反馈型放大电路及驱动电路的制作方法

文档序号:7511814阅读:563来源:国知局
专利名称:反馈型放大电路及驱动电路的制作方法
技术领域
本发明涉及放大电路和以所希望的电压驱动电容性负载的驱动电路,特别是涉及在有源矩阵型显示装置(TFT-LCD、TFT-OLED等)中能够用低功率高速驱动电容性负载的数据线的驱动电路。
背景技术
图33是表示现有的最简单的反馈型充电装置的电路构成的图。参照图33(a),包括源极共同连接并连接到恒流源905的一端上,栅极分别连接在输入端子1(Vin)、输出端子2(Vout)上而形成为差动对的N沟道MOS晶体管903、904;源极连接在高电位侧电源VDD上,栅极连接在P沟道MOS晶体管902的栅极上,漏极连接在N沟道MOS晶体管903的漏极上的P沟道MOS晶体管901(电流镜像电路的电流输出侧晶体管);源极连接在高电位侧电源VDD上,漏极和栅极连接起来并连接到N沟道MOS晶体管904的漏极上的P沟道MOS晶体管902(电流镜像电路的电流输入侧晶体管)、把差动对的输出(N沟道MOS晶体管903的漏极)输入到栅极中,源极连接在高电位侧电源VDD上,漏极连接在输出端子2(Vout)和恒流源907的连接点上的P沟道MOS晶体管906。
当Vin>Vout时,提高P沟道MOS晶体管906的充电作用,能够把输出电压Vout高速地提升到Vin上。而且,如果把电流源907的电流抑制得足够小,能够在与输入电压Vin相等的电压下稳定地驱动输出电压Vout。
但是,当充电能力非常强时,由于反馈型的构成中的元件的寄生电容等引起的响应延迟,而产生过冲,但是,为了抑制电流源907的放电能力,从过冲恢复而到达在Vout等于Vin的电压下进行稳定地驱动,需要花费时间(难以进行高速驱动)。
当加大电流源907的电流时,由于放电能力变强,过冲和下冲交替反复而发生振荡。
为了防止振荡,如图33(b)所示的那样,当设置连接在输出端子2与N沟道MOS晶体管904的栅极的连接点与P沟道MOS晶体管906的栅极端子之间的相位补偿电容908时,即使在晶体管906的充电能力和电流源907的放电能力都强的情况下,也能快速并且稳定地进行高速驱动。
但是,为了使相位补偿电容908高速地充放电,由于必须使足够的电流流过差动级的电流源905,而存在消耗功率增加的问题。
下面,参照图35来对在日本专利公开特开2000-338461号公报(特愿平11-145768号)、SID00文摘,第146-149页(00.5.14发布)中本发明人提出的技术进行说明。参照图35,在电路1020中,包括源极连接在恒流源1001、1002的一端上的P沟道MOS晶体管1003、1004,该恒流源1001、1002的另一端连接在高电位侧电源VDD上,P沟道MOS晶体管1003的栅极和漏极相连接,连接在一端连接在低电位侧电源VSS上的恒流源1005的另一端上,P沟道MOS晶体管1004的栅极连接在P沟道MOS晶体管1003的栅极上,P沟道MOS晶体管1004的漏极连接在电源VSS上,P沟道MOS晶体管1003的源极连接在切换开关1011的一个输出端上,P沟道MOS晶体管1004的源极连接在切换开关1012的一个输入端上。在电路1030中,包括源极连接在恒流源1009、1010的一端上的N沟道MOS晶体管1007、1008,该恒流源1009、1010的另一端连接在电源VSS上,N沟道MOS晶体管1007的栅极和漏极连接在起来,并连接在一端与电源VDD相连的恒流源1006的另一端上,N沟道MOS晶体管1008的栅极连接在N沟道MOS晶体管1007的栅极上,N沟道MOS晶体管1008的漏极连接在电源VDD上,N沟道MOS晶体管1007的源极连接在切换开关1011的另一个输出端上,N沟道MOS晶体管1008的源极连接在切换开关1012的另一个输入端上。切换开关1011的输入端连接在输入端子1上,切换开关1012的输出端连接在输出端子2上,开关1013连接在输出端子2与电源VDD之间,开关1014连接在输出端子2与电源VSS之间。
该电路是利用晶体管的源极跟随器动作来进行驱动的电路,一般,以源极跟随器动作来进行驱动,因此,当输出输出电压范围的高电位侧电压时,通过预充电电路1040,把输出电压Vout预充电到高电位电源电压VDD上,使电路1020动作,当输出输出电压范围的低电位侧电压时,通过预充电电路1040,把输出电压Vout预充电到低电位电源电压VSS上,使电路1030动作。
电路1020在P沟道MOS晶体管1003、1004的各自的源极被从输入端子1和输出端子2切断的状态下,设定恒流源1001、1002、1005的电流,以使P沟道MOS晶体管1003、1004的各自的栅极·源极间电压成为相等的,当连接到输入端子1和输出端子2上而使电路1020动作时,通过P沟道MOS晶体管1004的源极跟随器动作,使预充电到电压VDD上的输出端子2快速进行放电,而使输出电压Vout降低到与输入电压相等的电压上,并成为稳定的。
同样,电路1030在N沟道MOS晶体管1007、1008的各自的源极被从输入端子1和输出端子2切断的状态下,设定恒流源1006、1009、1010的电流,以使N沟道MOS晶体管1007、1008的各自的栅极·源极间电压成为相等的,当连接到输入端子1和输出端子2上而使电路1030动作时,通过N沟道MOS晶体管1008的源极跟随器动作,使放电到电压VSS上的输出端子2快速进行放电,而使输出电压Vout提高到与输入电压相等的电压上,并成为稳定的。
这样,图35的驱动电路根据输入电压而适当地控制预充电电路1040、电路1020和电路1030,由此,通过源极跟随器动作把输出电压Vout快速地驱动到与输入电压相等的电压上。
该电路通过在各电流源中仅流过微小的电流就能实现由源极跟随器动作所产生的驱动,在负载电容小的情况下,能够以低消耗功率进行驱动,而在负载电容大的情况下,由于伴随着预充电或者放电的剩余的充放电变大,则消耗功率增加了。
而且,由于在预充电或者放电中需要花费时间,所以难以进行高速驱动。
发明所要解决的问题在现有的运算放大器的反馈型放大电路中,由于输出级的充电作用和放电作用较强,在驱动到所希望的电压之后,由于反馈所产生的延迟,过冲和下冲反复进行,如果不设置相位补偿装置(相位补偿电容),就不能得到稳定的输出。
当设置相位补偿电容时,为了进行高速动作,必须流过用于使相位补偿电容高速充放电的大电流,因此,消耗功率增加了。
由于相位补偿电容越大,动作稳定性越好,则必须设置高速动作所需要的大容量的相位补偿电容,则消耗功率进一步增加。
现有方式(运算放大器)的反馈型放大电路不能在低消耗功率下高速稳定驱动。
因此,本发明的目的是提供一种驱动电路,仅使用微小的动作维持电流,就能把输出电压Vout高速地驱动到与输入电压Vin相等的电平上,而不伴随剩余的充放电,因此,即使对于大容量负载,也能以低消耗功率高速地进行驱动,来实现高性能化。
本发明的另一个目的是提供一种驱动电路,抑制例如大容量负载的驱动时的驱动电路的输出波形振荡。
本发明的又一个目的是提供一种驱动电路,通过除源极跟随器型构成的放电电路、充电电路之外的构成,而不需要相位补偿电容。发明概述提供用于解决上述课题的措施的本发明,是把没有相位补偿电容的反馈型充电装置(主要为电压跟随器电路)与源极跟随器放电装置进行组合的构成。
而且,本发明是没有相位补偿电容的反馈型充电装置(主要为电压跟随器电路)与源极跟随器放电装置进行组合的构成。
在本发明中,可以在构成反馈型充电装置的差动对的输出与输出端子之间设置输出波形振荡抑制用的电容。而且,在本发明中,可以在构成反馈型放电装置的差动对的输出与输出端子之间,设置用于抑制输出波形振荡的电容。
而且,在本发明中,包括能够通过输入电压和输出电压两个输入来产生充电作用而提高输出电压的反馈型充电装置,可以用在与反馈型充电装置相独立地动作中根据与输入电压相对应的所希望的电压与输出电压的电压差而动作的非反馈型的放电装置(不是源极跟随器构成),来置换源极跟随器放电装置。同样,在反馈型放电装置(主要为电压跟随器电路)与源极跟随器充电装置的组合中,可以用不是源极跟随器型构成的非反馈型的充电装置来置换源极跟随器充电装置。
附图的简要说明

图1是表示本发明的第一实施例的构成的方框图;图2是表示本发明的第二实施例的构成的方框图;图3是表示本发明的第一实施例的源极跟随器放电装置41的构成的方框图;图4是表示本发明的第一实施例的反馈型充电装置11的构成的方框图;图5是表示本发明的第一实施例中的输出电压波形的图;图6是表示本发明的第二实施例的源极跟随器充电装置42的构成的方框图;图7是表示本发明的第二实施例的反馈型放电装置12的构成的方框图;图8是表示本发明的第二实施例中的输出电压波形的图;图9是表示图4的本发明的第一实施例的栅极偏置控制装置51的构成的图;图10是表示图7的本发明的第二实施例的栅极偏置控制装置52的构成的图;图11是表示图4的源极跟随器放电装置41的变形例的图;图12是表示图4的充电装置31的变形例的图;图13是表示图4的反馈型充电装置11的变形例的图;图14是表示本发明的第三实施例的构成图;图15是表示图13的具体例子的图;图16是表示图15的变形例的图;图17是表示图15的源极跟随器放电装置41、源极跟随器充电装置42的变形例的图;图18是表示图15的变形例的图;图19是表示图14的变形例的图;图20是表示图19的变形例的图;图21是表示图19的具体例子的图;图22是表示图21的变形例的图;
图23是表示图22的变形例的图;图24是表示图20的具体例子的图;图25是表示图21的源极跟随器放电装置41、源极跟随器充电装置42的具体例子的图;图26是表示图22的源极跟随器放电装置41、源极跟随器充电装置42的具体例子的图;图27是表示图23的源极跟随器放电装置41、源极跟随器充电装置42的具体例子的图;图28是表示图24的源极跟随器充放电装置43的具体例子的图;图29是表示使用图1~图28的驱动电路作为液晶显示装置的数据驱动的缓冲器时的具体构成的图;图30是表示图29的变形例的图;图31是以表形式表示作为液晶显示装置的数据驱动的缓冲器而使用时的控制方法的图;图32是以表形式表示图31的变形例的图;图33是表示现有的反馈放大电路的构成图;图34是表示在放电装置中设置源极跟随器晶体管的比较例子的构成图;图35是表示现有的另一个反馈放大电路的构成图;图36是表示用图15的驱动电路来进行大容量负载的驱动的情况下成为最大振幅的驱动电压0.2V~6.8V时的负载近端和负载远端的输出电压波形的图;图37是表示图36中的输出延迟时间的图;图38是表示图36中的驱动电路的高电位侧电源VDD的消耗电流的变化的图;图39是表示无负载时的输出波形的图;图40是表示通过图15的驱动电路相对于大容量布线负载而输出电源电压范围的中间附近电压5V时的负载近端和负载远端的输出电压波形的图;图41是图40的部分放大图;
图42是表示本发明的实施例的变形例(图15的变形例)的图;图43是表示通过图42的驱动电路相对于大容量布线负载而输出电源电压范围的中间附近电压5V时的负载近端和负载远端的输出电压波形的图;图44是图43的部分放大图;图45是表示本发明的实施例的变形例(图27的变形例)的图;图46是表示用于本发明的实施例的驱动电路的性能评价的大容量负载的等效电路的图;图47是表示本发明的进一步的实施例的图;图48是表示图47的放电装置61、反馈型充电装置11的具体例子的图;图49是表示图48的开关动作的一例的定时图。
发明的实施形态下面对本发明的实施形态进行说明。参照图1,本发明包括作为电压跟随器进行作用的反馈型充电装置(11),具有将输入端子(1)的电压和输出端子(2)的电压差动输入的差动级(21),以及根据该差动级的输出进行输出端子(2)的充电作用的充电装置(31);根据输入端子电压和输出端子电压的电压差,通过晶体管的跟随器作用来进行输出端子(2)的放电作用的源极跟随器型放电装置(41)。
参照图3,跟随器型放电装置(41)包括接受上述输入端子电压来控制输出偏置电压的偏置控制装置(51);连接在输出端子(2)与低电位侧电源(VSS)之间、并且把从上述偏置控制装置(51)所输出的偏置电压作为输入的跟随器晶体管(412)。
参照图2,本发明包括作为电压跟随器进行作用的反馈型放电装置(12),具有将输入端子电压和输出端子电压差动输入的差动级(22),以及根据该差动级的输出进行输出端子(2)的放电作用的放电装置(32);根据上述输入端子电压和上述输出端子电压的电压差,通过晶体管的跟随器动作来进行上述输出端子的充电作用的源极跟随器充电装置(42)。
参照图6,源极跟随器充电装置(42)包括接受上述输入端子电压来控制输出偏置电压的偏置控制装置(52);连接在高电位侧电源(VDD)与上述输出端子之间、并且把上述偏置控制装置的偏置电压作为输入的跟随器晶体管(422)。
在电容性负载的驱动中,通过反馈型充电装置(图1的11)对负载电容进行高速充电,但由于由反馈所产生的响应延迟而产生微小的过冲。
在本发明中,源极跟随器放电装置(图1的41)以与过冲相对应的放电能力快速地把过冲的输出电压降低到所希望的电压上,由此,能够稳定地驱动所希望的电压。通过设置源极跟随器放电装置,即使不设置相位补偿电容,也能抑制振荡。
而且,在电容性负载的驱动中,通过反馈型放电装置(图2的12)对负载电容进行高速放电,但由于由反馈所产生的响应延迟而产生微小的下冲。
在本发明中,源极跟随器充电装置(图2的42)以与下冲相对应的放电能力快速地把下冲的输出电压提高到所希望的电压上,由此,能够稳定地驱动所希望的电压。通过设置源极跟随器充电装置,即使不设置相位补偿电容,也能抑制振荡。
在本发明中,由于没有相位补偿电容,能够以低消耗功率来进行高速动作。而且,通过没有相位补偿电容,由于仅由电路元件的寄生电容等所产生的微小响应延迟,则即使产生过冲和下冲,也能被抑制到足够小的电平上。而且,通过源极跟随器动作能够抑制过冲和下冲,快速地驱动到所希望的电压上。而且,为了把输出快速地稳定在所希望的电压上,与进行跟随器动作的晶体管的沟道长度对沟道宽度之比越高,稳定性越好。
而且,进行源极跟随器动作的元件并不仅限于特定的晶体管,当然可以是这样的元件其至少具有两个端子,具有元件电流(输出电流)随着两个端子的电压差的增加而从零增大到足够大的水平的特性,通过元件电流,把具有充电作用或者放电作用的一端连接到输出端子上,在所希望的电压输出时把另一端控制到最适当的恒定电压上。
下面,对于设置源极跟随器晶体管作为放电装置的比较例子,来说明与本发明的不同点。图34是表示设置源极跟随器晶体管作为放电装置的比较例子的图。参照图34,该比较例子在图33所示的构成中的输出级的放电装置为P沟道MOS晶体管911的源极跟随器构成。差动对的输出(N沟道MOS晶体管903的漏极)连接在P沟道MOS晶体管906的栅极上,该P沟道MOS晶体管906的源极连接在高电位侧电源VDD上,漏极连接在输出端子2上,同时,差动对的输出还被输入到源极连接在高电位侧电源VDD上的P沟道MOS晶体管912的栅极中,P沟道MOS晶体管912的漏极连接到恒流源913上,同时,连接到P沟道MOS晶体管911的栅极上,该P沟道MOS晶体管911的源极连接在输出端子2上,漏极连接在低电位侧电源VSS上。
在本发明中,源极跟随器放电装置(图1的41)为差动级(图1的21)和充电装置(图1的31)的动作独立进行的构成,而产生独立的作用。
在图34所示的比较例子的构成中,成为放电装置的晶体管911的栅极的电位,随着差动级的输出(N沟道MOS晶体管903的漏极与P沟道MOS晶体管901的漏极的连接点电压)而发生较大的变动。即,在图34所示的比较例子中,如本发明那样,成为放电装置的P沟道MOS晶体管911的栅极电压没有被控制到与输入电压相对应的恒定偏置上。
因此,在图34所示的比较例子的构成中,P沟道MOS晶体管911在输入电压Vin>输出电压Vout时被关断。即,当输出端子2的输出电压Vout小于输入端子1的输入电压Vin时,N沟道MOS晶体管903的漏极电压较低,成为充电装置的P沟道MOS晶体管906导通,对输出端子2进行充电(输出端子2的输出电压Vout上升),此时,由于P沟道MOS晶体管912也是导通的,所以P沟道MOS晶体管911的栅极成为高电位侧电源VDD侧,放电装置的P沟道MOS晶体管911被关断。
P沟道MOS晶体管911为这样的构成在输入电压Vin<输出电压Vout时成为导通的,而具有较强的放电能力。即,在输入电压Vin<输出电压Vout时,P沟道MOS晶体管912成为关断的,P沟道MOS晶体管911的栅极电压成为VSS电平,成为导通的。此时,成为充电装置的P沟道MOS晶体管906成为关断的。
这样,输出电压Vout在Vin附近充电和放电切换,P沟道MOS晶体管906的充电能力和P沟道MOS晶体管911的放电能力都强,因此,在图34所示的比较例中,在没有设置相位补偿电容的情况下,发生振荡。
因此,当在图34的比较例中设置相位补偿电容时,与图33所示的电路构成相同,产生消耗功率增加的问题。
与此相对,在本发明中,源极跟随器晶体管为这样的构成输入从栅极偏置控制装置所输出的偏置电压,根据输出端子电压和偏置电压的电压差来控制输出电流,由此,不需要设置相位补偿电容。
而且,在本发明的实施例中,可以为这样的构成设有差动级的输出与输出端子之间的负载驱动时的输出波形振荡抑制用(波形整形用)的足够小的电容。例如,可以为这样的构成在图15的第一差动级(213、314)的输出与输出端子(2)之间、第二差动级(223、324)的输出与输出端子(2)之间设有用于抑制负载驱动时的输出波形振荡的电容(图17的216、217)。
在本发明的另一个实施例中,在跟随器型放电装置的构成之外,通过几乎没有响应延迟的非反馈构成,能够实现不需要相位补偿电容的反馈型放大电路和驱动电路。作为该实施例的一例,参照图47,包括将输入端子电压和输出端子电压差动输入的差动级(21),和根据上述差动级(21)的输出来进行上述输出端子的充电作用的充电装置(311),还包括作为上述输出端子电压与上述输入端子电压成为同相的电压跟随器而起作用的反馈型充电装置(11;与图1的11相同的构成),取代跟随器型放电装置,设有放电装置(61),该放电装置(61)具有连接在上述输出端子与低电位侧电源之间的晶体管(601)、在上述晶体管的控制端子上控制偏置电压的偏置控制装置(62)。该放电装置(61)的偏置控制装置(62)设有给上述晶体管(601)的控制端子提供预定的偏置电压(Vref)的偏置电压供给端子,还设有电压保持装置,其抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与上述晶体管的控制端子之间。或者,作为上述电压保持装置,放电装置(61)的偏置控制装置(62)设有电容,在输出期间的开始期间,向上述晶体管(601)的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子和上述偏置电压被分别施加在一端和另一端上,保持上述输入端子电压和上述偏置电压的电压差,接着上述期间,用开关进行切换,以使上述输出端子和上述晶体管的控制端子连接到上述电容的一端和另一端上。
更详细地说,参照图48,放电装置(61)包括漏极连接在输出端子(2)上,源极连接在低电位侧电源间的MOS晶体管(601);连接在MOS晶体管(601)的栅极与栅极偏置电压输入端(Vref)之间的第一开关(612);一端连接在MOS晶体管(601)的栅极上的电容(602);连接在输入端子(1)与电容(602)的另一端之间的第二开关(611);连接在输出端子(2)与电容(602)的另一端之间的第三开关(613)。在驱动电路输出期间,首先,第一、第二开关(612、611)接通,第三开关(613)断开,接着,第一、第二开关(612、611)断开,第三开关(613)接通。取代该电容元件(602),可以设置电压保持装置作为提供相同作用的电压保持装置,该电压保持装置抽样并锁存输入电压Vin和电压Vref的电压差,把锁存的电压差保持在输出端子(2)与MOS晶体管(601)的栅极之间。
同样,可以设置除跟随器型充电装置之外的构成。即,包括差动输入输入端子电压和输出端子电压的差动级、根据上述差动级的输出来进行上述输出端子的放电作用的放电装置,还包括作为上述输出端子电压成为与上述输入端子电压成为同相的电压跟随器而起作用的反馈型放电装置和充电装置,该充电装置具有连接在上述输出端子与高电位侧电源之间的晶体管、在上述晶体管的控制端子上控制偏置电压的偏置电压控制装置。在上述充电装置中,设有给上述晶体管的控制端子提供预定的偏置电压的偏置电压供给端子,还设有电压保持装置,抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与上述晶体管的控制端子之间。或者,在上述充电装置中,设有电容,在输出期间的开始期间,向上述晶体管的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子和上述偏置电压被分别施加在一端和另一端上,保持上述输入端子电压和上述偏置电压的电压差。接着上述期间,用开关进行切换,以使上述输出端子和上述晶体管的控制端子连接到上述电容的一端和另一端上。实施例为了对上述的本发明的实施例更详细地进行说明,下面参照附图对本发明的实施例进行说明。
图1是表示本发明的第一实施例的构成图。参照图1,本发明的第一实施例的电路包括反馈型充电装置11,能够通过输入电压Vin和输出电压Vout两个输入而产生充电作用来提高输出电压Vout;源极跟随器放电装置41,通过与反馈型充电装置11独立地进行动作,根据输入电压Vin和输出电压Vout的电压差来产生由晶体管的源极跟随器动作所引起的放电作用。
反馈型充电装置11包括根据输入电压Vin和输出电压Vout的两个的电压差而动作的差动级21;根据差动级21的输出而产生充电作用的充电装置31。
本实施例为不设置相位补偿装置(相位补偿电容)的构成,由此,能够以低消耗功率进行高速驱动。
在根据输入电压Vin而使输出电压Vout输出所希望的电压的驱动电路中,反馈型充电装置11根据Vin和Vout的电压差而动作,当输出电压Vout低于所希望的电压时,通过充电作用把输出电压Vout提升到所希望的电压上。
反馈型充电装置11不设置相位补偿装置,由此,能够在低消耗功率下实现高速动作,但是,在反馈型的构成中,通过电路元件的寄生电容,而存在输出电压Vout的变化反映给充电作用所需要的微小的响应延迟,而存在产生过冲(过充电)的情况。
另一方面,源极跟随器放电装置41具有适合于输入电压Vin和输出电压Vout的电压差的放电能力,当输出电压Vout高于所希望的电压时,通过由晶体管的源极跟随器动作所产生的放电作用,能够使输出电压Vout下降到所希望的电压的上。
在输入电压Vin和输出电压Vout的电压差大时,源极跟随器放电装置41放电能力高,随着电压差变小,放电能力变小,因此,由放电能力所引起的输出电压Vout的变化随着接近于所希望的电压而变得缓和。因此,源极跟随器放电装置41使输出电压Vout快速地变化到所希望的电压上,同时,具有稳定到所希望的电压上的作用。
因此,在输出电压Vout低于所希望的电压时,输出电压Vout通过反馈型充电装置11而高速地提升到所希望的电压上,此时,即使产生过冲(过充电),通过源极跟随器放电装置41,而快速地降低到所希望的电压上,而成为稳定的输出。
另一方面,在输出电压Vout高于所希望的电压时,反馈型充电装置11的充电作用不动作,输出电压Vout通过源极跟随器放电装置41,由于对应于Vin和Vout的电压差的源极跟随器放电作用而降低到所希望的电压上,而成为稳定的输出。
而且,反馈型充电装置11没有相位补偿电容,因此,仅有由电路元件的寄生电容等所引起的微小的响应延迟,即使在产生过冲的情况下,也被抑制在足够小的电平上。因此,容易实现输出电压的稳定化。
这样,通过反馈型充电装置11和源极跟随器放电装置41的组合,在充电时,能够在高速充电的同时,高速稳定在所希望的电压上。
下面对本发明的第二实施例进行说明。图2是表示本发明的第二实施例的构成的图。参照图2,本发明的第二实施例包括反馈型放电装置12,能够通过输入电压Vin和输出电压Vout两个输入而产生放电作用来降低输出电压Vout;源极跟随器充电装置42,通过与反馈型放电装置12独立地进行动作,根据输入电压Vin和输出电压Vout的电压差来产生由晶体管的源极跟随器动作所引起的充电作用。
反馈型放电装置12包括根据输入电压Vin和输出电压Vout的两个的电压差而动作的差动级22;根据差动级22的输出而产生放电作用的放电装置32。在该第二实施例中,不设置相位补偿装置,由此,能够以低消耗功率进行高速驱动。
在根据输入电压Vin而使输出电压Vout输出所希望的电压的驱动电路中,反馈型放电装置12根据Vin和Vout的电压差而动作,当输出电压Vout高于所希望的电压时,通过放电作用把输出电压Vout降低到所希望的电压上。
反馈型放电装置12不设置相位补偿装置,由此,能够在低消耗功率下实现高速动作,但是,在反馈型的构成中,通过电路元件的寄生电容等,而存在输出电压Vout的变化反映给充电作用所需要的微小的响应延迟,而存在产生下冲(过放电)的情况。
另一方面,源极跟随器充电装置42具有适合于输入电压Vin和输出电压Vout的电压差的放电能力,当输出电压Vout低于所希望的电压时,通过由晶体管的源极跟随器动作所产生的充电作用,能够使输出电压Vout上升到所希望的电压的上。
源极跟随器充电装置42的源极跟随器充电能力,在输入电压Vin和输出电压Vout的电压差大时,充电能力高,随着电压差变小,充电能力变小,因此,由充电能力所引起的输出电压Vout的变化随着接近于所希望的电压而变得缓和。即,源极跟随器放电装置41使输出电压Vout快速地变化到所希望的电压上,同时,具有稳定到所希望的电压上的作用。
因此,在输出电压Vout高于所希望的电压时,输出电压Vout通过反馈型放电装置12而高速地降低到所希望的电压上,此时,即使产生下冲(过放电),通过源极跟随器充电装置42,而快速地上升到所希望的电压上,而成为稳定的输出。
另一方面,在输出电压Vout低于所希望的电压时,反馈型放电装置12的放电作用不动作,输出电压Vout通过源极跟随器充电装置42,由于对应于Vin和Vout的电压差的源极跟随器放电作用而上升到所希望的电压上,而成为稳定的输出。
而且,反馈型放电装置12没有相位补偿电容,因此,仅有由电路元件的寄生电容等所引起的微小的响应延迟,即使在产生下冲的情况下,也被抑制在足够小的电平上。因此,容易实现输出电压的稳定化。
这样,通过反馈型放电装置12和源极跟随器充电装置42的组合,在放电时,能够在高速放电的同时,高速稳定在所希望的电压上。
图3是表示图1的源极跟随器放电装置41的构成的一个具体例子的图。在根据输入电压Vin而使输出电压Vout输出所希望的电压的驱动电路中,源极跟随器放电装置41包括源极连接在输出端子2上,漏极连接在低电位电源电压VSS上的P沟道MOS晶体管412;接受输入电压Vin并把P沟道MOS晶体管412的栅极控制在恒定的电压上的栅极偏置控制装置51。
栅极偏置控制装置51,在驱动所希望的输出电压期间,当P沟道MOS晶体管412的源极为所希望的电压时,把P沟道MOS晶体管412的栅极控制在恒定的电压上,以使栅极·源极间电压为阈值电压附近。
下面对源极跟随器放电装置41的作用进行说明。在输出电压Vout变化到所希望的电压的过程中,当输出电压Vout高于所希望的电压时,输出电压Vout与所希望的电压的电压差越大,P沟道MOS晶体管412的栅极·源极间电压越大,则放电能力变高。另一方面,输出电压Vout降低,随着接近于所希望的电压,栅极·源极间电压变小,放电能力变小。
因此,输出电压Vout不会振荡,而能够实现稳定的输出。另一方面,当输出电压Vout低于所希望的电压时,P沟道MOS晶体管412的栅极·源极间电压为阈值电压以下,P沟道MOS晶体管412关断,放电作用不产生。
为了使输出电压Vout快速地稳定在所希望的电压上,而提高P沟道MOS晶体管412的沟道宽度W对沟道长度L之比(W/L),由此,提高了稳定性。
P沟道MOS晶体管412并不仅限于特定的晶体管,可以是这样的元件在至少具有两端子的元件中,具有随着两端子的电压差的增加、元件电流从零增大到足够大的电平上的特性(参照图3(b)),通过元件电流,把具有放电作用的一端连接到输出端子上,通过栅极偏置控制装置51在所希望的电压时把另一端控制在最适当的恒定电压上。
图4是表示图1的反馈型充电装置11的一个具体例子的图。参照图4,在构成把输出电压Vout驱动为与输入电压Vin相等的电压上的驱动电路的反馈型充电装置11中,差动级21由N沟道MOS晶体管213、214所形成的差动输入对和作为其有源负载而具有由P沟道MOS晶体管212、211组成的电流镜像电路的差动级所构成,是把输出电压Vout反馈给输入的反馈型的构成。
输入电压Vin,在低电位电源电压VSS附近,在N沟道MOS晶体管213关断的电压范围内,不会正常工作。
充电装置31由P沟道MOS晶体管311组成,其栅极上接受差动级的输出,漏极连接在输出端子2上,而源极则连接在高电位侧电源VDD上。
构成反馈型充电装置11的差动级21和充电装置31,当Vout<Vin时,产生由晶体管311所产生的充电作用,把输出电压Vout提升到Vin上,在Vout>Vin下,晶体管311成为关断的,不产生充电作用。但是,在Vout<Vin下,当输出电压Vout高速变化到Vin时,存在输出电压Vout的变化反映到充电作用上所需要的微小响应延迟,而产生过冲(过充电)。
另一方面,在源极跟随器放电装置41中,栅极偏置控制装置51的输出连接在P沟道MOS晶体管412的栅极上,当P沟道MOS晶体管412的源极成为Vin时,当控制栅极以使栅极·源极间电压成为阈值电压Vth附近时,在Vout>Vin下,产生放电作用,通过与Vin和Vout的电压差相对应的晶体管412的源极跟随器放电作用,能够把输出电压Vout降低到与输入电压Vin相等的电压上。
反馈型充电装置11不设置相位补偿装置,由此,即使减小抑制差动级21的电流源215的电流,也能使充电装置31的晶体管311的栅极电压快速地变动,因此,能够以低消耗功率进行高速充电。而且,通过不设置相位补偿电容,而仅存在由电路元件的寄生电容等所引起的微小的响应延迟,因此,即使产生过冲,也能抑制到足够小的电平上。因此,即使在产生过冲的情况下,通过源极跟随器型放电装置,能够快速稳定地输出与输入电压Vin相等的电压。
通过反馈型充电装置11的充电作用,在输出电压Vout非常高速地变化时,过冲稍稍变大,因此,晶体管412的栅极·源极间电压变大,源极跟随器放电装置41高速进行放电作用。
因此,当从过冲的电压降低到输入电压Vin时,通过栅极·源极间电容,晶体管412的栅极电压瞬时地稍稍降低,由此,存在输出电压Vout瞬时地下降到电压Vin以下的情况。这样一来,重复进行以下过程反馈型充电装置11再次动作而产生充电作用,再次产生较小的过冲,源极跟随器放电装置41再次动作。但是,在此情况下,控制晶体管412的栅极,以使源极跟随器放电装置41的放电能力随着接近电压Vin而变小,因此,输出电压Vout经过几次衰减振荡而最终地收敛在电压Vin上,成为稳定的。
为了进一步提高输出稳定性,提高源极跟随器放电装置41的晶体管412的沟道宽度W对沟道长度L之比W/L。
而且,在源极跟随器放电装置41中,通过栅极偏置装置51,在输出电压Vout成为输入电压Vin的稳定状态下,当晶体管412的漏极电流被设定为微小地流过时,在相同大小的电流流过晶体管311中的状态下,成为稳定的。
图5是表示驱动电容性负载时的图4的驱动电路的输出波形的图。实线表示从Vin=Vout的状态,Vin变化到高电压侧时的输出电压Vout的波形,虚线表示Vin变化到低电压侧时的输出电压Vout的波形。图5所示的Vin是变化后的电压(恒定的)。
当Vin变化到高电压侧时,由反馈型充电装置11以高放电能力把输出电压Vout高速地提升到输入电压Vin上。即使在产生过冲的情况下,输出电压Vout通过源极跟随器放电装置41的作用,而快速地被驱动到输入电压Vin上,并稳定起来。
另一方面,当Vin变化到低电压侧时,仅源极跟随器放电装置41动作,输出电压Vout在Vin和Vout的电压差较大时以高放电能力高速地降低,但是,随着接近于输入电压Vin,放电能力变低,而缓和地到达输入电压Vin,成为稳定的。
这样,图4的驱动电路,充电作用能够高速地进行,但是,放电作用与充电作用相比,稍稍滞后。
图6是表示图2的源极跟随器充电装置42的一个具体例子的图。参照图6(a),在根据输入电压Vin使输出电压Vout输出所希望的电压的驱动电路中,源极跟随器充电装置42包括源极连接在输出端子2上、漏极连接在高电位侧电源VDD上的N沟道MOS晶体管422;栅极偏置控制装置52,其接受输入电压Vin而把N沟道MOS晶体管422的栅极控制在恒定电压上。
栅极偏置控制装置52在驱动所希望的电压期间,当N沟道MOS晶体管422的源极为所希望的电压时,把N沟道MOS晶体管422的栅极控制在恒定的电压下,以使栅极·源极间电压保持在阈值电压值的附近。
下面对源极跟随器充电装置42的作用进行说明。在输出电压Vout变化到所希望的电压的过程中,当输出电压Vout低于所希望的电压时,输出电压Vout与所希望的电压的电压差越大,N沟道MOS晶体管422的栅极·源极间电压越大,则充电能力变高。另一方面,输出电压Vout上升,随着接近于所希望的电压,栅极·源极间电压变小,充电能力变小。
因此,输出电压Vout不会振荡,而能够实现稳定的输出。另一方面,当输出电压Vout高于所希望的电压时,N沟道MOS晶体管422的栅极·源极间电压为阈值电压以下,N沟道MOS晶体管422关断,充电作用不产生。
为了使输出电压Vout快速地稳定在所希望的电压上,而提高N沟道MOS晶体管422的沟道宽度W对沟道长度L之比(W/L),由此,提高了稳定性。
N沟道MOS晶体管422并不仅限于特定的晶体管,可以是这样的元件其至少具有两端子的元件,并具有随着两端子的电压差的增加、元件电流从零增大到足够大的电平上的特性(参照图6(b)),通过元件电流,把具有放电作用的一端连接到输出端子上,通过栅极偏置控制装置52,在所希望的电压时把另一端控制在最适当的恒定电压上。
图7是表示图6的反馈型放电装置12的一个具体例子的图。参照图7,在构成把输出电压Vout驱动为与输入电压Vin相等的电压上的驱动电路的反馈型放电装置12中,差动级22由P沟道MOS晶体管223、224所形成的差动输入对、和作为其有源负载而具有由N沟道MOS晶体管222、221组成的电流镜像电路的差动级所构成,是把输出电压Vout反馈给输入的反馈型的构成。
输入电压Vin,在高电位电源电压VDD附近,在P沟道MOS晶体管223关断的电压范围内,不会正常工作。
放电装置32由在栅极上接受差动级22的输出,漏极连接在输出端子2上,源极连接在低电位侧电源VSS上的N沟道MOS晶体管321组成。
构成反馈型放电装置12的差动级22和放电装置32,当Vout>Vin时,产生由晶体管321所产生的放电作用,把输出电压Vout降低到Vin上,在Vout<Vin下,晶体管321成为关断的,不产生放电作用。但是,在Vout>Vin下,当输出电压Vout高速变化到Vin时,存在输出电压Vout的变化反映到放电作用上所需要的微小响应延迟,而产生下冲(过放电)。
另一方面,在源极跟随器充电装置42中,栅极偏置控制装置52的输出连接在N沟道MOS晶体管422的栅极上,当N沟道MOS晶体管422的源极成为Vin时,当控制栅极以使栅极·源极间电压成为阈值电压Vth附近时,在Vout<Vin下,产生充电作用,通过与Vin和Vout的电压差相对应的晶体管422的源极跟随器充电作用,能够把输出电压Vout提升到与输入电压Vin相等的电压上。
反馈型放电装置12不设置相位补偿装置,由此,即使减小抑制差动级22的电流源225的电流,也能使放电装置32的晶体管321的栅极电压快速地变动,因此,能够以低消耗功率进行高速放电。而且,通过不设置相位补偿电容,而仅存在由电路元件的寄生电容等所引起的微小的响应延迟,因此,即使产生下冲,也能抑制到足够小的电平。因此,即使在产生下冲的情况下,通过源极跟随器型充电装置42,能够快速稳定地输出与输入电压Vin相等的电压。
通过反馈型放电装置12的放电作用,在输出电压Vout非常高速地变化时,下冲稍稍变大,因此,晶体管422的栅极·源极间电压变大,源极跟随器充电装置42的充电作用高速进行。
因此,当从下冲的电压提升到输入电压Vin时,通过栅极·源极间电容,晶体管422的栅极电压瞬时地稍稍提高,由此,存在输出电压Vout瞬时地上升到电压Vin以上的情况。这样一来,重复进行以下过程反馈型放电装置12再次动作而产生放电作用,再次产生较小的下冲,源极跟随器充电装置42再次动作。但是,在此情况下,控制晶体管422的栅极,以使源极跟随器充电装置42的充电能力随着接近电压Vin而变小,因此,输出电压Vout经过几次衰减振荡而最终地收敛在电压Vin上,成为稳定的。
为了进一步提高输出稳定性,提高源极跟随器充电装置42的晶体管422的沟道宽度W对沟道长度L之比W/L。
而且,在源极跟随器充电装置42中,通过栅极偏置装置52,在输出电压Vout成为输入电压Vin的稳定状态下,当晶体管422的漏极电流被设定为微小流过时,在相同大小的电流流过晶体管321中的状态下,成为稳定的。
图8是表示驱动电容性负载时的图7的驱动电路的输出波形的图。实线表示从Vin=Vout的状态,Vin变化到低电压侧时的输出电压Vout的波形,虚线表示Vin变化到高电压侧时的输出电压Vout的波形。图8所示的Vin是变化后的电压(恒定的)。
当Vin变化到低电压侧时,由反馈型放电装置12以高放电能力把输出电压Vout高速地降低到输入电压Vin上。即使在产生下冲的情况下,输出电压Vout通过源极跟随器充电装置42的作用,而快速地被驱动到输入电压Vin上,并稳定起来。
另一方面,当Vin变化到高电压侧时,仅源极跟随器充电装置42动作,输出电压Vout在Vin和Vout的电压差较大时以高充电能力高速地降低,但是,随着接近于输入电压Vin,充电能力变低,而缓和地到达输入电压Vin,并稳定下来。
这样,图7的驱动电路的放电作用能够高速地进行,但是,充电作用与放电作用相比,稍稍滞后。
图9是表示图4的栅极偏置装置51的构成的一个具体例子。参照图9,包括晶体管412和同极性的晶体管411以及两个电流源413、414。P沟道MOS晶体管411的源极与输入端子1相连接,同时,通过恒流源413连接到高电位电源VDD上,漏极和栅极连接在一起,通过恒流源414连接到低电位侧电源VSS上。晶体管411的尺寸和恒流源414的电流设定为当晶体管412的源极为电压Vin时,晶体管411、412的栅极·源极间电压都相等,而成为阈值电压附近。
由此,晶体管411的栅极·源极间电压由恒流源414的电流来设定,因此,晶体管411、412的共同栅极电压根据输入电压Vin而控制为恒定的,晶体管412在源极跟随器放电动作时,通过把输出电压Vout降低到输入电压Vin,而成为输出稳定状态。而且,恒流源413设定为与恒流源414相等的电流,由此,即使在提供输入电压Vin的输入端子1的电流供给能力低的情况下,也能容易地把晶体管411、412的共同栅极电压控制为恒定的。最简单地,用相同的尺寸来设计晶体管411、412,可以足够小地设定电流源413、414的电流。而且,在提供输入电压Vin的输入端子1的电流供给能力高的情况下,可以没有电流源413。
源极跟随器放电装置41通过与反馈型充电装置11的组合能够实现高速驱动的新颖的效果。而且,源极跟随器放电装置41被设定为电流源413、414足够小的电流,因此,消耗功率低。因此,反馈型充电装置11和源极跟随器放电装置41分别是低消耗功率的,组合两者的驱动电路为低消耗功率的。
因此,图9所示的电路的动作范围除了包括低电位电源电压VSS附近之外,是从其到高电位侧的高电位电源电压VDD的电压范围。这是因为差动级21在输入电压Vin在低电位电源电压VSS附近使晶体管213关断的电压范围中不动作,并且,源极跟随器放电装置41仅能在从低电位电源电压VSS到晶体管412的阈值电压部分的高电压之间,降低输出电压Vout。
图10是表示图7的栅极偏置装置52的构成的一个具体例子。参照图10,包括晶体管422和同极性的晶体管421以及两个电流源423、424。N沟道MOS晶体管421的源极与输入端子1相连接,同时,通过恒流源423连接到低电位侧电源VSS上,漏极和栅极连接在一起,通过恒流源424连接到高电位侧电源VDD上。晶体管421的尺寸和恒流源424的电流设定为当晶体管422的源极为电压Vin时,晶体管421、422的栅极·源极间电压都相等而在阈值电压附近。
由此,晶体管421的栅极·源极间电压由恒流源424的电流来设定,因此,晶体管421、422的共同栅极电压根据输入电压Vin而控制为恒定的,晶体管422在源极跟随器充电动作时通过把输出电压Vout提升到输入电压Vin,而成为输出稳定状态。而且,恒流源423设定为与恒流源424相等的电流,由此,即使在提供输入电压Vin的输入端子1的电流供给能力低的情况下,也能容易地把晶体管421、422的共同栅极电压控制为恒定的。最简单地,设计晶体管421、422为相同的尺寸,可以足够小地设定电流源423、424的电流。而且,在提供输入电压Vin的输入端子1的电流供给能力高的情况下,可以没有电流源423。
源极跟随器充电装置42通过与反馈型放电装置12的组合能够实现高速驱动的新颖的效果。而且,源极跟随器充电装置42被设定为电流源423、424足够小的电流上,因此,是低消耗功率。因此,反馈型放电装置12和源极跟随器充电装置42分别是低消耗功率的,组合两者的驱动电路为低消耗功率的。
因此,图10所示的电路的动作范围除了包括高电位电源电压VDD附近之外,是从其到低电位侧的低电位电源电压VSS的电压范围。这是因为差动级22在输入电压Vin在高电位电源电压VDD附近使晶体管223关断的电压范围下不动作,并且,源极跟随器充电装置42仅能在从高电位侧电源VDD到晶体管422的阈值电压Vth部分低的电压之间,提升输出电压Vout。
图11是表示图4的源极跟随器放电装置41的变更例的图。图11所示的变更部分的构成能够适用于图7。参照图11,在该变形例中,在图4所示的源极跟随器放电装置41的P沟道MOS晶体管412的源极与输出端子2和N沟道MOS晶体管214的栅极的连接点同高电位电源VDD之间,设有电流源415,其在输出电压Vout为输入电压Vin的稳定状态下,提供与晶体管412的漏极电流相同的电流。通过这样的构成,在稳定状态下,能够使晶体管311不流过漏极电流。
在输出电压Vout为输入电压Vin的稳定状态下,当在晶体管311中流过漏极电流时,必须稳定差动级21的输出。在图11所示的构成中,在稳定状态下,在晶体管311中不流过漏极电流,因此,稳定状态下的差动级21的输出可以取晶体管311成为关断的任意的电位。因此,能够使用将差动级输出的稳定工作点为晶体管311作为关断的电位的差动级。
图12是表示图4的充电装置31的变更例的图。图12所示的变更部分的构成能够适用于图7。参照图12所示,在晶体管311的栅极与高电位电源VDD之间、低电位电源VSS之间设置电流相等的电流源351、352。
在图4的构成中,当晶体管311的尺寸大时,晶体管311的栅极电容变大,则响应延迟变大,因此,为了提高输出电压Vout的高速稳定性,必须增大差动级的电流源215的电流。但是,即使加大了差动级的电流源215的电流,仅给晶体管311的栅极电压的变化提供了该电流的约二分之一。
与此相对,在图12所示的构成中,流过电流源351、352的电流完全提供给晶体管311的栅极电压的变化,因此,能够用比增大差动级的电流源215时少的电流增加来使晶体管311的栅极电压快速变动。
图13是表示图4的差动级21的变更例的图。图13所示的变更部分的构成能够适用于图7。
参照图13,在图4中,是并联连接差动级21的晶体管211、213的构成。晶体管211A和211B、晶体管213A和213B的各自的漏极相互之间连接在一起,栅极相互之间连接在一起,源极相互之间连接在一起。这样,就晶体管的尺寸而言,晶体管211A和211B、212相互相等,晶体管213A和213B、214相互相等。
在图4中,差动级21为了防止由制造所产生的晶体管特性的偏差,使晶体管211、212相等,使晶体管213、214相等来进行设计。但是,在此情况下,由于在晶体管211、213侧仅流过电流源215的电流的二分之一,则当晶体管311的晶体管尺寸较大时,由于由栅极电容所引起的响应延迟,而存在输出电压难以稳定的情况。
因此,对于晶体管211、213,如图13那样,当两个相同地设置相同尺寸的晶体管211A和211B、晶体管213A和213B时,电流源215的电流的2/3提供给晶体管311的栅极电压的变化,因此,当不使电流源215的电流增加时,能够抑制晶体管311的响应延迟,而且,能够防止由制造所引起的晶体管特性偏差。在此情况下,可以使晶体管211A和211B成为这样的构成在一个晶体管下,使电流驱动能力为晶体管212的2倍;使晶体管213A和213B成为这样的构成在一个晶体管下,使电流驱动能力为晶体管214的2倍。
图14是把能够进行高速充电的驱动电路10(图1所示的电路构成)与能够高速放电的驱动电路20(图2所示的电路构成)进行组合的驱动电路。用开关3、4,选择驱动电路10和驱动电路20任一方来进行驱动,由此,能够高速进行放电、充电。
动作控制信号使未被开关3、4所选择的电路的动作停止,抑制功率的消耗。而且,动作控制信号能够使驱动电路10和驱动电路20的两者停止,使输出停止。
而且,驱动电路10是在图9这样的低电位电源电压VSS附近不动作的驱动电路,驱动电路20是在图10这样的高电位电源电压VDD附近不动作的驱动电路,在此情况下,根据输出的电压,来切换驱动驱动电路10和驱动电路20,由此,能够实现从低电位侧电源VSS到高电位电源电压VDD的电源电压范围的动作。
图15是表示图14的电路构成的一个具体例子的图。把图14的驱动电路10作为图9所示的构成,把驱动电路20作为图10所示的构成,包含通过动作控制信号(在图中省略其)进行接通和关断控制的开关521、551、552、553和开关522、561、562、563。
驱动电路10在开关521、551、552、553全部接通时动作,当全部关断时,电流全部被切断而停止动作。驱动电路20在开关522、561、562、563全部接通时动作,当全部关断时,电流全部被切断而停止动作。上述各个开关包含图14的开关3、4的切换功能。
图15所示的电路的动作范围能够是由驱动电压所产生的从低电位电源电压VSS到高电位电源电压VDD的电源电压范围中的动作。但是,不能实现低电位电源电压VSS附近的充电作用和高电位电源电压VDD附近的放电作用。例如,对于任意的中间电压,当交替驱动高电位侧电压和低电位侧电压时,在驱动高电位侧电压的情况下,使驱动电路10动作,在驱动低电位侧电压的情况下,使驱动电路20动作,由此,能够实现电源电压范围内的动作。
图16是表示图15的变更例的图,在图15的输出端子2上设有预充电装置,预充电装置为把预充电电压VCC通过开关599连接到输出端子2上来构成。在使驱动电路10或者驱动电路20动作之前,使开关599接通,把输出端子2预充电到电压VCC上。
在使开关599分断而结束预充电之后,使驱动电路10或驱动电路20动作。而且,预充电电压VCC可以是多个电平电压。
图16所示的电路的动作范围,通过适当地设定预充电电压VCC,当对预充电电压VCC驱动高电位侧电压时,使驱动电路10动作,当驱动低电位侧电压时,使驱动电路20动作,由此,对于任意驱动,能够实现从低电位电源电压VSS到高电位电源电压VDD的电源电压范围内的动作。
图17是表示图15的源极跟随器放电装置41、源极跟随器充电装置42的变更例的图。参照图17,在该电路中,使用图11的源极跟随器放电装置41的原理,在输出电压Vout的稳定状态下,没有电流从分别包含在反馈型充电装置11、反馈型放电装置12中的充电装置和放电装置向输出端子2流动。在源极跟随器放电装置41中,在P沟道MOS晶体管412的源极与高电位电源VDD之间,设置开关554和恒流源415,在源极跟随器充电装置42中,在N沟道MOS晶体管422的源极与低电位电源VSS之间设有开关564和恒流源425。
图18是表示图15的变更例的图。参照图18,在该电路中,构成使源极跟随器放电装置41和源极跟随器充电装置42成为一体的源极跟随器充放电装置43,具有源极跟随器放电装置41和源极跟随器充电装置42的作用,减少了元件数量。
在源极跟随器充放电装置43中,原封不动地使用源极跟随器放电装置41的晶体管411、412、电流源414、开关553、源极跟随器充电装置42的晶体管421、422、电流源424、开关563。
并且,增加晶体管431、432。晶体管411、412设定各自的元件尺寸和电流源414的电流,以使各自的栅极·源极间电压成为相等的,同样,晶体管421、422设定各自的元件尺寸和电流源424的电流,以使各自的栅极·源极间电压成为相等的,而且,电流源414、424设定为相等的电流。
源极跟随器充放电装置43是应用在日本专利公开公报特开2000-338461号公报(特愿平11-145768号)中提出的技术的电路。源极跟随器充放电装置43的作用是当使反馈型充电装置11动作时,使开关553接通,使晶体管412起到源极跟随器放电作用,当使反馈型放电装置12动作时,使开关563接通,使晶体管422起到源极跟随器充电作用。
而且,晶体管431、432通过把各自的栅极偏置电压BN、BP控制为最适当的电压,即使在输入电压Vin在电源电压VDD或者电压VSS附近晶体管411或421关断的情况下,能够通过晶体管431、432来流通电流源414、424的电流。(段落0133)对于源极跟随器充放电装置43,晶体管412仅在从低电位电源电压VSS到高出阈值电压的电压的范围内能够降低输出电压Vout,晶体管422仅在从高电位电源电压VDD低下阈值电压的电压的范围内能够提升输出电压Vout,因此,在切换开关553、563来使源极跟随器充电作用和源极跟随器放电作用动作时,图18的动作范围与图15的相同。
而且,源极跟随器充放电装置43,当使反馈型充电装置11或者反馈型放电装置12动作时,使开关553、563双方都接通,而能够使源极跟随器充电作用和源极跟随器放电作用都动作。在此情况下,当输入电压Vin高于输出电压Vout时,晶体管422产生源极跟随器充电作用,当输入电压Vin低于输出电压Vout时,晶体管412产生源极跟随器放电作用。
即使产生与反馈型充电装置11或者反馈型放电装置12相同的作用,由于反馈型充电装置11或者反馈型放电装置12的作用较强(与源极跟随器充放电装置43相比,输出电流大),对输出电压Vout的变化几乎没有产生影响。
但是,在输入电压Vin处于低电位电源电压VSS附近而反馈型充电装置11未动作的电压范围内,能够通过源极跟随器充放电装置43的晶体管422产生充电作用,同样,在输入电压Vin处于高电位电源电压VDD附近而反馈型放电装置12未动作的电压范围内,通过源极跟随器充放电装置43的晶体管412而产生放电作用。因此,此时的图18的电路的动作范围,对于任意的驱动,能够实现从低电位电源电压VSS到高电位电源电压VDD的电源电压范围的动作。
图19是表示图14的构成的变形例的图,在图14中,把差动级21、22置换成一个差动级23,用差动级23的输出来控制充电装置31和放电装置32。差动级23在充电装置31和放电装置41任一个动作时,进行动作。
当充电装置31和源极跟随器放电装置41动作时,动作控制信号至少使放电装置32停止,当放电装置32和源极跟随器充电装置42动作时,至少使充电装置31停止。
在图14所示的电路中,驱动电路10和驱动电路20分别独立动作,因此,例如在LSI工艺中,在元件特性上存在偏差的情况下,在驱动电路10和驱动电路20中,分别产生输出偏差。因此,在根据驱动电压来切换驱动电路10和驱动电路20而进行驱动的驱动电路中,多个驱动电压的相对的输出偏差变大。
另一方面,如图19所示的构成,在从一个差动级23来控制充电装置31和放电装置32的动作的构成中,即使例如在LSI制造中,在元件特性上存在偏差的情况下,也能抑制充电装置31和放电装置32的各自的相对的输出偏差。
源极跟随器放电装置41和源极跟随器充电装置42与差动级23、充电装置31、放电装置32独立地动作,但是,在充电装置31和放电装置42的驱动能力与源极跟随器放电装置41和源极跟随器充电装置42相比足够高的情况下,输出电压Vout几乎不取决于充电装置31或者放电装置32的输出。因此,在图19所示的构成中,能够抑制多个驱动电压的相对的输出偏差。
图20是表示图19的构成的变形例的图,在图19中,将源极跟随器放电装置41和源极跟随器充电装置42,替换为能够进行双方的作用的源极跟随器充放电装置43。
图21是表示用一个构成差动对的图19的构成的一个具体例子的图。参照图21,在该电路中,包括控制充电装置31的动作的开关531和控制放电装置32的动作的开关541,开关531、541进行控制,以使充电装置31和放电装置32的至少一方被停止。
差动级23把NMOS差动输入电路(上侧;高电位侧电源VDD侧)和PMOS差动输入电路(下侧;低电位侧电源VSS侧)进行组合而构成。
NMOS差动输入电路(上侧)包括N沟道MOS晶体管255、256,其源极共同连接,并连接在恒流源257上,把输入电压Vin和输出电压Vout输入栅极而成为差动对;P沟道MOS晶体管252、253,其源极连接在电源VDD上,漏极和栅极连接在差动对的输出上;P沟道MOS晶体管251、254,其源极连接在电源VDD上,栅极分别连接在P沟道MOS晶体管252、253的栅极上。P沟道MOS晶体管254的漏极连接在充电装置31的P沟道MOS晶体管311的栅极上。
PMOS差动输入电路(下侧)包括P沟道MOS晶体管265、266,其源极共同连接,并连接在恒流源267上,把输入电压Vin和输出电压Vout输入栅极,而成为差动对;N沟道MOS晶体管262、263,其源极连接在电源VSS上,漏极和栅极连接在差动对的输出上;P沟道MOS晶体管261、264,其源极连接在电源VSS上,栅极分别连接在N沟道MOS晶体管262、263的栅极上。N沟道MOS晶体管263的漏极连接在放电装置32的N沟道MOS晶体管321的栅极以及P沟道MOS晶体管254的漏极上,N沟道MOS晶体管261的漏极连接在P沟道MOS晶体管251的漏极上。
在Vin>Vout下,在N沟道MOS晶体管255、256中,通过晶体管255而起到流过大电流的作用,因此,把晶体管255、256的漏极电流作为镜像电流而输出的晶体管251、254的漏极电流,在晶体管251一方变大。
另一方面,在Vin<Vout下,把晶体管255、256的漏极电流作为镜像电流而输出的晶体管251、254的漏极电流,在晶体管254一方变大。差动对晶体管251、254的电流之和由电流源257进行设定。
同样,在PMOS差动输入电路(下侧),在Vin>Vout下,在晶体管265、266中,通过晶体管266而起到流过大电流的作用,因此,晶体管261、264的漏极电流在晶体管264一方变大。在Vin<Vout下,在晶体管261一方变大。差动对晶体管261、264的电流之和由电流源267进行设定。
晶体管251、254的漏极端子分别连接在晶体管261、264的漏极端子上,当把电流源257、267设定为相等的电流时,晶体管251、261的共同漏极端子N14和晶体管254、264的共同漏极端子N15在Vin>Vout下,N14的端子电压上升,N15的端子电压降低。
另一方面,在Vin<Vout下,N14的端子电压降低,N15的端子电压上升。
在Vin=Vout下,晶体管251、261以及晶体管254、264分别为相等的漏极电流,因此,N15和N14的端子电压能够取任意的电压。
而且,把节点N15作为差动级23的输出端子,成为向充电装置31的晶体管311和放电装置32的晶体管321的栅极的共同输出端子。
由此,在Vin>Vout下,在开关531接通的状态下,通过降低N15的端子电压,晶体管311的充电作用产生,输出电压Vout被提升,在Vin<Vout下,在开关541接通的状态下,N15的端子电压上升,由此,晶体管321的放电作用产生,使输出电压Vout被降低。
随着Vout接近于Vin,N15的端子电压在充电时,晶体管311的栅极·源极间电压上升到成为阈值电压附近的电压电平上,放电时,晶体管321的栅极·源极间电压降低到成为阈值电压附近的电压电平上。
在充电时,当输入电压Vin在高电位电源电压VDD附近变化时,差动级23的晶体管265关断,而且,晶体管261、262也成为关断的,N14的端子电压上升。
另一方面,N15的端子电压在Vin<Vout下的低电压下,使晶体管311进行充电动作,而提升输出电压Vout。而且,随着输出电压Vout的上升,节点N15的电压上升。
因此,当输出电压Vout上升到晶体管266关断的电平时,晶体管263、264成为关断的,N15的端子电压上升到高电位电源电压VDD附近,使晶体管311关断。因此,能够控制的输出电压Vout的电压范围是从上限为高电位电源电压VDD到低于晶体管266的阈值电压的电压之间。
这是在放电时,与输入电压Vin变化到低电位电源电压VSS附近的情况相同,能够控制的输出电压Vout的电压范围是从下限为低电位电源电压VSS到高出晶体管256的阈值电压的电压之间。
因此,图21所示的电路的动作范围除了电源电压VDD、电压VSS附近的一部分的电压范围外,在其中间的电压范围内动作。
图22是表示图21的变更例的图。参照图22,在差动级23中,附加漏极连接在节点N14上、栅极连接在节点N15上、源极连接在P沟道MOS晶体管266的漏极上的N沟道MOS晶体管281,和漏极连接在节点N14上、栅极连接在节点N15上、源极连接在N沟道MOS晶体管256的漏极上的P沟道MOS晶体管282,图22的动作范围对于任意的驱动为能够在从低电位电源电压VSS至高电位电源电压VDD的电源电压范围内的动作。
在差动级23的正常动作中,与图21相同,在Vin=Vout之外,N14和N15的各自的端子电压进行相反的电位变动。
当在差动级23中设置晶体管281、282时,在充电时,当输入电压Vin在高电位电源电压VDD附近变化时,输出电压Vout上升到晶体管266的阈值电压电平上,N14和N15的端子电压都上升。此时,晶体管281的漏极连接在N14上,栅极连接在N15上,源极连接在晶体管263的漏极上,当漏极成为高电位,源极成为低电位,栅极成为高电位时,晶体管281成为导通状态,在N14与晶体管263的漏极端子之间,产生电流路径。
由此,即使PMOS差动对晶体管265、266是关断状态,晶体管251的漏极电流流过晶体管263,晶体管263、264的电流镜像电路动作。
由此,N15的端子电压产生与NMOS差动对晶体管255、256的漏极电流的变动相对应的电位变动,晶体管311能够进行充电动作。
即,在充电时,即使在输入电压Vin在高电位电源电压VDD附近变化的情况下,差动级23通过NMOS差动输入电路(上侧)和晶体管263、264所形成的电流镜像电路的动作,能够使N15的端子电压变动而把输出电压Vout提升到输入电压Vin上。
同样,在放电时,当输入电压Vin在低电位电源电压VSS附近变化时,输出电压Vout降低到晶体管256的阈值电压电平上,N14和N15的端子电压都降低。
此时,晶体管282的漏极连接在N14上,栅极连接在N15上,源极连接在晶体管253的漏极上,当漏极成为低电位、源极成为高电位、栅极成为低电位时,晶体管282成为导通状态,在晶体管253的漏极端子与N14之间产生电流路径。
由此,即使NMOS差动对晶体管255、256为关断状态,晶体管253的漏极电流流过晶体管261,晶体管253、254的电流镜像电路动作。
由此,N15的端子电压根据PMOS差动对晶体管265、266的漏极电流而产生电位变动,晶体管321能够进行放电动作。
即,在放电时,在输入电压Vin在低电位电源电压VSS附近变化时,差动级23通过PMOS差动输入电路(下侧)和晶体管253、254所形成的电流镜像电路的动作,能够使N15的端子电压变动而把输出电压Vout降低到输入电压Vin。
晶体管281即使在进行N14、N15的端子电压相反的电位变动的正常动作时,在N14变化为低电位、N15变化为高电位的情况下,成为导通状态,在N14和晶体管263的漏极端子间产生过冲,但是,如果是低电位,即使发生过冲也没有问题,由此,不会对N15的电位变动产生影响,而不产生对输出电压Vout的影响。
同样,晶体管282在N14变化为高电位、N15变化为低电位的情况下,成为导通状态,在N14和晶体管253的漏极端子间产生过冲,但是,如果是高电位,即使发生过冲也没有问题,由此,不会对N15的电位变动产生影响,而不产生对输出电压Vout的影响。
如以上那样,差动级23通过设置晶体管281、282,对于电源电压范围的任意的输入电压Vin,正常地动作,能够使图22所示的电路在电源电压范围下动作。
而且,差动级23用共同的输出端子N15来控制晶体管311、321的栅极,因此,即使在构成差动级23的各个晶体管的特性偏差产生的情况下,充电作用和放电作用都在相同的方向上产生输出电压的偏差,因此,能够把多个驱动电压的相对的输出电压偏差抑制得足够小。
图23是表示图22的变更例的图,该电路构成能够用于图21的构成。参照图23,设置开关532,在充电装置31开始进行充电作用之前,使晶体管311暂时成为关断状态,设置开关542,其在放电装置32开始进行放电作用之前,使晶体管312暂时成为关断状态。
开关532、542具有这样的作用当由开关531、541的接通、断开的切换所产生的充电和放电的切换时,把N15的端子电压进行复位,当充电和放电切换时,防止输出电压Vout的不需要的电压变动。
差动级23的输出端子N15,随着输出电压Vout接近电压Vin,N15的端子电压在充电时上升到晶体管311的栅极·源极间电压为阈值电压附近的电压电平上并稳定住,在放电时,降低到晶体管321的栅极·源极间电压为阈值电压附近的电压电平上并稳定住。
因此,在没有开关532、542的情况下,在从放电向充电切换时,从充电作用强的状态开始晶体管311的动作,当从充电向放电切换时,从放电作用强的状态开始晶体管321的动作。由此,在充电和放电的切换时,与输入电压Vin无关而瞬间地产生充电和放电,则存在输出电压Vout变动的可能性。
因此,设置开关532、542,当从放电向充电切换时,进行控制,以使开关532仅在开关541成为断开后的短时间内成为接通状态,把N15的端子电压提升到高电位电源电压VDD上。由此,当开关531成为接通而使充电动作开始时,能够使晶体管311从关断状态开始动作。
而且,当从充电向放电切换时,进行控制,以使开关542仅在开关531成为断开后的短时间内成为接通状态,把N15的端子电压降低到低电位电源电压VSS上。由此,当开关541成为接通而使放电动作开始时,能够使晶体管321从关断状态开始动作。
如上述那样,通过设置开关532、542,在充电和放电切换时,能够防止输出电压Vout与输入电压Vin无关而进行变动。
图24是表示图20所示的电路的一个具体例子的图。参照图24,该电路是把图23的源极跟随器放电装置41和源极跟随器充电装置42置换成源极跟随器充放电装置43的结构。把源极跟随器放电装置41和源极跟随器充电装置42置换成源极跟随器充放电装置43的构成,能够用于图21、图22、图23所示的电路。
图25是表示图21中的源极跟随器放电装置41和源极跟随器充电装置42的构成的一个具体例子的图。参照图25,源极跟随器放电装置41和源极跟随器充电装置42为与图17所示的电路构成相同的构成,在Vout=Vin的输出稳定状态下,充电装置31的晶体管311或放电装置32的晶体管321的漏极电流几乎不流通。
图26是表示图22的源极跟随器放电装置41和源极跟随器充电装置42的构成的一个具体例子的图。在图26中,源极跟随器放电装置41和源极跟随器充电装置42为与图17所示的电路构成相同的构成,对于其作用,可以参照图17的说明,因此,在此省略其说明。
图27是表示图23的源极跟随器放电装置41和图42的构成的一个具体例子的图。在图27中,源极跟随器放电装置41和源极跟随器充电装置42为与图17所示的电路相同的构成。
图28是表示图24的源极跟随器充放电装置43的具体例子的图。源极跟随器充放电装置43与图18所示的电路构成相同,对于其作用,可以参照图18的说明,因此,在此省略其说明。
图29是表示使用图1至图28所示的电路作为液晶显示装置的数据驱动器的缓冲放大器100时的具体例子的图。参照图29,该驱动器包括连接在高电位侧电源VDD与低电位侧电源VSS之间的电阻串200、解码器300(选择电路)、输出端子群400、输出级100。
从电阻串200的各个端子(抽头)生成的多个阶梯电压中,在每个输出中,根据图象数字信号来用解码器300来选择阶梯电压,用缓冲放大器100进行放大,来驱动连接在输出端子群400上的数据线。作为缓冲放大器100可以使用参照图1至图28说明的本实施例的电路。
图30是在图29中,当缓冲放大器100中的元件的特性偏差较大时,用缓冲放大器100高速驱动到所希望的电压附近,然后,停止缓冲放大器100,使开关101接通,从电阻串200提供直接电荷,来驱动数据线。
图31是表示在能够切换驱动高速充电作用和高速放电作用的图14至图28所示的构成中用于液晶显示装置的数据驱动器的缓冲放大器时的动作控制方法的具体例子的图。对于任意的驱动电压,能够进行高速驱动。
高速充电作用和高速放电作用分别通过充电装置31和放电装置32的动作进行,在图14至图28的各个构成中,当至少一方动作时,另一方必须被停止。
图31表示对于液晶显示中的阶梯电平的充电装置31和放电装置32的控制方法的具体例子。
图14至图28的差动级21、22、23、源极跟随器放电装置41、源极跟随器充电装置42、源极跟随器充放电装置43分别进行与充电装置31和放电装置32的控制相对应的控制。而且,由源极跟随器动作所进行的驱动,当驱动大容量负载时,驱动速度降低,因此,为了进行高速驱动,必须进行控制,以使充电装置31和放电装置32始终动作。
图31是在输出给数据线的阶梯电平连续的数据选择期间中,交替输出高电位电平和低电位电平的情况下的驱动方法,能够适合于进行液晶显示装置的点反相驱动的情况。
通过对一定的公共电压指定驱动电压极性正负的极性反相信号,可以对多个阶梯电平的高电位电平和低电位电平进行判别。而且,当高电位电平被指定时,使充电装置31动作,进行高速充电,驱动阶梯电压,当低电位电平被指定时,使放电装置32动作,进行高速放电,驱动阶梯电压。由此,在任意的阶梯电压的驱动中,能够实现高速驱动。
而且,源极跟随器放电装置41、源极跟随器充电装置42、源极跟随器充放电装置43在各自的构成中用于抑制过冲和下冲而高速地稳定输出电压。
而且,在图16所示的构成中,在具有输出端子2的预充电装置的构成中,当进行液晶显示装置的共同反相驱动时,能够使用图31的控制方法。
在此情况下,通过预充电装置进行预充电而成为多个阶梯电平的中央阶梯电平。此时的高电位电平和低电位电平的判别能够通过以中央阶梯为界取不同的值的图象数字信号的最高电位比特信号和极性反相信号来进行。
而且,在1数据选择期间,用图31的控制方法来驱动被预充电到中央阶梯电平上的数据线,由此,在任意的阶梯电压的驱动中,能够实现高速驱动。
图32是表示图31的变更例的图。图32是在输出给数据线的阶梯电平连续的数据选择期间中,任意输出高电位电平和低电位电平的情况下的驱动方法,能够适合于进行液晶显示装置的共同反相驱动的情况。
在共同反相驱动中,除了进行预充电到预定的电压上的情况之外,在1数据选择期间内,伴随着共同电压的变动,数据线电压经过电容而经受变动。因此,在1数据选择期间开始时,充电或者放电没有被唯一地确定。
因此,把1数据选择期间分成前半部分t0-t1区间和后半部分t1-t2区间,在驱动高电位电平的阶梯电压时,在前半部分t0-t1区间中使放电装置32动作,在后半部分t1-t2区间中使充电装置31动作。
同样,当驱动低电位电平的阶梯电压时,在前半部分t0-t1区间中使充电装置31动作,在后半部分t1-t2区间中使放电装置32动作。而且,前半部分t0-t1区间至少为到共同电压稳定为止的时间。
而且,高电位电平和低电位电平的判别能够通过图象数字信号的多个上位比特信号和极性反相信号来进行。最简单地,使用以中央阶梯为界而取不同值的最高电位比特信号。通过这样的控制方法,即使在由于共同电压的变动而使数据线电压变动的情况下,在任意的阶梯电压的驱动中,能够实现高速驱动。
而且,在上述实施例中,虽然以MOS晶体管为例进行了说明,但是,不言而喻,对于由双极晶体管所形成的驱动电路(缓冲器电路)也能适用,把没有相位补偿电容的电压跟随器型构成的反馈型充电(放电)装置和发射极跟随器放电(充电)装置进行组合来构成。
当本发明用于作为电压跟随器所使用的OP放大器(运算放大器)时,不需要防止振荡用的相位补偿用电容,来实现低消耗功率。作为放大率为1的同相放大器的电压跟随器,向OP放大器的同相输入端子输入输入信号,把输出信号反馈输入到反相输入端子中,而输出与输入信号同相的电压。当使用OP放大器作为电压跟随器时,需要最大地增大相位补偿电容的电容值,通过率变低,但是,本发明不需要相位补偿电容,而能够实现通过率的高速化,而且,能够适应于大振幅的输入电压。在OP放大器的差动级的基础上,进一步包括根据输入信号和输出信号的电压差来对输出端子进行充电的充电装置(图3的31);根据输入信号来控制输出偏置电压的偏置控制装置(图3的51) 具有插入OP放大器的输出端子(图3的2)的放电路径中、把从上述偏置控制装置(图3的51)所输出的偏置电压作为输入的源极跟随器型构成的晶体管(图3的412)的源极跟随器放电装置(图3的41)。而且,包括根据输入信号和输出信号的电压差来对输出端子进行放电的放电装置(图6的32);根据输入信号来控制输出偏置电压的偏置控制装置(图6的52);源极跟随器充电装置(图6的42),其具有插入到输出端子(图6的2)的充电路径中,把从上述偏置控制装置(图6的52)所输出的偏置电压作为输入的源极跟随器型构成的晶体管(图6的422)。如图14、图19等所示的那样,反馈型充电装置11和反馈型放电装置12或者充电装置31和放电装置32由通过动作控制信号被接通和断开的开关进行控制,以使当其一方被激活时,另一方成为非激活状态,对于源极跟随器放电装置41和源极跟随器充电装置42都是相同的。而且,这些电路可以为全部内置于OP放大器中的构成。与此不同,可以用OP放大器构成差动级,用外加电路来构成充电装置31和放电装置32、源极跟随器放电装置41和源极跟随器充电装置42。
如上述那样,在本发明中,跟随器放电装置(图1的41)包括差动级(图1的21),当与成为电压跟随器型构成的反馈型充电装置(图1的11)相组合时,就不需要相位补偿电容,因此,适合于低消耗功率、高速化和电路规模的缩减,但是,跟随器型放电装置(图1的41)的适用对象并不仅限于所述的差动构成的反馈型放大电路。例如,当在从输入端子接受输入信号而驱动输出端子的缓冲器电路(也可以是不采取差动输入构成的缓冲器电路)的输出端子上连接上述的跟随器型放电装置(图1的41)时,具有能够抑制输出端子的阻尼振荡发生、而使输出信号被高速地稳定下来的效果。同样,即使当在该缓冲放大器电路的输出端子上连接跟随器型充电装置(图2的42)时,也具有高速地使输出信号稳定下来的效果。自然也可以在缓冲放大器电路的输出端子上连接跟随器型放电装置(图1的41)和跟随器型充电装置(图2的42)。跟随器型放电装置和跟随器型充电装置可以原封不动地使用图3、图6所示的电路构成。
而且,如果在上述段落0133上附加内容,晶体管431、432可以分别置换为进行与开关563、553的通、断控制相同的控制的开关。
下面根据模拟结果具体地表示本发明的效果。在该模拟中,为了表示本发明的驱动电路的低功率性能和高速性能,进行图46所示那样的对显示面板的数据线等的大容量布线负载(1数据线负载60kΩ,60pF)的评价。如图46所示的那样,大容量布线负载由把电阻和电容的积分电路连接成5段分叉串联形态的等效电路所构成,在负载近端上连接驱动电路的输出端Vout。用于模拟的驱动电路作为图15的构成,电源电压为高电位电源电压VDD=7V,低电位电源电压VSS=0V。
图36是表示成为相当于最大振幅的驱动电压0.2V-6.8V时的负载近端和负载远端的输出电压波形的图。在图37中表示了此时的输出延迟时间。输出延迟时间为振幅电压的3τ(95%变化)所需要的时间。而且,τ是CR电路的时间常数,在指数函数的脉冲响应曲线1-exp(-t/τ)中,t=3τ为0.95(满振幅的95%)。0.2V-6.8V驱动时的负载近端的输出延迟时间是上升沿=0.34μs,下降沿=0.42μs,在负载远端的输出延迟时间是上升沿=5.83μs,下降沿=5.88μs。驱动电路的负载驱动速度能够用负载近端的电压变化的速度来进行判断。
根据图37,负载近端的电压变化的速度是上升沿(充电)和下降沿(放电)都为0.5μs以下,而极其高速,本发明的实施例所涉及的驱动电路的高速性能得到了证明。
而且,图38是表示图36的驱动中的驱动电路的高电位侧电源VDD的消耗电流的变化的图。在图38中,时间0μs~10μs的消耗电流表示驱动电路的动作维持所需要的静态消耗电流,时间10μs~20μs的消耗电流表示在静态消耗电流上加上负载电容的充电电路的动态消耗电流。在设有相位补偿电容的现有的反馈型放大电路中,为了实现图36这样的高速驱动,需要几十μA的静态消耗电流。从图38可以看出,在本发明的实施例所涉及的驱动电路的动作维持中所需要的静态消耗电流为约2μA,足够小,本发明的驱动电路的低功率性能得到了证明。而且,当负载电容与图46所示的相比足够小时,能够进一步减小本发明的驱动电路的动作维持所需要的静态消耗电流。
在图39中表示无负载时的输出波形。根据图39,即使在无负载时,本发明的驱动电路呈现出即使没有相位补偿电容,通过由源极跟随器动作所产生的输出稳定作用,而没有振荡。而且,上面是对大容量负载进行模拟的结果,但是,在负载电容小的情况下,能够用几百nA(纳安)级的小静态消耗电流来足够高速地进行驱动。
按上述说明的那样,本发明所涉及的驱动电路,从小容量负载到大容量负载都能实现低功率高速驱动。而且,即使对于作为本发明的实施例来说明的图16至图18所示的各个驱动电路,也具有与图15相同的性能。而且,对于图21至图28分别表示的驱动电路,当与图15相比时,差动电路的构成复杂,电流路径较多,因此,与图15所示的构成相比,静态消耗电流稍稍增加,但是,由于没有设置相位补偿电容,而能够用充分低的消耗电流来实现高速驱动。
下面,在本发明的驱动电路中,对于驱动大容量负载时的特有的现象,参照模拟结果进行说明。负载条件和电源电压条件与上述模拟相同。
图40、图41是通过成为本发明的实施例的图15的驱动电路,对于图46所示的大容量布线负载,输出电源电压范围中间附近电压5V时的负载近端和负载远端的输出电压波形。图40是波形全体图,图41是放大图。在图40和图41中表示了上升沿之后的负载近端的电压衰减振荡的样子。而且,虽然省略了图示,但是,在下降沿之后的负载近端附近同样产生了衰减振荡。该现象是大容量布线负载特有的,在布线电阻足够小时和布线电容小的情况下、或者是在布线电阻小的情况下,不产生该现象。该衰减振荡是由从负载近端到负载远端的电荷的缓和现象和驱动电路的反馈型充电(放电)装置所产生的高速动作而产生的现象。
参照图40、图41,在时间10μs以后,大容量布线负载由驱动电路的反馈型充电装置进行高速充电,负载近端电压被一直迅速充电到所希望的驱动电压(5V)。此时,产生抑制过冲、降低到所希望的驱动电压上的作用。此时,如果负载电容小,而快速地稳定在所希望的电压上,但是,在大容量布线负载的情况下,即使负载近端被充电到所希望的驱动电压上,负载远端也不会迅速跟随。因此,通过从负载近端到负载远端的电荷的缓和,负载近端电压降到所希望的驱动电压以下(下冲)。由此,再次进行由反馈型充电装置所进行的高速充电。这样,通过高速地重复进行由高速充电所产生的过冲和由电荷的缓和所产生的下冲,而产生振荡。这样,当负载远端电压接近负载近端电压时,由于由电荷的缓和所产生的下冲变小,则由高速充电所产生的过冲变小,振荡衰减,而稳定在所希望的驱动电压上。
大容量布线负载驱动中的上述那样的负载近端的衰减振荡与振荡不同,迅速收敛,因此,在实用上没有特别的问题。
但是,在得到平滑的输出波形的情况下,可以在驱动电路的内部设置抑制振荡用的电容值足够小的电容。图42是表示本发明的实施例的变形例。在图42中,在图15所示的驱动电路中,在差动级(213、214)、差动级(223、224)的输出与输出端子2之间分别设置0.1pF的振荡抑制电容216、226。
通过图42的驱动电路,对于图46所示的大容量布线负载,输出电源电压范围的中间附近电压5V时的负载近端和负载远端的输出电压波形表示在图43中。图43是全体波形图,图44是图43的部分放大图。根据图43、图44,设置0.1pF程度的电容,由此,能够除去图40、图41的衰减振荡。而且,由于设在驱动电路中的振荡抑制电容的电容值可以足够小,则几乎没有对驱动速度的影响和消耗电流的增加,而且,能够使用晶体管电容而容易地形成。
对于成为本发明的各个实施例的图16至图18、图21至图28所示的各驱动电路,与图15相同,通过在差动对的输出与输出端子之间附加振荡抑制电容,在驱动大容量布线负载时,能够得到平滑的输出电压波形。
图45是在图27所示的驱动电路上附加振荡抑制电容的构成。在图45中,振荡抑制电容268设在差动电路23的输出端子N15与输出端子2之间。在图21至图28所示的驱动电路中,差动电路23在充电动作和放电动作上是共同的,因此,振荡抑制电容可以设置一个。
而且,通过进一步的研究结果,得到以下进一步的认识本发明为了实现低消耗功率的反馈型放大电路和驱动电路,提供不需要设置相位补偿电容来实现输出稳定化的构成。因此,具有随着输出成为所希望的电压,电流驱动能力成为足够小的充电装置和放电装置的反馈型放大电路中,把充电装置或者放电装置的一方作为反馈型构成,把另一方作为几乎没有响应延迟的非反馈构成。该电路的原理·作用是在使输出变化到所希望的电压上的动作中,当充电装置或者放电装置的一方是反馈型构成时,产生响应延迟而发生过冲和下冲,但是,充电装置或者放电装置的另一方是非反馈构成,而几乎没有响应延迟,由此,迅速地抑制了过冲和下冲,能够使输出稳定化。因此,不需要相位补偿电容,或者,能够把相位补偿电容抑制得足够小,能够抑制在相位补偿电容的充放电中所需要的电流,削减消耗功率。
图1至图32所示的构成、以及图36至图46表示了使用源极跟随器充电装置或者源极跟随器放电装置作为非反馈构成的充电装置或者放电装置的实施例。
例如,在图4和图9所示的例子中,充电装置是反馈型构成的电压跟随器电路11,放电装置是非反馈型构成的源极跟随器放电装置41。反馈型构成的电压跟随器电路11接受输出电压Vout的变化,差动级21动作,接受差动级21的输出的变化,充电装置31动作,因此,在输出电压Vout的变化反映到充电作用之前,必然包含差动级21的动作延迟(响应延迟),因此,输出电压Vout发生过冲。而且,差动级21的构成越复杂,响应延迟越大,而过冲越大。另一方面,源极跟随器放电装置41是晶体管412为源极跟随器构成,栅极被控制为与输入电压Vin相对应的电压上,当输出变为所希望的电压(Vin)以上时,晶体管412的栅极·源极间电压增加,而产生放电作用。在源极跟随器放电装置41中,输出电压的变化即晶体管412的栅极·源极间电压的变化瞬时反映到放电能力上,因此,几乎不发生响应延迟。
因此,即使由电压跟随器电路11产生了过冲,通过源极跟随器放电装置41能够使发生过冲的输出电压迅速放电而稳定在所希望的电压上。该原理在使用源极跟随器充电装置或者源极跟随器放电装置的其他实施例的构成中是相同的。
但是,在本发明中,除了源极跟随器构成之外,如果是几乎没有响应延迟的非反馈构成,就能实现不需要相位补偿电容的反馈型放大电路和驱动电路。图47是表示该例的图。
图47是表示本发明的另一个实施例的构成的图。参照图47,该实施例的电路包括反馈型充电装置11,能够通过输入电压Vin和输出电压Vout两个输入而产生充电作用,提升输出电压Vout;放电装置61,通过与反馈型充电装置11独立的动作,根据与输入电压Vin相对应的所希望的电压与输出电压Vout的电压差来动作。图47是用放电装置61置换图3所示的源极跟随器放电装置41的构成,对于相同的构成部分,使用相同的标号。
反馈型充电装置11包括差动级21,根据输入电压Vin和输出电压Vout的两个的电压差而动作;充电装置31,根据差动级21的输出而产生充电作用。本实施例为不设置相位补偿装置(相位补偿电容)的构成,或者需要足够小的相位补偿电容,由此,能够用低消耗功率来进行高速驱动。
在根据输入电压Vin而使输出电压Vout输出所希望的电压的驱动电路中,反馈型充电装置11根据Vin和Vout的电压差而动作,当输出电压Vout低于所希望的电压时,通过其充电作用,把输出电压Vout提升到所希望的电压上。反馈型充电装置11不设置相位补偿装置,由此,能够以低功率消耗高速进行动作,但是,在反馈型的构成中,由于电路元件的寄生电容等,输出电压Vout的变化反映到充电作用会存在微小的响应延迟,而存在产生过冲(过充电)的情况。
另一方面,放电装置61包括漏极连接在输出端子2上,源极连接在低电位侧电源VSS上的N沟道MOS晶体管601;栅极偏置控制装置62,把与输入电压Vin相对应的所希望的电压作为参照电压,根据输出电压Vout,来控制N沟道MOS晶体管601的栅极电压。
具体地说,栅极偏置控制装置62在驱动所希望的输出电压期间,控制栅极偏置,以使输出电压Vout与N沟道MOS晶体管601的栅极偏置的电压差相对于输出电压的变化几乎没有延迟地保持为恒定。
而且,栅极偏置控制装置62控制栅极偏置,以使输出电压与N沟道MOS晶体管601的栅极偏置的电压差在当输出电压为所希望的电压时,N沟道MOS晶体管601的栅极·源极间电压为阈值电压附近。由此,放电装置61具有适应于所希望的电压与输出电压Vout的电压差的放电能力,当输出电压Vout高于所希望的电压时,通过晶体管的放电作用,把输出电压Vout降低到所希望的电压上。
下面对放电装置61的作用进一步进行说明。在放电装置61中,由于输出电压Vout与N沟道MOS晶体管601的栅极偏置的电压差几乎保持恒定,当输出电压Vout高于所希望的电压时,N沟道MOS晶体管601的栅极偏置被提升,N沟道MOS晶体管601的栅极·源极间电压变大,而以适应于输出电压Vout与所希望的电压的电压差的放电能力来产生放电作用。
当输出电压Vout降低到所希望的电压时,N沟道MOS晶体管601的栅极·源极间电压处于阈值电压附近,放电作用几乎停止。
另一方面,当输出电压Vout低于所希望的电压时,N沟道MOS晶体管601的栅极·源极间电压成为阈值电压以下,不产生放电作用。
放电装置61,由栅极偏置控制装置62所产生的N沟道MOS晶体管601的栅极偏置控制相对于输出电压的变化没有延迟地进行,由此,能够把高于所希望的电压的输出电压Vout迅速地降低到所希望的电压上并稳定下来。
而且,在栅极偏置控制装置62中,当输出电压Vout低于所希望的电压时,如果N沟道MOS晶体管601的栅极·源极间电压为阈值电压以下,此时,输出电压Vout与栅极偏置的电压差发生变化也没有关系。
如上述那样,本实施例的驱动电路,在输出电压Vout低于所希望的电压时,能够通过反馈型充电装置11把输出电压Vout高速提升到所希望的电压上。此时,即使产生微小的过冲(过充电),通过放电装置61而迅速地降低到所希望的电压上而成为稳定的输出。
另一方面,在输出电压Vout高于所希望的电压时,通过放电装置61降低到所希望的电压上,成为稳定的输出。
而且,反馈型充电装置11不设置相位补偿电容,由此,仅有由电路元件的寄生电容等所产生的微小响应延迟。因此,即使在发生过冲的情况下,也被抑制到足够小的电平上。因此,通过反馈型充电装置11和放电装置61的组合,在充电时,能够在高速充电的同时,高速稳定到所希望的电压上。
图48表示图47的一个具体例子。图48是把图9的源极跟随器放电装置41变更为放电装置61的构成,对于相同的构成部分,使用相同的标号。图48是把输出电压Vout驱动到与输入电压Vin相等的电压上的驱动电路。
参照图48,在反馈型充电装置11中,差动级21由具有N沟道MOS晶体管213、214所形成的差动输入对和作为其有源负载而具有由P沟道MOS晶体管212、211组成的电流镜像电路的差动级所构成,是把输出电压Vout反馈给输入的反馈型的构成。
构成反馈型充电装置11的差动级21和充电装置31,当Vout<Vin时,发生由晶体管311所产生的充电作用,把输出电压Vout提升到Vin上,在Vout>Vin下,晶体管311成为关断的,从而不产生充电作用。
但是,在Vout<Vin中,当输出电压Vout高速变化到Vin时,输出电压Vout的变换反映到充电作用会存在微小的响应延迟,而产生过冲(过充电)。
另一方面,放电装置61的构成是把日本专利公开公报特开平11-259052号的构成进行部分变更来应用的方案,包括N沟道MOS晶体管601,其漏极连接在输出端子2上,源极连接在低电位电源电压VSS上;栅极偏置控制装置62,以输入电压Vin作为参考电压,根据输出电压Vout来控制N沟道MOS晶体管601的栅极电压。栅极偏置控制装置62包括电容元件602,一端连接在N沟道MOS晶体管601的栅极上;连接在输入端子1与电容元件602的另一端之间的开关611;连接在输出端子2与电容元件602的另一端之间的开关613;以及对N沟道MOS晶体管601的栅极控制电压Vref的供给、切断进行控制的开关612。提供该电压Vref来作为N沟道MOS晶体管601的栅极·源极间电压处于阈值电压附近这样的栅极偏置电压。
图49是表示该实施例的驱动电路中在把输出电压Vout驱动到与输入电压Vin相等的电压的1输出期间的开关611、612、613的控制的定时图。参照图48和图49来说明该实施例中的栅极偏置控制装置62的作用。
在1输出期间的开始,在期间t0-t1间,使开关611和开关612都导通。此时,给N沟道MOS晶体管601提供电压Vref作为栅极偏置,N沟道MOS晶体管601的栅极·源极间电压处于阈值电压附近,从输出端子2向低电位电源电压VSS的放电电流被抑制得足够小。
当开关611和开关612都导通时,电容元件602的一端被提供给电压Vref,另一端提供输入电压Vin,保持Vin与Vref的电压差。
而且,在期间t1,在开关611和开关612成为关断之后,使开关613导通,在期间t1-t2间保持该状态。此时,电容元件602的一端连接在N沟道MOS晶体管601的栅极上,另一端通过导通状态的开关613连接在输出端子2上,进行作用,以便于保持在电容元件602的两端所保持的输入电压Vin和电压Vref的电压差。
因此,当开关613成为导通时,在输出电压Vout高于Vin的情况下,N沟道MOS晶体管601的栅极偏置被提升,N沟道MOS晶体管601的栅极·源极间电压变大,以对应于输出电压Vout与Vin的电压差的放电能力而产生放电作用。
而且,当输出电压Vout降低到Vin时,N沟道MOS晶体管601的栅极·源极间电压处于阈值电压附近,放电作用几乎停止,输出电压Vout稳定下来。
另一方面,当开关613成为接通时,在输出电压Vout低于Vin的情况下,N沟道MOS晶体管601的栅极·源极间电压处于阈值电压以下,N沟道MOS晶体管601的放电作用不发生。
栅极偏置控制装置62能够使输出电压的变化经过电容元件602而几乎没有延迟地反映到N沟道MOS晶体管601的栅极偏置上,因此,放电装置61能够把高于Vin的输出电压Vout快速地放电到Vin上并稳定下来。
而且,可以用提供相同作用的电压保持装置,来取代电容元件602。即,可以是电压保持装置,其取样并锁存输入电压Vin与电压Vref的电压差,把锁存的电压差保持在输出端子与N沟道MOS晶体管601的栅极之间。
如以上那样,本实施例的驱动电路,在输出电压Vout低于输入电压Vin时,能够通过反馈型充电装置11把输出电压Vout高速地提升到Vin,此时,即使产生微小的过冲(过充电),通过放电装置61而快速地降低到Vin,成为稳定的输出。另一方面,在输出电压Vout高于输入电压Vin的情况下,通过放电装置61而降低到Vin,成为稳定的输出。
而且,由于用N沟道MOS晶体管来进行放电动作,图48所示的驱动电路的动作范围可以为从低电位电源电压VSS到高电位电源电压VDD的电源电压范围。
而且,在本实施例的驱动电路中,对把反馈型充电装置11和放电装置61进行组合的驱动电路进行了说明,但是,对于把反馈型放电装置和充电装置进行组合的构成,也能容易实现。
在此情况下,与图48所示的放电装置61相对应的相同构成的充电装置(不是源极跟随器型),除了与放电装置61的构成极性为对称的之外,具有相同的构成。即,充电装置包括连接在高电位侧电源与输出端子(2)之间的P沟道MOS晶体管,在P沟道MOS晶体管的栅极与提供电压Vref的电压输入端子之间插入的第一开关。还包括一端连接在P沟道MOS晶体管的栅极上的电容;连接在该电容的另一端与输入端子之间的第二开关;连接在输出端子与电容的另一端之间的第三开关。放电装置61除了放电、充电不同之外,开关的控制与图49所示的相同。
在驱动电路的1输出期间的开始,在期间t0-t1间(参照图49),使第一、第二开关都接通。此时,给P沟道MOS晶体管提供电压Vref作为栅极偏置,P沟道MOS晶体管的栅极·源极间电压处于阈值电压附近,从高电位电源电压VDD向输出端子2的充电电流被抑制得足够小。
当第一、第二开关都接通时,电容元件的一端被提供电压Vref,另一端被提供输入电压Vin,Vin和Vref的电压差被保持。在图49的期间t1中,在使第一、第二开关断开之后,使第三开关接通,在期间t1-t2间保持该状态。此时,电容元件的一端连接在P沟道MOS晶体管的栅极上,另一端则通过接通状态的第三开关连接在输出端子上,保持在电容元件的两端上所保持的输入电压Vin与电压Vref的电压差。
因此,当第三开关成为接通时,在输出电压Vout低于Vin的情况下,P沟道MOS晶体管的栅极偏置被降低,P沟道MOS晶体管的栅极·源极间电压变大,以适应于输出电压Vout与Vin的电压差的充电能力而产生充电作用。
接着,当输出电压Vout上升到Vin时,P沟道MOS晶体管的栅极·源极间电压处于阈值电压附近,充电作用几乎停止,输出电压Vout稳定下来。
另一方面,当第三开关成为接通时,在输出电压Vout高于Vin的情况下,P沟道MOS晶体管的栅极·源极间电压成为阈值电压以下,P沟道MOS晶体管的充电作用不发生。
在此情况下,充电装置的栅极偏置控制装置能够把输出电压的变化通过电容元件几乎没有延迟地反映到P沟道MOS晶体管的栅极偏置上,因此,充电装置把低于Vin的输出电压Vout快速地充电至Vin,并稳定下来。
在此情况下,可以取代电容元件而使用提供相同作用的电压保持装置。即,可以是电压保持装置,其抽样并锁存输入电压Vin和电压Vref的电压差,并把锁存的电压差保持在输出端子与进行充电作用的P沟道MOS晶体管的栅极之间。
不言而喻,可以把图48所示的放电装置61和上述充电装置分别置换为上述本发明的各个实施例的驱动电路的源极跟随器放电装置41和源极跟随器充电装置42,本发明包含它们的所有组合。发明的效果如上述那样,根据本发明,通过把没有相位补偿电容的电压跟随器型构成的反馈型充电(放电)装置和源极跟随器放电(充电)装置进行组合,能够达到比具有相位补偿电容的运算放大器更高速的稳定动作,而谋求低消耗功率化。
而且,本发明具有输出波形振荡抑制用电容,由此,在大容量负载的驱动中,可抑制振荡,使输出波形成为平滑的。
根据本发明,也能用源极跟随器之外的构成,来实现不需要相位补偿电容的反馈型放大电路和驱动电路。
权利要求
1.一种反馈型放大电路,其特征在于,包括反馈型充电装置,具有将输入端子电压和输出端子电压差动输入的差动级,以及根据上述差动级的输出来进行上述输出端子的充电作用的充电装置,作为使上述输出端子电压成为与上述输入端子电压同相的电压跟随器而起作用;跟随器型放电装置,根据上述输入端子电压与上述输出端子电压的电压差,通过有源元件的跟随器动作来进行上述输出端子的放电作用。
2.根据权利要求1所述的反馈型放大电路,其特征在于,上述跟随器型放电装置包括偏置控制装置,接受上述输入端子电压来控制输出偏置电压;跟随器晶体管,连接在上述输出端子与低电位侧电源之间,输入从上述偏置控制装置所输出的偏置电压,根据上述输出端子电压和上述偏置电压的电压差,来控制输出电流。
3.一种反馈型放大电路,其特征在于,包括反馈型放电装置,具有将输入端子电压和输出端子电压差动输入的差动级,以及根据上述差动级的输出来进行上述输出端子的放电作用的放电装置,作为使上述输出端子电压成为与上述输入端子电压同相的跟随器而起作用;跟随器型充电装置,根据上述输入端子电压与上述输出端子电压的电压差,通过有源元件的跟随器动作来进行上述输出端子的充电作用。
4.根据权利要求3所述的反馈型放大电路,其特征在于,上述跟随器型充电装置包括偏置控制装置,接受上述输入端子电压来控制输出偏置电压;跟随器晶体管,连接在高电位侧电源与上述输出端子之间,输入从上述偏置控制装置所输出的偏置电压,根据上述输出端子电压和上述偏置电压的电压差,来控制输出电流。
5.一种反馈型放大电路,其特征在于,包括反馈型充电装置,具有输入端子和输出端子连接在差动输入端上的差动对,分别连接在上述差动对的输出对上的负载元件,把上述差动对的一个输出和上述负载元件的连接点电压作为控制端子的输入并连接在上述输出端子的充电路径上的晶体管;跟随器型放电装置,具有连接在上述输出端子与低电位侧电源间的跟随器型构成的晶体管,插入上述输入端子与上述低电位侧电源间并由恒流源所驱动的晶体管,其控制端子与连接在跟随器型构成的晶体管的控制端子上的二极管连接。
6.一种反馈型放大电路,其特征在于,包括反馈型放电装置,具有输入端子和输出端子连接在差动输入端上的差动对,分别连接在上述差动对的输出对上的负载元件,把上述差动对的一个输出和上述负载元件的连接点电压作为控制端子的输入并连接在上述输出端子的放电路径上的晶体管;跟随器型充电装置,具有连接在上述输出端子与高电位侧电源间的跟随器型构成的晶体管,插入上述高电位侧电源与上述输入端子间并由恒流源所驱动的晶体管,其控制端子与连接在跟随器型构成的晶体管的控制端子上的二极管连接。
7.一种反馈型放大电路,其特征在于,包括反馈型充电装置,具有差动级,包含输入端子和输出端子连接在差动输入端上的差动对,输入端和输出端分别连接在上述差动对的输出对上而成为负载的电流镜像电路;充电电路,包含连接在高电位侧电源与上述输出端子之间的与上述电流镜像电路相同导电类型的晶体管,其把上述电流镜像电路的输出端与上述差动对的输出的连接点电压输入到控制端子;跟随器型放电装置,具有连接在上述输出端子与低电位侧电源间的跟随器型构成的晶体管,插入上述输入端子与上述低电位侧电源间并由恒流源所驱动的晶体管,其控制端子与连接在跟随器型构成的晶体管的控制端子上的二极管连接。
8.一种反馈型放大电路,其特征在于,包括反馈型放电装置,具有差动级,包含输入端子和输出端子连接在差动输入端上的差动对,输入端和输出端分别连接在上述差动对的输出对上而成为负载的电流镜像电路;放电电路,包含连接在高电位侧电源与上述输出端子之间的与上述电流镜像电路相同导电类型的晶体管,其把上述电流镜像电路的输出端与上述差动对的输出的连接点电压输入到控制端子;跟随器型充电装置,具有连接在上述输出端子与高电位侧电源间的跟随器型构成的晶体管,插入上述高电位侧电源与上述输入端子间并由恒流源所驱动的晶体管,其控制端子与连接在跟随器型构成的晶体管的控制端子上的二极管连接。
9.根据权利要求7所述的反馈型放大电路,其特征在于,在上述跟随器型放电装置中,在上述二极管连接的晶体管和上述输入端子的连接点与高电位侧电源之间设置恒流源。
10.根据权利要求8所述的反馈型放大电路,其特征在于,在上述跟随器型充电装置中,在上述二极管连接的晶体管和上述输入端子的连接点与低电位侧电源之间设置恒流源。
11.根据权利要求7所述的反馈型放大电路,其特征在于,在上述跟随器型放电装置中,在上述跟随器型构成的晶体管和上述输出端子的连接点与高电位侧电源之间设置恒流源。
12.根据权利要求8所述的反馈型放大电路,其特征在于,在上述跟随器型充电装置中,在上述跟随器型构成的晶体管和上述输出端子的连接点与低电位侧电源之间设置恒流源。
13.根据权利要求7所述的反馈型放大电路,其特征在于,在上述反馈型充电装置的上述充电电路的上述晶体管的控制端子与高电位侧电源之间,以及上述充电电路的上述晶体管的控制端子与低电位侧电源之间,分别设置恒流源。
14.根据权利要求8所述的反馈型放大电路,其特征在于,在上述反馈型放电装置的上述放电电路的上述晶体管的控制端子与高电位侧电源之间,以及上述放电电路的上述晶体管的控制端子与低电位侧电源之间,分别设置恒流源。
15.根据权利要求7或8所述的反馈型放大电路,其特征在于,成为上述差动对的晶体管对中,把上述输出端子电压作为输入的晶体管的输出连接在上述电流镜像电路的输入端上,把上述输入端子电压作为输入的晶体管的输出连接在上述电流镜像电路的输出端上。
16.根据权利要求7所述的反馈型放大电路,其特征在于,在上述差动级中,设置多个把上述输入端子电压作为共同输入的晶体管,上述差动级的上述电流镜像电路的输入端连接在把上述输出端子电压作为输入的晶体管的输出上,并且具有多个输出端,上述差动级的上述电流镜像电路的多个输出端共同地与把上述输入端子电压作为共同输入的晶体管的共同连接的多个输出相连接,同时,连接在上述充电电路的晶体管的控制端子上。
17.根据权利要求7所述的反馈型放大电路,其特征在于,在上述差动级中,在成为上述差动对的晶体管对中,把上述输入端子电压作为输入的晶体管的电流驱动能力为把上述输出端子电压作为输入的晶体管的预定倍,上述差动级的上述电流镜像电路,其输入端连接在把上述输出端子电压作为输入的晶体管的输出上,并且成为输出端的晶体管的电流驱动能力为成为输入端的晶体管的预定倍,上述差动级的上述电流镜像电路的输出端与把上述输入端子电压作为输入的晶体管的输出的连接点连接在上述充电电路的晶体管的控制端子上。
18.根据权利要求8所述的反馈型放大电路,其特征在于,在上述差动级中,设置多个把上述输入端子电压作为共同输入的晶体管,上述差动级的上述电流镜像电路的输入端连接在把上述输出端子电压作为输入的晶体管的输出上,并且具有多个输出端,上述差动级的上述电流镜像电路的多个输出端共同地与把上述输入端子电压作为共同输入的晶体管的共同连接的多个输出相连接,同时,连接在上述放电电路的晶体管的控制端子上。
19.根据权利要求8所述的反馈型放大电路,其特征在于,在上述差动级中,在成为上述差动对的晶体管对中,把上述输入端子电压作为输入的晶体管的电流驱动能力为把上述输出端子电压作为输入的晶体管的预定倍,上述差动级的上述电流镜像电路,其输入端连接在把上述输出端子电压作为输入的晶体管的输出上,并且成为输出端的晶体管的电流驱动能力为成为输入端的晶体管的预定倍,上述差动级的上述电流镜像电路输出端与把上述输入端子电压作为输入的晶体管的输出的连接点连接在上述放电电路的晶体管的控制端子上。
20.一种反馈型放大电路,其特征在于,包括第一反馈型放大电路,具有第一差动级,将输入端子电压和输出端子电压差动输入;反馈型充电装置,具有根据上述第一差动级的输出来进行上述输出端子的充电作用的充电装置,作为电压跟随器而起作用;跟随器型放电装置,根据上述输入端子电压与上述输出端子电压的电压差,通过有源元件的跟随器动作来进行上述输出端子的放电作用;第二反馈型放大电路,具有反馈型放电装置,具有将上述输入端子电压和上述输出端子电压差动输入的第二差动级,以及根据上述第二差动级的输出来进行上述输出端子的放电作用的放电装置,该反馈型放电装置作为电压跟随器而起作用;跟随器型充电装置,根据上述输入端子电压与上述输出端子电压的电压差,通过有源元件的跟随器动作来进行上述输出端子的充电作用,上述输入端子经过由动作控制信号来控制切换的第一切换开关而连接在上述第一、第二的反馈型放大电路的一方上,上述输出端子经过由上述动作控制信号来控制切换的第二切换开关而连接在上述第一、第二的反馈型放大电路上。
21.根据权利要求20所述的反馈型放大电路,其特征在于,上述跟随器型放电装置包括第一偏置控制装置,接受上述输入端子电压来控制输出偏置电压;跟随器晶体管,连接在上述输出端子与低电位侧电源之间,把从上述第一偏置控制装置所输出的偏置电压作为输入,上述跟随器型充电装置包括第二偏置控制装置,接受上述输入端子电压来控制输出偏置电压;跟随器晶体管,连接在高电位侧电源与上述输出端子之间,把从上述第二偏置控制装置的偏置电压作为输入。
22.一种反馈型放大电路,其特征在于,包括第一反馈型放大电路,包括反馈型充电装置,具有第一差动级,包含将输入端子电压和输出端子电压差动输入并由第一恒流源进行驱动的第一差动对,以及第一电流镜像电路,其输出端和输入端分别连接在上述第一差动对中把上述输出端子电压作为输入的晶体管的输出端和把上述输入端子作为输入的晶体管的输出端上;充电电路,包含连接在高电位侧电源与上述输出端子之间的与上述第一电流镜像电路相同导电类型的第一晶体管,其把上述第一电流镜像电路的输出端与上述第一差动对的输出的连接点电压输入控制端子;跟随器型放电装置,具有连接在上述输出端子与低电位侧电源间的跟随器型构成的第二晶体管;插入上述输入端子与上述低电位侧电源间并由第二恒流源所驱动的第三晶体管,其控制端子与连接在上述跟随器型构成的晶体管的控制端子上的二极管连接;第二反馈型放大电路,包括反馈型放电装置,具有第二差动级,包含将输入端子电压和输出端子电压差动输入并由第三恒流源进行驱动的第二差动对,以及第二电流镜像电路,其输出端和输入端分别连接在上述第二差动对中把上述输出端子电压作为输入的晶体管的输出端和把上述输入端子作为输入的晶体管的输出端上;放电电路,包含连接在低电位侧电源与上述输出端子之间的与上述第二电流镜像电路相同导电类型的第四晶体管,其把上述第二电流镜像电路的输出端与上述第二差动对的输出的连接点电压输入控制端子;跟随器型充电装置,具有连接在上述输出端子与高电位侧电源间的跟随器型构成的第五晶体管;插入上述高电位侧电源与上述输入端子间并由第四恒流源所驱动的第六晶体管,其控制端子与连接在跟随器型构成的第五晶体管的控制端子上的二极管连接;控制装置,把上述反馈型充电装置和反馈型放电装置的至少一方控制为非激活,同时,分别控制上述第一差动级,上述跟随器型放电装置,上述第二差动级以及上述跟随器型充电装置的激活和非激活。
23.根据权利要求22所述的反馈型放大电路,其特征在于,包括连接在上述第一差动对与上述低电位侧电源间并与上述第一恒流源串联的第一开关;连接在上述输出端子与上述低电位侧电源间并与上述第二晶体管串联的第二开关;连接在上述第三晶体管与上述低电位侧电源间并与上述第二恒流源串联的第三开关;连接在上述第二差动对与上述高电位侧电源间并与上述第三恒流源串联的第四开关;连接在上述输出端子与上述高电位侧电源间并与上述第五晶体管串联的第五开关;连接在上述第六晶体管与上述高电位侧电源间并与上述第四恒流源串联的第六开关,上述第一至第三开关和上述第四至第六开关通过动作控制信号分别控制导通、关断,使上述第一晶体管和上述第四晶体管的至少一方被关断。
24.根据权利要求23所述的反馈型放大电路,其特征在于,在上述第三晶体管和上述输入端子的连接点与上述高电位侧电源之间,串联连接第五恒流源和第七开关,在上述第六晶体管和上述输入端子的连接点与上述低电位侧电源之间,串联连接第六恒流源和第八开关,通过上述动作控制信号,上述第七开关与上述第二和上述第三开关同步导通或关断,上述第八开关与上述第五和上述第六开关同步导通或关断。
25.根据权利要求22至24任一项所述的反馈型放大电路,其特征在于,在上述输出端子与预充电用电源之间设置第九开关。
26.根据权利要求22或23所述的反馈型放大电路,其特征在于,在上述跟随器型放电装置中,在上述跟随器型构成的第二晶体管和上述输出端子的连接点与上述高电位侧电源之间,设置串联连接的第七电流源和第九开关,在上述跟随器型充电装置中,在上述跟随器型构成的第五晶体管和上述输出端子的连接点与上述低电位侧电源之间,设置串联连接的第八电流源和第十开关。
27.根据权利要求22或23所述的反馈型放大电路,其特征在于,上述跟随器型放电装置包括第七晶体管,其在上述输入端子与上述第二恒流源之间与上述第三晶体管并联连接,由预定的偏置电压进行偏置,上述跟随器型充电装置包括第八晶体管,在上述输入端子与上述第四恒流源之间与上述第六晶体管并联连接,由预定的偏置电压进行偏置。
28.一种反馈型放大电路,其特征在于,包括将输入端子电压和输出端子电压差动输入的差动级;充电装置,根据上述差动级的输出进行上述输出端子的充电作用;跟随器型放电装置,根据上述输入端子电压和上述输出端子电压的电压差,通过有源元件的跟随器动作进行上述输出端子的放电作用;放电装置,根据上述差动级的输出来进行上述输出端子的放电作用;跟随器型充电装置,根据上述输入端子电压和上述输出端子电压的电压差,通过有源元件的跟随器动作进行上述输出端子的充电作用,通过所输入的动作控制信号的值,来控制上述充电装置和上述放电装置、上述跟随器型放电装置和上述跟随器型充电装置的动作。
29.一种反馈型放大电路,其特征在于,包括将输入端子电压和输出端子电压差动输入的差动级;充电装置,根据上述差动级的输出来进行上述输出端子的充电作用;放电装置,根据上述差动级的输出来进行上述输出端子的放电作用;跟随器型充放电装置,根据上述输入端子电压和上述输出端子电压的电压差,通过有源元件的跟随器动作,进行上述输出端子的放电作用,同时,根据上述输入端子电压和上述输出端子电压的电压差,通过有源元件的跟随器动作,进行上述输出端子的充电作用,通过所输入的动作控制信号的值,来控制上述充电装置和上述放电装置、上述跟随器型充放电装置的动作。
30.一种反馈型放大电路,其特征在于,包括第一差动级,包含将输入端子电压和输出端子电压差动输入并由第一恒流源所驱动的第一差动对,输入端分别连接在上述第一差动对的输出对上的第一、第二电流镜像电路;充电电路,包含连接在高电位侧电源与上述输出端子之间,把上述第二电流镜像电路的输出端输入控制端子的与上述第二电流镜像电路相同导电类型的第一晶体管;第二差动对,包含差动输入输入端子电压和输出端子电压并由第二恒流源所驱动的第二差动对,输入端分别连接在上述第二差动对的输出对上的第三、第四电流镜像电路;放电电路,包含连接在低电位侧电源与上述输出端子之间,把上述第四电流镜像电路的输出端输入控制端子的与上述第四电流镜像电路相同导电类型的第二晶体管,上述第一和第三电流镜像电路的输出端相互连接,上述第二和第四电流镜像电路的输出端相互连接,还包括跟随器型放电装置,根据上述输入端子电压和上述输出端子电压的电压差,通过第三晶体管的跟随器动作来进行上述输出端子的放电作用;跟随器型充电装置,根据上述输入端子电压和上述输出端子电压的电压差,通过第四晶体管的跟随器动作来进行上述输出端子的充电作用;控制装置,把上述放电电路和上述充电电路的至少一方控制为非激活,同时,控制上述跟随器型放电装置和上述跟随器型充电装置的激活和非激活。
31.根据权利要求30所述的反馈型放大电路,其特征在于,包括在上述高电位侧电源与上述输出端子之间与上述第一晶体管串联连接的第一开关;在上述低电位侧电源与上述输出端子之间与上述第二晶体管串联连接的第二开关,通过动作控制信号,上述第一、第二开关至少一方被进行关断控制。
32.根据权利要求30或31所述的反馈型放大电路,其特征在于,包括与上述第二电流镜像电路相同导电类型的第五晶体管,被插入上述第二电流镜像电路的输入端同上述第一差动对的输出的连接点与上述第一和第三电流镜像电路的输出端的连接点之间,并把上述第二和第四电流镜像电路的输出端的连接点的电压作为控制端子的输入;与上述第四电流镜像电路相同导电类型的第六晶体管,被插入上述第四电流镜像电路的输入端同上述第二差动对的输出的连接点与上述第一和第三电流镜像电路的输出端的连接点之间,并把上述第二和第四电流镜像电路的输出端的连接点的电压作为控制端子的输入。
33.根据权利要求30至32任一项所述的反馈型放大电路,其特征在于,包括在上述充电电路中,在上述第一晶体管的控制端子与上述高电位侧电源之间设置第三开关,在上述放大电路中,在上述第二晶体管的控制端子与上述低电位侧电源之间设置第四开关。
34.一种反馈型放大电路,其特征在于,包括第一差动级,包含将输入端子电压和输出端子电压差动输入并由第一恒流源所驱动的第一差动对,输入端分别连接在上述第一差动对的输出对上的第一、第二电流镜像电路;充电电路,包含连接在高电位侧电源与上述输出端子之间,把上述第二电流镜像电路的输出端输入控制端子的与上述第二电流镜像电路相同导电类型的第一晶体管;第二差动级,包含将输入端子电压和输出端子电压差动输入并由第二恒流源所驱动的第二差动对,输入端分别连接在上述第二差动对的输出对上的第三、第四电流镜像电路;放电电路,包含连接在低电位侧电源与上述输出端子之间,把上述第四电流镜像电路的输出端输入控制端子的与上述第四电流镜像电路相同导电类型的第二晶体管,上述第一和第三电流镜像电路的输出端相互连接,上述第二和第四电流镜像电路的输出端相互连接,还包括与上述第二电流镜像电路相同导电类型的第三晶体管,被插入上述第二电流镜像电路的输入端同上述第一差动对的输出的连接点与上述第一和第三电流镜像电路的输出端的连接点之间,把上述第二和第四电流镜像电路的输出端的连接点的电压作为控制端子的输入;与上述第四电流镜像电路相同导电类型的第四晶体管,被插入上述第四电流镜像电路的输入端同上述第二差动对的输出的连接点与上述第一和第三电流镜像电路的输出端的连接点之间,把上述第二和第四电流镜像电路的输出端的连接点的电压作为控制端子的输入;还包括跟随器型充放电装置,根据上述输入端子电压和上述输出端子电压的电压差,通过第五晶体管的跟随器动作来进行上述输出端子的放电作用,同时,根据上述输入端子电压和上述输出端子电压的电压差,通过第六晶体管的跟随器动作来进行上述输出端子的充电作用;控制装置,把上述放大电路和上述充电电路的至少一方控制为非激活,同时,控制上述跟随器型充放电装置的激活和非激活。
35.根据权利要求34所述的反馈型放大电路,其特征在于,包括在上述高电位侧电源与上述输出端子之间与上述第一晶体管串联连接的第一开关;在上述低电位侧电源与上述输出端子之间与上述第二晶体管串联连接的第二开关;插入上述第一晶体管的控制端子与上述高电位侧电源之间的第三开关;插入上述第二晶体管的控制端子与上述低电位侧电源之间的第三开关。
36.根据权利要求30至32任一项所述的反馈型放大电路,其特征在于,上述跟随器型放电装置包括插入上述输入端子与上述低电位侧电源之间的第七晶体管,其控制端子与上述跟随器型构成的第三晶体管的控制端子相连接的二极管连接,在上述第七晶体管与上述低电位侧电源之间串联连接第三恒流源和第五开关,在上述第三晶体管与上述低电位侧电源之间连接第六开关,在上述第三晶体管同上述输出端子的连接点与上述高电位侧电源之间串联连接第四恒流源和第七开关,在上述第七晶体管同上述输入端子的连接点与上述高电位侧电源之间串联连接第五恒流源和第八开关,上述跟随器型充电装置包括插入上述输入端子与上述高电位侧电源之间的第八晶体管,其控制端子与连接在上述跟随器型构成的第四晶体管的控制端子上的二极管连接,在上述第八晶体管与高电位侧电源之间串联连接第六恒流源和第九开关,在上述第四晶体管与上述高电位侧电源之间连接第十开关,在上述第三晶体管同上述输出端子的连接点与上述低电位侧电源之间串联连接第七恒流源和第十一开关,在上述第八晶体管同上述输入端子的连接点与上述低电位侧电源之间串联连接第八恒流源和第十二开关。
37.根据权利要求34或36所述的反馈型放大电路,其特征在于,包括在上述充电电路中,在上述第一晶体管的控制端子与高电位侧电源之间设置第十三开关;在上述放电电路中,在上述第二晶体管的控制端子与低电位侧电源之间设置第十四开关。
38.根据权利要求32所述的反馈型放大电路,其特征在于,上述跟随器型放电装置包括插入上述输入端子与上述低电位侧电源之间的第七晶体管,其控制端子与上述跟随器型构成的第三晶体管的控制端子相连接的二极管连接,在上述第七晶体管与低电位侧电源之间连接第三恒流源,在上述输出端子与上述低电位侧电源之间与第三晶体管串联连接第五开关,在上述输入端子和上述第三恒流源之间设置与上述第七晶体管并联连接的,由预定偏置电压所偏置的第九晶体管,上述跟随器型充电装置包括插入上述输入端子与上述高电位侧电源之间的第八晶体管,其控制端子连接在上述跟随器型构成的第四晶体管的控制端子上的二极管连接,在上述第八晶体管与高电位侧电源之间连接第四恒流源,在上述输出端子与上述高电位侧电源之间与上述第四晶体管串联连接第六开关,在上述输入端子与上述第四恒流源之间设置与上述第八晶体管并联连接的,由预定偏置电压所偏置的第十晶体管。
39.一种反馈型放大电路,其特征在于,为在权利要求1至38任一项的反馈型放大电路中不包含由电容元件组成的相位补偿装置的构成。
40.一种反馈型放大电路,其特征在于,包括反馈型充电装置,其在输出端子上输出与输入端子同相的电压,并且由没有相位补偿电容的电压跟随器电路组成;放电装置,连接在上述输出端子上,通过由恒定电压所偏置的源极跟随器或者射极跟随器型构成的晶体管,来使上述输出端子进行放电。
41.一种反馈型放大电路,其特征在于,包括反馈型充电装置,其在输出端子上输出与输入端子同相的电压,并且由没有相位补偿电容的电压跟随器电路组成;连接在上述输出端子上的充电装置,通过由恒定电压所偏置的源极跟随器或者射极跟随器型构成的晶体管,来使上述输出端子进行充电。
42.一种驱动电路,其特征在于,权利要求1至41任一项所述的上述反馈型放大电路为这样的输出电路把由选择电路从连接在第一、第二基准电压之间的电阻串的多个抽头所取出的多个电压中所选择的电压作为输入。
43.根据权利要求42所述的驱动电路,其特征在于,上述输出电路包含原封不动地输出上述输入电压或者将其关断的开关。
44.根据权利要求42或43所述的驱动电路,其特征在于,驱动连接在上述输出端子上的上述电容性负载。
45.一种液晶显示装置,其特征在于,液晶显示装置的驱动电路包括权利要求42至44任一项所述的驱动电路。
46.一种OP放大器,输入信号被输入同相输入端,输出信号被反馈输入反相输入端,作为电压跟随器电路使用,其特征在于,包括充电装置,根据上述输入信号和上述输出信号的差动输入的差动级的输出,来对上述OP放大器的输出端子进行充电;根据上述输入信号来控制输出偏置电压的偏置控制装置;放电装置,包括插入上述OP放大器的输出端子的放电路径中的源极跟随器或者射极跟随器型构成的晶体管,把从上述偏置控制装置所输出的偏置电压作为输入。
47.一种OP放大器,输入信号被输入同相输入端,输出信号被反馈输入反相输入端,作为电压跟随器电路使用,其特征在于,包括放电装置,根据上述输入信号和上述输出信号的差动输入的差动级的输出,来对上述OP放大器进行的输出端子进行放电;偏置控制装置,根据上述输入信号来控制输出偏置电压;充电装置,包括插入上述OP放大器的输出端子的充电路径中的源极跟随器或者射极跟随器型构成的晶体管,把从上述偏置控制装置所输出的偏置电压作为输入。
48.一种OP放大器,输入信号被输入同相输入端,输出信号被反馈输入反相输入端,作为电压跟随器电路使用,其特征在于,包括充电装置,根据上述输入信号和上述输出信号的差动输入的差动级的输出,来对上述OP放大器进行的输出端子进行充电;放电装置,根据上述输入信号和上述输出信号的差动输入的差动级的输出,来对上述OP放大器进行的输出端子进行放电;根据上述输入信号来控制输出偏置电压的第一偏置控制装置;跟随器型放电装置,包括插入上述OP放大器的输出端子的放电路径中的源极跟随器或者射极跟随器型构成的晶体管,把从上述偏置控制装置所输出的偏置电压作为输入;根据上述输入信号来控制输出偏置电压的第二偏置控制装置;跟随器型充电装置,包括插入上述OP放大器的输出端子的充电路径中的源极跟随器或者射极跟随器型构成的晶体管,把从上述偏置控制装置所输出的偏置电压作为输入,还包括控制装置,把上述充电装置和上述放电装置的至少一方控制为非激活。
49.一种缓冲器电路,其特征在于,包括根据输入端子电压和输出端子电压的电压差来进行上述输出端子的放电作用的放电装置。
50.一种缓冲器电路,其特征在于,包括根据输入端子电压和输出端子电压的电压差来进行上述输出端子的充电作用的充电装置。
51.一种缓冲器电路,其特征在于,包括根据输入端子电压和输出端子电压的电压差来进行上述输出端子的放电作用的放电装置,和根据输入端子电压和输出端子电压的电压差来进行上述输出端子的充电作用的充电装置。
52.根据权利要求49或51所述的缓冲器电路,其特征在于,上述放电装置包括偏置控制装置,接受上述输入端子电压并控制输出偏置电压;跟随器晶体管,连接在上述输出端子与低电位侧电源之间,输入从上述偏置控制装置所输出的偏置电压,根据上述输出端子电压和上述偏置电压的电压差来控制输出电流。
53.根据权利要求50或51所述的缓冲器电路,其特征在于,上述充电装置包括偏置控制装置,接受上述输入端子电压并控制输出偏置电压;跟随器晶体管,连接在上述输出端子与高电位侧电源之间,输入从上述偏置控制装置所输出的偏置电压,根据上述输出端子电压和上述偏置电压的电压差来控制输出电流。
54.根据权利要求1至4、28、29任一项所述的反馈型放大电路,其特征在于,在上述差动级的输出与上述输出端子之间,设置负载驱动时的输出波形振荡抑制用电容。
55.根据权利要求5至19任一项所述的反馈型放大电路,其特征在于,在上述差动对的输出与上述输出端子之间设置负载驱动时的输出波形振荡抑制用电容。
56.根据权利要求20、21、30至35任一项所述的反馈型放大电路,其特征在于,在上述第一差动级的输出与上述输出端子之间,以及上述第二差动级的输出与上述输出端子之间,设置用于抑制负载驱动时的输出波形振荡的电容。
57.根据权利要求22至27任一项所述的反馈型放大电路,其特征在于,在把上述第一差动对的上述输入端子电压作为输入的晶体管的输出端与上述输出端子之间,以及把上述第二差动对的上述输入端子电压作为输入的晶体管的输出端与上述输出端子之间,设置用于抑制负载驱动时的输出波形振荡的电容。
58.根据权利要求47所述的OP放大器,其特征在于,在上述差动级的输出与上述输出端子之间,设置用于抑制负载驱动时的输出波形振荡的电容。
59.一种反馈型放大电路,其特征在于,包括反馈型充电装置,具有将输入端子电压和输出端子电压差动输入的差动级,以及根据上述差动级的输出来进行上述输出端子的充电作用的充电装置,该充电装置作为上述输出端子电压成为与上述输入端子电压同相的电压跟随器而起作用;放电装置,具有连接在上述输出端子与低电位侧电源之间的晶体管,以及在上述晶体管的控制端子上控制偏置电压的偏置控制装置,在上述放电装置中,设有给上述晶体管的控制端子提供预定的偏置电压的偏置电压供给端子,还设有电压保持装置,抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与上述晶体管的控制端子之间。
60.一种反馈型放大电路,其特征在于,包括反馈型充电装置,具有输入端子和输出端子连接在差动输入端上的差动对,分别连接在上述差动对的输出对上的负载元件,充电电路,包含把上述差动对的一个输出和上述负载元件的连接点电压作为控制端子的输入的晶体管,该晶体管连接在上述输出端子的充电路径上;放电装置,具有连接在上述输出端子的放电路径上的晶体管,以及偏置控制装置,对连接在上述放电路径上的晶体管的控制端子控制偏置电压,在上述放电装置中,设有给连接在上述放电路径上的上述晶体管的控制端子提供预定的偏置电压的偏置电压供给端子,还设有电压保持装置,其抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与连接在上述放电路径上的上述晶体管的控制端子之间。
61.一种反馈型放大电路,其特征在于,包括反馈型充电装置,具有差动级,包含输入端子和输出端子连接在差动输入端上的差动对,输入端和输出端分别连接在上述差动对的输出对上而成为负载的电流镜像电路;充电电路,包含连接在高电位侧电源与上述输出端子之间的与上述电流镜像电路相同导电类型的第一导电类型的晶体管,其把上述电流镜像电路的输出端与上述差动对的输出的连接点电压输入控制端子;放电装置,具有连接在上述输出端子与低电位侧电源之间的第二导电类型的晶体管,以及在上述第二导电类型的晶体管的控制端子上控制偏置电压的偏置控制装置,在上述放电装置中,设有给上述放电装置的上述晶体管的控制端子提供预定的偏置电压的偏置电压供给端子,还设有电压保持装置,其抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与上述晶体管的控制端子之间。
62.一种反馈型放大电路,其特征在于,在权利要求20、22、28、30任一项所述的反馈型放大电路中,取代上述跟随器型放电装置而设有放电装置,该放电装置具有连接在上述输出端子与低电位侧电源之间的晶体管,以及控制上述晶体管的控制端子上的偏置电压的偏置控制装置,上述放电装置的偏置控制装置设有给上述放电装置的上述晶体管的控制端子提供预定的偏置电压的偏置电压供给端子,还设有电压保持装置,其抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与上述放电装置的上述晶体管的控制端子之间。
63.一种反馈型放大电路,其特征在于,包括反馈型充电装置,具有将输入端子电压和输出端子电压差动输入的差动级,以及根据上述差动级的输出来进行上述输出端子的充电作用的充电装置,作为上述输出端子电压成为与上述输入端子电压同相的电压跟随器而起作用;放电装置,具有连接在上述输出端子与低电位侧电源之间的晶体管、在上述晶体管的控制端子上控制偏置电压的偏置控制装置,在上述放电装置中,设有电容,在输出期间的开始,给上述晶体管的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子电压和上述偏置电压被分别施加在该电容的一端和另一端上,从而保持上述输入端子电压与上述偏置电压的电压差,接着,用开关进行切换,以使上述输出端子和上述晶体管的控制端子连接到上述电容的一端和另一端上。
64.一种反馈型放大电路,其特征在于,包括反馈型充电装置,具有输入端子和输出端子连接在差动输入端上的差动对,分别连接在上述差动对的输出对上的负载元件,充电电路,包含连接在上述输出端子的充电路径上的晶体管,把上述差动对的一个输出和上述负载元件的连接点电压作为控制端子的输入;放电装置,具有连接在上述输出端子的放电路径上的晶体管,以及偏置控制装置,对连接在上述放电路径上的晶体管的控制端子控制偏置电压,在上述放电装置中,设有电容,在输出期间的开始,给上述晶体管的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子电压和上述偏置电压被分别施加在该电容的一端和另一端上,从而保持上述输入端子电压与上述偏置电压的电压差,接着,用开关进行切换,以使上述输出端子和连接在上述放电路径上的上述晶体管的控制端子连接到上述电容的一端和另一端上。
65.一种反馈型放大电路,其特征在于,包括反馈型充电装置,具有差动级,包含输入端子和输出端子连接在差动输入端上的差动对,输入端和输出端分别连接在上述差动对的输出对上而成为负载的电流镜像电路;充电电路,包含连接在高电位侧电源与上述输出端子之间的与上述电流镜像电路相同导电类型的第一导电类型的晶体管,其把上述电流镜像电路的输出端与上述差动对的输出的连接点电压输入控制端子;放电装置,具有连接在上述输出端子与低电位侧电源之间的第二导电类型的晶体管,以及在上述第二导电类型的晶体管的控制端子上控制偏置电压的偏置控制装置,在上述放电装置中,设有电容,在输出期间的开始,给上述放电装置的上述晶体管的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子电压和上述偏置电压被分别施加在该电容的一端和另一端上,从而保持上述输入端子电压与上述偏置电压的电压差,接着,用开关进行切换,以使上述输出端子和上述放电装置的上述晶体管的控制端子连接到上述电容的一端和另一端上。
66.一种反馈型放大电路,其特征在于,在权利要求20、22、28、30任一项所述的反馈型放大电路中,取代上述跟随器型放电装置而设有放电装置,该放电装置具有连接在上述输出端子与低电位侧电源之间的晶体管,以及在上述晶体管的控制端子上控制偏置电压的偏置控制装置,在上述放电装置中,设有电容,在输出期间的开始,给上述放电装置的上述晶体管的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子电压和上述偏置电压被分别施加在该电容的一端和另一端上,从而保持上述输入端子电压与上述偏置电压的电压差,接着,用开关进行切换,以使上述输出端子和上述放电装置的上述晶体管的控制端子连接到上述电容的一端和另一端上。
67.根据权利要求63至66任一项所述的反馈型放大电路,其特征在于,上述放电装置的上述晶体管由漏极连接在输出端子上,源极连接在低电位侧电源上的MOS晶体管组成,上述偏置控制装置包括第一开关,连接在上述MOS晶体管的栅极与栅极偏置电压输入端之间;电容,一端连接在上述MOS晶体管的栅极上;第二开关,连接在上述输入端子与上述电容的另一端之间;第三开关,连接在上述输出端子与上述电容的另一端之间,在上述输出期间的开始,使上述第一和第二开关导通,同时,使上述第三开关关断,接着,使上述第一和第二开关关断,同时,使上述第三开关导通。
68.一种反馈型放大电路,其特征在于,包括反馈型放电装置,具有将输入端子电压和输出端子电压差动输入的差动级,以及根据上述差动级的输出来进行上述输出端子的放电作用的放电装置,作为使上述输出端子电压成为与上述输入端子电压同相的电压跟随器而起作用;充电装置,具有连接在上述输出端子与高电位侧电源之间的晶体管,以及在上述晶体管的控制端子上控制偏置电压的偏置控制装置,在上述充电装置中,设有给上述晶体管的控制端子提供预定的偏置电压的偏置电压供给端子,还设有电压保持装置,其抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与上述晶体管的控制端子之间。
69.一种反馈型放大电路,其特征在于,包括反馈型放电装置,具有输入端子和输出端子连接在差动输入端上的差动对,分别连接在上述差动对的输出对上的负载元件,放电电路,包含连接在上述输出端子的放电路径上的晶体管,把上述差动对的输出和负载元件的连接点电压作为控制端子的输入;充电装置,具有连接在上述输出端子的充电路径上的晶体管,以及对连接在上述充电路径上的晶体管的控制端子控制偏置电压的偏置控制装置,在上述充电装置中,设有给连接在上述充电路径上的上述晶体管的控制端子提供预定的偏置电压的偏置电压供给端子,还设有电压保持装置,其抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与连接在上述充电路径上的上述晶体管的控制端子之间。
70.一种反馈型放大电路,其特征在于,包括反馈型放电装置,具有差动级,包含输入端子和输出端子连接在差动输入端上的差动对,以及输入端和输出端分别连接在上述差动对的输出对上而成为负载的电流镜像电路;放电电路,包含连接在低电位侧电源与上述输出端子之间的与上述电流镜像电路相同导电类型的第一导电类型的晶体管,把上述电流镜像电路的输出端与上述差动对的输出的连接点电压输入控制端子;充电装置,具有连接在上述输出端子与高电位侧电源之间的第二导电类型的晶体管,以及在上述第二导电类型的晶体管的控制端子上控制偏置电压的偏置控制装置,在上述充电装置中,设有给上述充电装置的上述晶体管的控制端子提供预定的偏置电压的偏置电压供给端子,还设有电压保持装置,其抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与上述晶体管的控制端子之间。
71.一种反馈型放大电路,其特征在于,在权利要求20、22、28、30任一项所述的反馈型放大电路中,取代上述跟随器型充电装置而设有充电装置,该充电装置具有连接在上述输出端子与高电位侧电源之间的晶体管,以及在上述晶体管的控制端子上控制偏置电压的偏置控制装置,上述充电装置的偏置控制装置设有给上述充电装置的上述晶体管的控制端子提供预定的偏置电压的偏置电压供给端子,还设有电压保持装置,其抽样并锁存上述输入端子电压与来自上述偏置电压供给端子的上述偏置电压的电压差,把锁存的电压差保持在上述输出端子与上述充电装置的上述晶体管的控制端子之间。
72.一种反馈型放大电路,其特征在于,包括反馈型放电装置,具有将输入端子电压和输出端子电压差动输入的差动级,以及根据上述差动级的输出来进行上述输出端子的放电作用的放电装置,作为上述输出端子电压成为与上述输入端子电压同相的电压跟随器而起作用;充电装置,具有连接在上述输出端子与高电位侧电源之间的晶体管,以及在上述晶体管的控制端子上控制偏置电压的偏置控制装置,在上述充电装置中,设有电容,在输出期间的开始,给上述晶体管的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子电压和上述偏置电压被分别施加在该电容的一端和另一端上,从而保持上述输入端子电压与上述偏置电压的电压差,接着,用开关进行切换,以使上述输出端子和上述晶体管的控制端子连接到上述电容的一端和另一端上。
73.一种反馈型放大电路,其特征在于,包括反馈型放电装置,具有输入端子和输出端子连接在差动输入端上的差动对,分别连接在上述差动对的输出对上的负载元件,放电电路,包含连接在上述输出端子的放电路径上的晶体管,把上述差动对的输出和上述负载元件的连接点电压作为控制端子的输入;充电装置,具有连接在上述输出端子的充电路径上的晶体管,以及对连接在上述充电路径上的晶体管的控制端子控制偏置电压的偏置控制装置,在上述充电装置中,设有电容,在输出期间的开始,给上述晶体管的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子电压和上述偏置电压被分别施加在该电容的一端和另一端上,从而保持上述输入端子电压与上述偏置电压的电压差,接着,用开关进行切换,以使上述输出端子和连接在上述充电路径上的上述晶体管的控制端子连接到上述电容的一端和另一端上。
74.一种反馈型放大电路,其特征在于,包括反馈型放电装置,具有差动级,包含输入端子和输出端子连接在差动输入端上的差动对,输入端和输出端分别连接在上述差动对的输出对上而成为负载的电流镜像电路;放电电路,包含连接在低电位侧电源与上述输出端子之间的与上述电流镜像电路相同导电类型的第一导电类型的晶体管,把上述电流镜像电路的输出端与上述差动对的输出的连接点电压输入控制端子;充电装置,具有连接在上述输出端子与高电位侧电源之间的第二导电类型的晶体管,以及在上述第二导电类型的晶体管的控制端子上控制偏置电压的偏置控制装置,在上述充电装置中,设有电容,在输出期间的开始,给上述充电装置的上述晶体管的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子电压和上述偏置电压被分别施加在该电容的一端和另一端上,从而保持上述输入端子电压与上述偏置电压的电压差,接着,用开关进行切换,以使上述输出端子和上述充电装置的上述晶体管的控制端子连接到上述电容的一端和另一端上。
75.一种反馈型放大电路,其特征在于,在权利要求20、22、28、30任一项所述的反馈型放大电路中,取代上述跟随器型充电装置而设有充电装置,该充电装置具有连接在上述输出端子与高电位侧电源之间的晶体管,以及在上述晶体管的控制端子上控制偏置电压的偏置控制装置,在上述充电装置中,设有电容,在输出期间的开始,给上述充电装置的上述晶体管的控制端子提供预定的偏置电压,同时,通过成为接通状态的开关,上述输入端子电压和上述偏置电压被分别施加在该电容的一端和另一端上,从而保持上述输入端子电压与上述偏置电压的电压差,接着,用开关进行切换,以使上述输出端子和上述充电装置的上述晶体管的控制端子连接到上述电容的一端和另一端上。
76.根据权利要求72至75任一项所述的反馈型放大电路,其特征在于,上述充电装置的上述晶体管由漏极连接在输出端子上,源极连接在高电位侧电源上的MOS晶体管组成,上述偏置控制装置包括第一开关,连接在上述MOS晶体管的栅极与栅极偏置电压输入端之间;电容,一端连接在上述MOS晶体管的栅极上;第二开关,连接在上述输入端子与上述电容的另一端之间;第三开关,连接在上述输出端子与上述电容的另一端之间,在上述输出期间的开始,使上述第一和第二开关导通,同时,使上述第三开关关断,接着,使上述第一和第二开关关断,同时,使上述第三开关导通。
全文摘要
本发明提供一种电路,把输出电压Vout高速驱动到充分接近于输入电压Vin的电平上,由于不伴随过度的充放电,而能够对大容量负载进行高速驱动,来实现高性能化。本发明包括:反馈型充电装置11,具有将输入端子1的电压和输出端子2的电压差动输入的差动级21,和根据差动级21的输出进行输出端子2的充电作用的充电装置31,作为电压跟随器而起作用;跟随器型放电装置41,经过输入端子1的电压和输出端子2的电压的电压差,通过晶体管的跟随器动作而进行输出端子2的放电作用。
文档编号H03F3/50GK1365185SQ0113869
公开日2002年8月21日 申请日期2001年12月28日 优先权日2000年12月28日
发明者土弘 申请人:日本电气株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1