波动是相当慢的,并且在有效消耗最大可用输出电力方面不会有很大影响。
用于设定浮动电压脉冲46幅值的算法示于图5。为了实现该算法,控制器16只需要在步骤114读出温度计62的温度并据此在步骤116设定浮动电压脉冲的幅值。
参看图3能够更容易理解直流-直流转换器22的操作。每个直流-直流转换器从电源总线18以太阳能阵列输出电压获得电流Ic并将充电电流Ic提供给电池14。每个直流-直流转换器包括一个开关型电力转换器64、正和负脉冲幅值识别器66和68、一个控制电路69和一个用做指示器70的发光二极管(LED)。所述开关型电力转换器使用脉宽调制来控制来自电源总线的直流-直流转换器的提取电流Ic。
正脉冲幅值识别器66检测在控制总线20上接收的控制信号正幅值脉冲的幅值并产生一个用于在线72上输出的相应浮动电压信号。类似的,负脉冲幅值识别器68检测在控制总线20上接收的控制信号的负幅值脉冲的幅值并产生一个用于在线74上输出的相应最大电流信号。控制电路69在线72上接收第一输入信号,以便设定用于电池12的浮动电压,并在线74上接收第二信号,用于设定来自电源总线18的最大提取电流。控制电路69还经过线76和78被连接到电池12上,这样,它就能够测量它的电压电平并借此确定它的充电状态。根据所接收的浮动电压信号和最大提取电流信号,并进一步根据电池电压的测量结果,控制电路产生一个误差信号,该误差信号通过线80被耦合到开关型电力转换器64。这就控制所述电力转换器以使得一个来自电源总线18的适当的电流被维持。
最大电流脉冲44仅影响那些高于由所述最大电流脉冲的幅值设定的一个阈值电流来提取电流Ic的直流-直流转换器22。换言之,降低最大电流信号首先对那些大部分电流来自电源线18的直流-直流转换器有影响。
直流-直流转换器22最好是每一个都具有一个LED状态指示器70,用于指示电池的充电状态。特别是,所述状态指示器包括用于指示正在充电的电池、被充满和已经准备好的电池和一个开路熔断器的三个LED。所述开路熔断器LED用于指示在电源总线18上的熔丝(未示出)是否被烧断。
每个直流-直流转换器22按如下设计,即0伏的最大电流脉冲44的幅值对应于来自电源总线18的最大提取电流,同时,-5.0伏的幅值对应于来自所述电源总线的最小提取电流。因此,故障或从所述系统10中拆掉控制器16将明显使得控制信号转变到0伏,并由此使所述直流-直流转换器的每个都提取尽可能多的电流。同样,所述直流-直流转换器将被按如下设计,即如果浮动电压脉冲46的幅值是0伏,则直流-直流转换器将所述浮动电压设定为12.7伏的最小值。应认识到,在这些电压和电流处,直流-直流转换器将对它们各自的电池12会进行不完全充电,并且在组合过程中,最有可能将不是去消耗太阳能阵列的最大可用电力。但是,即使是由于控制器失效而提供了任何一个控制信号,系统10仍将能够有效地向电池充电。
图6提供了有关控制器16和直流-直流转换器22到电源总线18、控制总线20和公用总线21的详细连接图。这三个总线用实心的相互间隔的棒表示,并且最好这些棒用外表涂敷有镍的铝制成,且直径为1/4英寸。每个直流-直流转换器被安装在一个具有以三角形方式安置的三个夹子的分离的印刷电路板82上。所述夹子与并行总线棒相互对准,以使每个夹子被连接到一个不同的棒上。当所述的印刷电路板被夹到这三个棒中时,所述夹子的三角形空间允许所述直流-直流转换器被以一个稳定的方式固定起来。因此,其它的直流-直流转换器或其它的电源负载能够被以简单的方式加到所述电源总线和控制总线上或从它们上边拆除。另外,控制器16将对这些新的电源负载进行补偿并驱动所述系统,以使它从所述太阳能阵列中获得峰值可用的电力。另外,控制器能够被安装在也具有与直流-直流转换器的印刷电路板相类似的夹子的一个印刷电路板上,以便允许所述控制器的简单拆除或替换。最好,三个夹子84中的每一个都是可以处理30amp正常电流的快速熔丝(snap fuse)连接器。
应当认识到,诸如是水泵马达的交流马达可以通过用直流-交流转换器代替上述直流-直流转换器来被供电。通过改变所述转换器的交流频率可以改变来自电源总线18的直流-交流转换器的提取电流。另外,所述的太阳能阵列12可以由大多数具有用于产生最大输出电力的最佳电流的电源类型所代替,所述的最佳电流小于电源的最大输出电流。
所述的光电压电力分配设备10对于向不属于常规电力网供电的偏远地区居民提供电力是非常具有优越性的。如图7所示,光电压电力分配设备10包括太阳能阵列12、可被再次充电的电池14和一个电力转换系统11,所述电力转换系统11分别包括图1所示的控制器16、电源总线18、控制总线20、公用总线21以及直流-直流转换器22。可被再次充电的电池14被分配给生活在所述设备10附近并在他们的住处和工作地使用电池的各用户。在使用之后,各用户将所述电池带回设备10以便进行再充电。由此,电池14的可移动性和用于暂时接收需要被充电电池14的所述光电压电力分配设备的能力相结合提供了一个新颖的电力分配系统和方法,该方法避免了对连接到公共电力的电网的需要、对电传送导线的需要以及对用于向各用户传送电力的相关设备的需要。如上所述,如结合图1-6所述的电力转换系统根据电池的状态和太阳能阵列的性能调节电池的充电速率,从而使自所述太阳能阵列的可用电力的使用最优化。但是,还应当认识到,也可以使用其它的电力转换系统结构,甚至在本发明中可以使用低效电力转换系统也不会有损于本发明新颖的光电压电力分配方法的精神。
参看图8,该电路图示出了本发明光电压电力分配设备10的另一个实施例,它包括一些附加的特性,这些特性可以被单独地或任一组合地包括在所述设备10中以加强该设备10的电力分配能力并使得所述个人更加容易地使用设备10去获得电力。这些附加特性执行由所述设备10提供给电池的电力测量、电子付款和收集消费者的电池充电费用给所述设备10、在充电之前测试电池的起始放电电平、测试需要被充电的电池状态和在任何给定时间当超过了为充电可能被连接的电池所需要的电力时存储和释放由光电压阵列产生的电力。为了便于这些特性的实施,图8所示的设备包括(对于位于可以暂时连接电池14以便进行充电的设备10处的每个站来讲)充电站控制器120、电力流动开关124、电流传感器128和与每个直流-直流转换器22及电池14相联的电池测试器132。应当认识到,通过提供一个微处理器去控制它们的操作和在需要时从一个电池到另一个电池转换它们的连接,单个的充电站控制器120和单个的电池测试器132将被用于所有的电池。另外,如图8所示,还包括一个存储器控制器136和一个被连接到电源总线18上的能量存储器140。
充电站控制器120测量提供给正在被进行充电的相关电池114的能量和从个人收集充电费用。充电站控制器120接收来自表示提供给电池的电流量的电流传感器128的电流信号。充电站控制器120将由直流-直流转换器22提供的预定电池充电电压乘以电流,以便计算瞬时电力并借此计算提供给所述电池的时间平均能量。另外,当计算提供给电池14的能量时,不是使用预定电池充电电压,而是每个充电站控制器120将接收一个来自相关直流-直流转换器22的电压信号,该信号被用于经过所述控制电路69和传送线76和78来监视电池两端的电压。诸如每瓦特-小时的能量单元货币价格然后被提供给所述电池的一定数量的能量单元相乘,以便计算电池的充电费用。
充电站控制器120利用电子的方法经过借方卡片系统(debit card system)收集所计算的电池充电费用。如在这里所使用的,借方卡片包括一个卡片,该卡片通过使用电子方法从一个诸如银行的金融团体中的帐目提取货币或电子传输来自所述卡片本身的预付存款,而进行电池充电费用的电子付款。例如,某个人可以在一个借方卡片上获取预付货币的存款并可以使用所述借方卡片交付电池充电服务费用。所述个人将借方卡片插入位于充电站控制器120中的磁卡输入/输出(I/O)设备144并通过键盘148和显示器152与所述站控制器120进行通信。充电站控制器120用所述卡I/O设备144读出借方卡片上的磁条,以便确定当前的存款余额,当当前的存款足以开始充电时,充电站控制器120触发电力流动开关124以使得可以将能量传输给电池14。在电池被再充电的同时,充电站控制器120测量提供给所述电池的能量,计算电池充电费用,并将所述的电池充电费用与在借方卡片上的当前存款相比较。当电池14被充满电和/或所述的电池充电费用等于或超过在所述借方卡片上的原始存款时,充电站控制器120就关断电力流动开关124以停止将电能传输给电池14。然后,所述站控制器120通过从原始存款中减掉电池充电费用来计算新的存款余额并通过I/O设备144将这个新的存款余额记录到借方卡片的磁条上。通过显示器152,所述个人被通知电池已经被充满电或者是由于存款余额不足电池的充电已经被过早地停止。当充电已经被过早地停止时,所述个人应当获取另外的存款,以便完成所述电池充电。在处理结束时,借方卡片返回到所述个人手中以便在以后用于购买别的的电池充电费用。
充电站控制器120还可以使个人通过规定一个用于充电的时间周期或规定一个将被传输给所述电池的总的能量并通过使用键盘148来对传送给电池14的总的充电量或对所述电池充电的充电速度进行调节。另外,用户可以规定在有优先级的基础(on a priority basis)上进行再充电。所述站控制器通常将随着传送给电池的能量的增加而增加的费用价格记入帐内。根据用户所规定再充电的一个时间周期或规定的总能量,充电站控制器120调节用于相关直流-直流转换器22限制的最大电流,由此调节到相关电池的电力流动速度,借此调节对电池进行再充电所需要的时间。根据用户规定对电池的总能量输入,在规定的总能量已经被传送给所述电池时,即使所述电池还没有被充满电,充电站控制器也将使充电不再继续。根据用户所规定的在有优先级的基础上进行再充电,充电站控制器120将对所述电池和先前被规定为优先的其他电池114一起以一个相对于较低优先级电池来说的加速度再充电和/或允许个人暂时使一个低优先级的电池从设备10上断开来并用一个较高优先级的电池来代替它。由于规定了一个特殊的充电特性,所以,采用刚才所描述的充电特性比起没有选择这些特性的情况来讲通常会产生较高的计算费用。其它的特殊充电特性也可以被提供。
充电站控制器120利用电池测试器132执行对电池放电电平的检查和对电池14的状态检查从而确定所述电池是否应当被更换。为了测试电池14的放电电平,所述站控制器120关断电力流动开关124以便停止向电池14的电力流动,同时,电池测试器132在电池14的两端连接一个具有已知电阻系数的电阻负载。站控制器120测量来自电流传感器128的电流信号。站控制器120使用具有已知电阻系数的负载和被探测的电流来计算所述电池的放电电平。利用电池测试器132测量电池的再充电效率,该电池测试器测量该电池的温度,并将一个温度信号提供给站控制器120。最好,电池测试器132包括一个诸如是温度计的温度传感器(未示出),用于与所述电池进行热交流从而探测电池的核心温度。充电站控制器120监视作为被传送给所述电池再充电能量的函数的电池温度的增加,以便确定由于电池再充电效率低下引起的变成热量而散失的能量的数量。所述个人将通过一个显示器被告知有关的再充电效率并当所述电池的低效率达到一个预定阈值时被告知对所述电池进行修理或更换。
能量存储器140和存储器控制器136用于当太阳能阵列12所产生的电力多于向电池14再充电所能够有效利用的电力时收集来自电源总线18的电力和用于当再充电电池14能够有效使用多于太阳能阵列12能够产生的电力时将所收集到的电力返回到电源总线18。在这种方式下,能量存储器140增加了转换系统10的效率,同时由于诸如太阳能阵列上绝缘的变化和再充电电池14的数量和能量需求的变化等因素,在系统10内产生和使用的能量也是变化的。存储器140可以由任何一种能够用于将太阳能阵列产生的多余能量存储从几分钟到几个小时一个周期的能量存储设备或多个能量存储设备组成。另外,存储器140应当具有足够的能量存储能力以便执行足够能量的存储,使得当需要时能提供电能对一个被放电的电池进行充电达至少5分钟,最好大于30分钟。这种能量存储设备包括诸如是电容和电池的电子能量存储设备以及诸如是液柱头和飞轮的机械能量存储设备。
虽然上面描述了本发明的最佳实施例,但应当理解,在不脱离本发明精神的基础上,本领域内的普通技术人员可以对所述实施例作出很多改变。本发明仅由所附权利要求所规定。
权利要求
1.一种光电压电力分配设备,用于通过诸如电池的可运输的电力存储设备来将电力分配给位于偏远地区人们的住处和商业处,该光电压电力分配设备包括太阳能电力源,该电源能够从太阳光产生电力;充电装置,该装置具有多个接收站,其中每一个接收站用于接收可再充电的能量存储设备并向该设备进行充电;和在所述太阳能电源和所述充电设备之间进行电互连的电子互连装置,用于能在所述充电装置处使用由所述太阳能电源产生的电力以便向可以被所述接收站接收的可再充电能量存储设备充电;其中,所述充电站的结构使得为了以电方式充电的目的而暂时接收所述可再充电能量存储设备并与之电互连,从而使得可以向远离电力分配设备或与电力分配设备没有电互连的住处和商业处提供电力。
2.如权利要求1所述的光电压电力分配设备,其中,所述的电子互连装置包括一个电子控制器,用于控制为对所述能量存储设备充电的目的而向至少一个所述接收站传输电力的开始和停止。
3.如权利要求1所述的光电压电力分配设备,其中,所述的电子互连装置包括一个具有用户接口的电子控制器,单个人可以使用该用户接口以便控制将来自所述太阳能电源的电力提供给至少一个所述接收站并进而控制向所述能量存储设备的充电,所述能量存储设备可以接收在至少一个所述接收站之中。
4.如权利要求3所述的光电压电力分配设备,其中,所述的用户接口包括一个键盘。
5.如权利要求3所述的光电压电力分配设备,其中,所述的用户接口允许单个人选择一个用于所述能量存储设备充电的特殊充电特性且这种特殊充电特性由所述电子控制器所控制。
6.如权利要求5所述的光电压电力分配设备,其中,所述的特殊充电特性包括下述特性中的至少一个加速所述能量存储设备的充电;限定在所述能量存储设备充电期间需要被传输的总电力;和限制所述能量存储设备将要被充电的时间。
7.如权利要求3所述的光电压电力分配设备,其中,所述的电子控制器包括一个用于计算向所述能量存储设备充电所需费用的计算装置和一个告知个人费用数量的输出装置。
8.如权利要求3所述的光电压电力分配设备,其中,所述的电子控制器包括一个用于根据传输给所述能量存储设备的总电力数量计算向所述能量存储设备充电的费用的装置。
9.如权利要求1所述的光电压电力分配设备,其中,该光电压电力分配设备包括一个付款装置,用于以电子方式接收向所述能量存储设备充电所付的费用。
10.如权利要求9所述的光电压电力分配设备,其中,所述的付款装置包括一个用于接收和读出具有记录信息的磁条的磁卡的磁卡设备。
11.如权利要求10所述的光电压电力分配设备,其中,所述的磁卡设备包括一个用于读出在所述磁条上记录的信息和用于在所述磁卡上记录新信息的装置。
12.如权利要求9所述的光电压电力分配设备,其中,所述的付款装置能够接收记录在一个磁卡的磁条上的用于充电服务的预付款。
13.如权利要求1所述的光电压电力分配设备,其中,该光电压电力分配设备包括一个测量装置,用于当所述的能量存储设备为充电目的而被一个所述接收站所接收时,测量传输给所述能量存储设备的电力数量。
14.如权利要求13所述的光电压电力分配设备,其中,所述的测量装置包括一个电流传感器,该电流传感器能够探测流向能量存储设备的电流并将一个电子信号传送给一个电子处理器以便对传输给所述能量存储设备的电力进行计算。
15.如权利要求13所述的光电压电力分配设备,其中,所述的测量装置包括一个电压传感器,用于测量在充电期间传输给所述能量存储设备的电力电压,所述的电压传感器能够响应一个被传感的电压将一个电子信号传送给一个电子处理器以便计算传送给所述能量存储设备的电力数量。
16.如权利要求1所述的光电压电力分配设备,其中,该光电压电力分配设备包括一个放电测试装置,用于当在一个所述接收站接收了一个能量存储设备时,测试该能量存储设备的放电状态。
17.如权利要求16所述的光电压电力分配设备,其中,所述的放电测试设备包括可以连接在所述能量存储设备两端的一个电阻负载和当在所述能量存储设备两端连接了该电阻负载时能够探测来自所述能量存储设备的电流的一个电流传感器。
18.如权利要求1所述的光电压电力分配设备,其中,该光电压电力分配设备包括一个质量测试装置,用于当在所述的接收站中接收了一个能量存储设备时测试该能量存储设备的状态以确定是否由于该状态不佳而应当更换所述的能量存储设备。
19.如权利要求18所述的光电压电力分配设备,其中,所述的质量测试装置包括一个温度传感器,用于探测所述能量存储设备的温度。
20.如权利要求18所述的光电压电力分配设备,其中,所述的质量测试装置包括一个电子处理器,该电子处理器能够根据在充电期间所述能量存储设备被测量温度的上升来确定所述的能量存储设备是否应当被更换。
21.如权利要求1所述的光电压电力分配设备,其中,该光电压电力分配设备包括一个能量存储装置,用于收集和存储由太阳能电源产生的没有用于向可以被所述接收站接收的能量存储设备充电的电力;和其中,所述的能量存储装置与所述太阳能电源永久地电互连,并且,当向在所述接收站中接收的能量存储设备充电的电力需求超过从所述太阳能电源能够获得的电力时,所述的能量存储装置能够将所存储的电力传输给所述的接收站。
22.如权利要求21所述的光电压电力分配设备,其中,所述的能量存储装置包括一个能量存储器和一个控制器,该控制器用于控制能量流入和流出所述的能量存储器。
23.如权利要求21所述的光电压电力分配设备,其中,所述的能量存储装置包括一个或多个电存储电池。
24.如权利要求21所述的光电压电力分配设备,其中,所述的能量存储装置包括一个或多个电容。
25.如权利要求21所述的光电压电力分配设备,其中,所述的能量存储装置包括一个机械能量存储系统。
26.如权利要求25所述的光电压电力分配设备,其中,所述的机械能量存储系统包括一个飞轮。
27.如权利要求21所述的光电压电力分配设备,其中,所述的电子互连装置以大于约12伏的电压向所述的接收站提供电力。
28.如权利要求1所述的光电压电力分配设备,其中,每个所述接收站中能够接收具有大于约12伏额定电压的多个电池并与之电互连。
29.如权利要求1所述的光电压电力分配设备,其中,所述的太阳能电源包括一个具有至少约960瓦特峰值功率输出能力的光电阵列。
30.如权利要求1所述的光电压电力分配设备,其中,所述的太阳能电源包括多个光电模块,其中的每一个模块都具有至少24瓦特的峰值功率输出能力。
31.一种用于将光电压电力分配给居民区的住处和商业处的方法,该方法包括下述步骤利用一个太阳能电源从太阳光产生电力,所述太阳能电源与多个接收站电互连,每个接收站的结构使得能够暂时接收可再充电能量存储设备、与该能量存储设备电互连和使用由所述太阳能电源产生的所述电力使该能量存储设备充电;在所述接收站中暂时接收多个可再充电能量存储设备和使所述能量存储设备中的每一个与所述太阳能电源电互连,以使得向每一个所述能量存储设备中的充电;使用由所述太阳能电源产生的电力向所述每一个能量存储设备中充电;和将所述能量存储设备分配给多个人,借此,所述多个人能够使用所述能量存储设备在他们的住处和商业处提供电力。
32.如权利要求31所述的方法,其中,所述的方法还包括测量在所述充电步骤期间向每个能量存储设备传输的电力以便确定传输给每个所述能量存储设备总电力。
33.如权利要求31所述的方法,其中所述方法还包括计算向每个所述能量存储设备充电的费用,用于任何一个能量存储设备的所述费用基于传输给所述能量存储设备的总电力。
34.如权利要求31所述的方法,其中,所述方法还包括用电子方法接收对每个所述能量存储设备充电所付费用
35.如权利要求31所述的方法,其中,所述方法还包括通过用电子方法读出记录在一个磁卡的磁条上的信息来接收对至少一个所述能量存储设备充电所付费用。
36.如权利要求31所述的方法,其中,所述方法还包括从所述卡片中扣除记录在该卡片磁条上的预付款,并以此作为向至少一个所述能量存储设备充电所付的费用。
37.如权利要求31所述的方法,其中,所述方法还包括对所述每一个能量存储设备进行测试以确定所述能量设备中每一个的放电电平,所述测试是在对每个所述能量存储设备充电之前进行的。
38.如权利要求31所述的方法,其中,所述方法还包括对所述能量存储设备中的每一个的状态进行测试,以便确定所述能量存储设备是否应当被更换。
39.如权利要求38所述的方法,其中,对所述能量存储设备中的每一个进行的测试包括监视所述能量存储设备中每一个的温度,以指示传输给所述能量存储设备中每一个的有效电力是否被转换成热能,借此以指示在充电期间传输电力的低效使用。
40.如权利要求31所述的方法,其中,所述方法还包括存储由太阳能电源产生的至少一部分电力以便用于以后向能量存储设备充电。
41.如权利要求40所述的方法,其中,所述存储步骤包括在一个或多个与所述太阳能电源和多个接收站永久地电互连的电池中存储电力。
42.如权利要求40所述的方法,其中所述的存储步骤包括在一个或多个与所述太阳能电源和多个接收站电互连的电容中存储电力。
43.如权利要求40所述的方法,其中所述能量存储设备中的至少一个包括一个铅酸性蓄电池。
全文摘要
一种光电压电力分配设备,该设备能够通过可运输的电池将电力分配给偏远的居住区的人们的住处和商业处。在一方面,所述光电压电力分配设备包括一个能够从太阳光产生电力的太阳能电源;一个具有多个用于接收和对多个可再充电能量存储设备充电的电池接收站的电池充电装置;和一个在所述太阳能电源和所述电池充电装置之间的电子互连装置。每一个接收站中的结构使得为充电目的能够暂时接收和互连向所述远离电力分配设备并与该设备没有电互连的住处和商业处提供电力的可再充电能量存储设备。
文档编号H02J7/35GK1162371SQ95196047
公开日1997年10月15日 申请日期1995年9月22日 优先权日1994年9月23日
发明者乔恩·M·戴维斯, 约翰·K·库尔斯, 罗杰·A·汤普森, 史蒂文·X·约翰逊, 威廉·H·格莱斯特 申请人:戈尔登,杰尼西斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1