振幅变换电路的制作方法

文档序号:7531267阅读:508来源:国知局
专利名称:振幅变换电路的制作方法
技术领域
本发明涉及一种振幅变换电路,特别是,涉及用于变换信号振幅的振幅变换电路。
背景技术
图17是表示与现有移动电话机的图像显示相关联部分的构成框图。
图17中,该移动电话机具备作为MOST型集成电路(MOS晶体管)的控制用LS151、作为MOST型集成电路的电平移动装置52、和作为TFT(薄膜晶体管)型集成电路的液晶显示装置53。
控制用LSI51生成液晶显示装置53用的控制信号。该控制信号的“H”电平为3V,其“L”电平为0V。虽然实际上生成多个控制信号,但是这里为了简化说明,控制信号设为1个。电平移动装置52转换控制用来自LSI51的控制信号逻辑电平,生成内部控制信号。该内部控制信号的“H”电平为7.5V,其“L”电平为0V。液晶显示装置53按照来自电平移动装置52的内部控制信号显示图像。
图18是表示电平移动装置52的构成电路图。图18中,该电平移动装置52包括P沟道MOS晶体管54、55和N沟道MOS晶体管56、57。P沟道MOS晶体管54、55分别连接到电源电位VCC(7.5V)的结点N51和输出结点N54、N55之间,这些结点分别连接到输出结点N 5 5、N 5 4。N沟道M O S晶体管56、57分别连接到输出结点N54、N55与接地电位GND结点之间,其栅极分别接收输入信号VI、/VI。
现在,输入信号VI、/VI分别设为“L”电平(0V)和“H”电平(3V),输出信号VO、/VO分别设为“H”电平(7.5V)和“L”电平(0V)。这时,MOS晶体管54、57为导通,MOS晶体管55、56为非导通。
该状态下,输入信号VI从“L”电平(0V)上升到“H”电平(3V),同时输入信号/VI从“H”电平(3V)下降到“L”电平(0V)的话,首先N沟道MOS晶体管56导通,输出结点N54的电位下降。若输出结点N54的电位低于电源电位VCC减去P沟道MOS晶体管55的阈值电压绝对值的电位,P沟道MOS晶体管55开始导通,输出结点N55是电位开始上升。输出结点N55的电位一开始上升,P沟道MOS晶体管54的源-栅间电压就减少,P沟道MOS晶体管54的导通电阻值升高,进而输出结点N54的电位下降。于是,电路进行正反馈动作,输出结点VO、/VO分别变成了“L”电平(0V)和“H”电平(7.5V),电平变换工作完了。
图19是表示现有另外的电平移动装置64的构成电路图。参照图19,该电平移动装置60跟图18的电平移动装置52不同点是追加P沟道MOS晶体管61、62这个方面。P沟道MOS晶体管61插入P沟道MOS晶体管54的漏极与输出结点N54之间,其栅极接收输入信号VI。P沟道MOS晶体管62插入P沟道MOS晶体管55的漏极与输出结点N55之间,其栅极接收输入信号/VI。
对该电平移动装置60而言,若输入信号VI从“ L”电平(0V)上升到“H”电平(3V),则P沟道MOS晶体管61就由导通状态变成非导通状态,从电源电位VCC的结点N51流到输出结点N54的电流降低,因而P沟道MOS晶体管54的电位也变得容易下降。其结果,P沟道MOS晶体管55导通,输出结点N55的电位变得容易上升,因而动作余裕将比图18的电平移动装置52增大。
这样,对现有的电平移动装置52、60而言,N沟道MOS晶体管56随输入信号VI按照从“L”电平(0V)上升到“H”电平(3V)而导通是动作的前提。为了使N沟道MOS晶体管56导通,需要N沟道MOS晶体管56的阈值电位为输入信号VI的“H”电平(3V)以下。
一般对半导体LSI而言,使晶体管的阈值电压为3V以下是容易的,但包含在液晶显示装置中的低温多晶硅TFT阈值电压离散很大,使TFT的阈值电压为3V以下就很困难。因此,如图17所示,在控制用LSI51与液晶显示装置53之间设置由高耐压的MOS晶体管构成的电平移动装置52或60,进行信号逻辑电平的变换。
可是,若设置这样的电平移动装置52、60,则电平移动装置52、60的成本就应加到系统成本上,导致系统成本升高。

发明内容
因为如此,本发明的主要目的在于提供一种输入信号振幅电压比输入晶体管的阈值电压低的场合也能正常动作的振幅变换电路。
本发明的振幅变换电路是把其振幅为第1电压的第1信号变换为其振幅比第1电压要高的第2电压的第2信号。该振幅变换电路中,设置第1导电类型的第1和第2晶体管,那些第1电极同时接收第2电压,那些第2电极分别连接到用于输出第2信号及其互补信号的第1和第2的输出结点,它们的输入电极分别连接到第2和第1的输出结点;第2导电类型的第3和第4的晶体管那些第1电极分别连接到第1和第2的输出结点;驱动电路,由第1信号及其互补信号驱动,响应第1信号的前沿,把高于第1电压的第3电压加到第3晶体管的输入电极与第2电极间使第3晶体管导通,响应第1信号的后沿,把第3电压加到第4晶体管的输入电极与第2电极间使第4晶体管导通。所以,响应第1信号的前沿或后沿,把高于作为第1信号振幅电压的第1电压的第3电压加到第3或第4晶体管的输入电极或与第2电极间,因而第1信号的振幅电压即使在低于第3和第4晶体管阈值电压的场合也能动作。
理想的是,驱动电路包括连接到第3晶体管的输入电极与第2电极间的第1电阻元件;其一电极接收第1信号的互补信号,其另一电极连接到第3晶体管的输入电极的第1电容;连接到第4晶体管的输入电极与第2电极间的第2电阻元件;其一电极接收第1信号,其另一电极连接到第4晶体管的输入电极的第2电容,把第1信号及其互补信号分别加到第3和第4晶体管的第2电极。这时,进而通过第1或第2电容,给介以第1或第2电阻元件充电到第1电压的第3或第4晶体管的输入电路施加第1电压。
并且理想的是,第1电阻元件包括,连接到第3晶体管的输入电极和第2电极,其输入电极接收第4电压的第5晶体管。第2电阻元件包括,连接到第4晶体管的输入电极与第2电极间,其输入电极接收第4电压的第6晶体管。这时,第1和第2电阻元件的占有面积小了。
并且理想的是,第5和第6晶体管是第2导电类型的,第4电压等于第2电压。这时,电压源数减少了。
并且理想的是,第1电阻元件包括连接到第3晶体管的输入电极与第2电极间的第5晶体管。第2电阻元件包括连接到第4晶体管的输入电极与第2电极间的第6晶体管。驱动电路,还包括用于响应第1信号的前沿脉冲式提高第5晶体管的电阻值,响应第1信号的后沿脉冲式提高第6晶体管的电阻值的脉冲发生电路。这时,可使第3和第4晶体管的输入电极的电位下降变成缓慢。
并且理想的是,第5和第6晶体管是第2导电类型的。脉冲发生电路包括连接到跟第2电压同极性的第4电压的结点与第5晶体管的输入电极之间的第3电阻元件;其一电极接收第1信号,其另一电极连接到第5晶体管的输入电极的第3电容;连接到第4电压的结点与第6晶体管的输入电极之间的第4电阻元件;其一电极接收第1信号的互补信号,其另一电极连接到第6晶体管的输入电极的第4电容。这时,介以第3或第4电阻元件充电到第4电压的第5或第6晶体管的输入电极,通过第3或第4电容降压第1电压部分。
并且理想的是,第4电压等于第2电压。这时电压源数减少了。
并且理想的是,第5和第6晶体管是第1导电类型的。脉冲发生电路包括连接到跟第2电压相反极性的第4电压的结点与第5晶体管的输入电极之间的第3电阻元件;其一电极接收第1信号的互补信号,其另一电极连接到第5晶体管的输入电极的第3电容;连接到第4电压的结点与第6晶体管的输入电极之间的第4电阻元件;其一电极接收第1信号,其另一电极连接到第6晶体管的输入电极的第4电容。这时,介以第3或第4电阻元件,充电到第4电压的第5或第6晶体管的输入电极,通过第3或第4电容只升压第1电压部分。
并且理想的是,驱动电路还包括,连接到第3晶体管的第2电极与输入电极间的第1二极管元件和连接到第4晶体管的第2电极与输入电极间的第2二极管元件。这时,可以把第3或第4晶体管的输入电极迅速地充电到第1电压。
并且理想的是,驱动电路包括连接到第3晶体管的第2电极与基准电压的结点之间的第1电阻元件;其一电极接收第1信号,其另一电极连接到第3晶体管的第2电极的第1电容;连接到第4晶体管的第2电极与基准电压的结点之间的第2电阻元件;其一电极接收第1信号的互补信号,其另一电极连接到第4晶体管的第2电极的第2电容,并将第1信号及其互补信号分别加到第4和第3晶体管的输入电极。这时,介以第1或第2电阻元件成为基准电压的第3或第4晶体管的第2电极,通过第1或第2电容,只降压第2电压部分。
并且理想的是,第1电阻元件包括连接到第3晶体管的第2电极与基准电压的结点之间的第5晶体管。第2电阻元件包括连接到第2晶体管的第2电极与基准电压的结点之间的第6晶体管。驱动电路还包括,用于响应第1信号的前沿脉冲式提高第5晶体管的电阻值,响应第1信号的后沿脉冲式提高第6晶体管的电阻值的脉冲发生电路。这时,能够使第3和第4晶体管输入电极的电压上升缓和。
并且理想的是,第5和第6晶体管是第2导电类型的。脉冲发生电路包括连接到跟第2电压同极性的第4电压的结点与第5晶体管的输入电极之间的第3电阻元件;其一电极接收第1信号,其另一电极连接到第5晶体管的输入电极的第3电容;连接到第4电压的结点与第6晶体管的输入电极之间的第4电阻元件;其一电极接收第1信号的互补信号,其另一电极连接到第6晶体管输入电极的第4电容。这时,介以第3或第4电阻元件充电到第4电压的第5或第6晶体管的输入电极,通过第3或第4电容只降压第1电压部分。
并且理想的是,第4电压等于第2电压。这时,电压源数减少了。
并且理想的是,还设置用于锁存第1和第2输出结点电位的锁存电路。这时,能够稳定地保持第1和第2输出结点的电位。
并且理想的是,锁存电路包括这些第1电极分别连接到第1和第2输出结点,这些第2电极分别接收第1信号及其互补信号,这些输入电极分别连接到第2和第1输出结点的第2导电类型的第5和第6晶体管。这时,能够很容易构成锁存电路。
并且理想的是,锁存电路包括分别连接到第1和第2输出结点与基准电压的结点之间,这些输入电极分别连接到第2和第1输出结点的第2导电类型的第5和第6晶体管。这时,第1信号及其互补信号的驱动力减少了。
并且理想的是,还设置插入第1晶体管的第2电极与第1输出结点之间,其输入电极连接到第3晶体管输入电极的第1导电类型的第5晶体管,和插入第2晶体管的第2电极与第2输出结点之间,其输入电极连接到第4晶体管输入电极的第1导电类型的第6晶体管。这时,能够减少从第2电压的结点流到第1和第2输出结点的电流,可以实现消耗电流的降低。
并且理想的是,第1~第4晶体管是薄膜晶体管。这时本发明尤其有效。


图1是表示与本发明实施例1的移动电话机图像显示关联部分的框图。
图2是表示图1中所示电平移动装置的构成电路图。
图3是表示图2中所示电平移动装置的动作时序图。
图4~图8是表示实施例1的变更例电路图。
图9是表示本发明实施例2的电平移动装置构成电路图。
图10是表示图9中所示电平移动装置的动作时序图。
图11表示本发明实施例3的电平移动装置构成电路图。
图12是表示图11中所示电平移动装置的动作时序图。
图13表示本发明实施例4的电平移动装置构成电路图。
图14是表示图13中所示电平移动装置的动作时序图。
图15是表示实施例4的变更例电路图。
图16是表示图15中所示电平移动装置的动作时序图。
图17是表示与现有移动电话机的图像显示关联部分的框图。
图18是表示图17中所示电平移动装置的构成电路图。
图19是表示现有其它的电平移动装置构成电路图。
具体实施例方式图1是表示与本发明实施例1的移动电话机图像显示关联部分的构成框图。
图1中,该移动电话机具备作为MOST型集成电路的控制用LSI1和作为TFT型集成电路的液晶显示装置2,液晶显示装置2包括电平移动装置3和液晶显示部分4。
控制用LSI1输出液晶显示装置2用的控制信号。该控制信号的“H”电平为3V,其“L”电平为0V。实际上生成多个控制信号,但这里为了简化说明,控制信号设为1个信号。电平移动装置3变换来自控制用LSI1的控制信号逻辑电平,生成内部控制信号。该内部控制信号的“H”电平为7.5V,其“L”电平为0V。液晶显示部分4,按照来自电平移动装置3的内部控制信号显示图像。
图2是表示电平移动装置3的构成电路图。图2中,该电平移动装置3包括P型TFT5、6;N型TFT7~10;电阻元件11、12;以及电容13、14。P型TFT5、6分别连接到电源电位VCC的结点N1与输出结点N5、N6之间,各栅极分别连接到输出结点N5、N6。输出结点N5、N6上呈现的信号,分别为该电平移动装置3的输出信号VO、/VO。N型TFT7连接到输出结点N5与输入结点N11之间,其栅极连接到输出结点N6。N型TFT8连接到输出结点N6与输入结点N12之间,其栅极连接到输出结点N5。输入结点N11、N12分别接收输入信号VI、/VI。P型TFT5、6和N型TFT7、8构成用于锁存输出结点N5、N6的锁存电路。
N型TFT9连接到输入结点N11与输出结点N5之间,其栅极连接到结点N9。N型TFT10连接到输入结点N11与输出结点N6之间,其栅极连接到结点N10。电阻元件11连接到结点N9与N11之间,电阻元件12连接到结点N10与N12之间。电容13连接到输入结点N13与结点N9之间,电容14连接到输入结点N14与结点N10之间。输入结点N13、N14分别接收输入信号VI、/VI。电阻元件11和电容13构成升压电路,电阻元件12和电容14构成升压电路。
图3是表示图2中所示电平移动装置3的动作时序图。参照图3,初始状态下,输入信号VI、/V1分别为“ H”电平(3V)和“L”电平(0V),输出信号VO、/VO分别为“H”电平(7.5V)和“L”电平(0V)。这时,结点N9因电阻元件11而成为与输入信号VI相同电位的3V,结点N10因电阻元件12而成为与输入信号/VI相同电位的0V。按照这些电位关系,P型TFT5和N型TFT8导通,其它TFT6、7、9、10变成了非导通。即,输出结点N5通过P型TFT5接到电源电位VCC(7.5V),输出结点N6通过N型TFT8接到输入信号VI的电位(0V)。
其次,在某时刻t1,若输入信号VI自“H”电平(3V)下降到“L”电平(0V),同时输入信号/VI从“L”电平(0V)上升到“H”电平(3V),则输入信号/VI的电位变化通过电容13传递到结点N9,结点N9的电位上升到3V以上的电位。这时的电位上升部分大约由电容13的电容值与结点N9杂散电容(图未示出)的电容值之比决定。只要把电容13的电容值设定为充分大于结点N9杂散电容的电容值,结点N9就上升到输入信号VI、/VI的振幅电压(3V)的2倍约6V。
另一方面,输入信号VI与/VI同时由“H”电平(3V)下降到“L”电平(0V),因而结点N9的电荷通过电阻元件11向结点N11放电。所以,结点N9的电位自3V起上升到达峰值以后,徐徐降到0V。这里,采用适当设定电阻元件11电阻值的办法,可在规定时间,使结点N9的电位保持3V以上的规定电位。结点N9的电位变成规定电位时,N型TFT9导通,输出结点N5的电位降低。输出结点N5的电位一降低,P型TFT6导通,输出结点N6的电位就上升。因此,P型TFT5变成非导通,同时N型TFT7导通,输出结点N5的电位迅速降低到“L”电平(0V)。
另一方面,输入信号VI自“H”电平(3V)向“L”电平(0V)的电位变化,通过电容14传递到结点N10,结点N10的电位从0V降低到大约-3V。但是,N型TFT10已经变成了非导通,因而对电路动作没有影响。
以上的结果,输出信号VO从“H”电平(7.5V)下降到“L”电平(0V),同时输出信号/VO从“L”电平(0V)上升到“H”电平(7.5V),实行从3V向7.5V的逻辑电平转换。
经过一段时间后,结点N9、N10的电位分别被电阻元件11、12移动到输入信号VI、/VI的电平上。在时刻t2,结点N9、N10的电位,分别变成了输入信号VI、/VI。在时刻t2,输入信号/VI从“L”电平(0V)上升到“H”电平(3V),同时输入信号VI从“H”电平(3V)下降到“L”电平(0V)的话,按照与上述相反的关系电路动作。
本实施例1中,响应输入信号VI的下降边,生成高于输入信号VI振幅电压(3V)的电压(约6V)加到N型TFT9的栅极-源极之间,因而输入信号VI的振幅电压(3V)即使低于N型TFT9的阈值电压,电平移动装置3也能动作。所以,如图1所示,能够把电平移动装置3和液晶显示部分4构成1个液晶显示装置2(TFT型集成电路)。因此,与需要设计另外一个电平移动装置52和液晶显示装置53的现有技术比较,零件数少了,将降低系统成本。
并且,动作过程中,虽然瞬变式电源电流流动,但是决定输出结点N5、N6的电平以后,TFT5、8、10或TFT6、7、9变成非导通,因而没有从电源电位VCC的结点N1向输入结点N11~N14的直流电流流动。所以,电路的电力消耗也极为减少。
另外,本实施例1中,虽然使用TFT5~10,但是也可以使用MOS晶体管而不用TFT。这种场合,即使输入信号VI、/VI的振幅电压小于MOS晶体管阈值电压的场合也能动作。
并且,本实施例1中,虽然使用绝缘栅型场效应晶体管的TFT,但是不言而喻,也可以使用其它形式的场效应晶体管。
以下,说明本实施例1的各种变更例。图4的电平移动装置15中,将N型TFT7、8的源极接地。对该变更例而言,N型TFT7、8的电流不是流向输入结点N11、N12而是流到接地电位GND的路线,因而输入信号VI、/VI的驱动力减少了。
图5的电平移动装置16跟电平移动装置3不同点是,添加P型TFT17、18这个方面。P型TFT17插入P型TFT5的漏极与输出结点N5之间,其栅极连接到结点N9。P型TFT18插入P型TFT6的漏极与输出结点N6之间,其栅极连接到结点N10。对本变更例而言,例如,输入信号/VI从“L”电平(0V)上升到“H”电平(3V)时(参照图3的时刻t1),P型TFT17从导通状态变为非导通状态。抑制电流从电源电位VCC的结点N1流入输出结点N5,因而输出结点N5的电位变得容易下降。结果,P型TFT6迅速导通,输出结点N6的电位变得容易上升起来。并且,如上述那样,因为P型TFT17、18变成非导通,抑制电流从电源电位VCC的结点N1流入输出结点N5、N6,因而电力消耗减少了。
图6的电平移动装置20跟图2的电平移动装置3不同点是,分别用N型TFT21、22置换电阻元件11、12这个方面。N型TFT21连接到结点N9与N11之间,其栅极接收电源电位VCC。N型TFT22连接到结点N10与N12之间,其栅极接收电源电位VCC。N型TFT21、22各自起等效电阻元件的作用。与图2的电阻元件11、12比较,每单位尺寸的电阻值很高,因而作为电阻元件的占有面积缩小。另外,也可以用P型TFT,各自置换N型TFT21、22。但是,这种场合,需要对P型TFT的栅极施加负电压(-7.5V)。
图7的电平移动装置23跟图5的电平移动装置16不同点是,分别用N型TFT21、22置换电阻元件11、12这个方面。所以,对本变更例而言,具有图5的变更例和图6的变更例双方的效果。
图8的电平移动装置25是,给图5的电平移动装置16添加二极管元件26、27。二极管元件26连接到输入结点N11与N9之间,二极管元件17连接到输入结点N12与N14之间。二极管元件26,当输入信号VI从“L”电平(0V)上升到“H”电平(3V)时,加速结点N9向“H”电平(3V)上升(参照图3)。因此,接着当输入信号/VI从“L”电平(0V)上升到“H”电平(3V)时,加快结点N9向“H”电平(3V)上升,N型TFT9迅速导通。二极管元件27对N型TFT10起与二极管元件26相同作用。所以,对本变更例而言,加速输出信号VO、/VO的电平随输入信号VI、/VI的电平变化的变化。
图9是表示本发明实施例2的电平移动装置30构成电路图,也是与图7对比的图。参照图9,该电平移动装置30跟图7的电平移动装置23不同点是,添加电阻元件31、32和电容33、34这个方面。电阻元件31插入电源电位VCC的结点N1与N型TFT21的栅极(结点N21)之间,电阻元件32插入结点N1与N型TFT22的栅极(结点N22)之间。电容33连接到输入结点N11与N21之间,电容30连接到输入结点N12与N22之间。
图10是表示电平移动装置30的动作时序图。图10中,初始状态下,输入信号VI、/VI分别处于“H”电平(3V)和“L”电平(0V),输出信号VO、/VO分别处于“H”电平(7.5V)和“L”电平(0V)。结点N21、N22分别通过电阻元件31、32接收电源电位VCC(7.5V),因而N型TFT21、22导通。所以,结点N9成为与输入信号VI相同电位的3V,结点N10成为与输入信号/VI相同电位的0V。按照这些电位的关系,P型TFT5、16和N型TFT8导通,其它的P型TFT6、7、9、10、17变成了非导通。即,输出结点N5通过P型TFT5、16接收电源电位VCC(7.5V),输出结点N6通过N型TFT8接收输入信号/VI的电位(0V)。
接着,在某时刻t1,若输入信号VI从“H”电平(3V)下降到“L”电平(0V),同时输入信号/VI从“L”电平(0V)上升到“H”电平(3V),则输入信号/VI的电位变化,通过电容13传递到结点N9,结点N9的电位上升到3V以上的电位。同时,输入信号VI的电位变化通过电容33传递到结点N29,结点N21的电位下降大约3V。结点N21的电位一旦下降,就从结点N1通过电阻元件31使电流流入结点N21,结点N21回到电源电位VCC(7.5V)。结点N21下降到比7.5V低的期间,N型TFT21的电阻值将升高。
并且,在时刻t1,若输入信号VI从“H”电平(3V)下降到“L”电平(0V),则结点N9的电荷通过N型TFT21对输入结点N11放电。所以,结点N9的电位从3V上升到达峰值以后,徐徐下降直到0V。
这时,N型TFT21的电阻值,在规定时间内比较高,因而结点N1的电平下降跟图7的电平移动装置23比较变得缓慢。因此,N型TFT9的导通时间延长,输出结点N5的电位下降就很容易。
另一方面,在结点N10一侧,在时刻t1,若输入信号VI从“H”电平(3V)下降到“L”电平(0V),同时输入信号/VI从“L”电平(0V)上升到“H”电平(3V),则输入信号/VI的电位变化通过电容14传递到结点N10,结点N10的电位下降到0V以下的电位。同时,输入信号/VI的电位变化通过电容34传递到结点N22,结点N22的电位上升大约3V。结点N22的电位一旦上升,就从结点N22通过电阻元件32向结点N21流出电流,结点N22返回电源电位VCC(7.5V)。结点N22的电位比7.5V高的期间,N型TFT22的电阻值将降低。
并且,在时刻t1,若输入信号VI从“L”电平(0V)上升到“H”电平(3V),则电流从输入结点N12通过N型TFT22流入结点N10。所以,结点N10的电位,从0V起下降达到峰值以后,徐徐上升直到3V。
这时,N型TFT22的电阻值在规定时间内比较地低,因而结点N10的电平上升跟图7的电平移动装置23比较将加速。因此,很容易进行在下一时刻t2的结点N10升压。
由以上,该电平移动装置30的动作容限要比电平移动装置23的动作容限要增大。
另外,本实施例2中,虽然把电阻元件31、32的一方电极连接到电源电位VCC(7.5V)的结点N1,但是连接到与电源电位VCC不同的正电源电位的结点也行。
并且,也可以由N型TFT或P型TFT分别构成电阻元件31、32。只要给N型TFT的栅极施加比电源电位VCC还要高的正电位,给P型TFT的栅极施加比电源电位VCC还要低的电位就行并且,也可以削除P型TFT16和17。
图11是表示本发明实施例3的电平移动装置35构成电路图,也是与图9的对比图。参照图11,该电平移动装置35跟图9的不同点是,用P型TFT36、37置换N型TFT21、22这个方面。P型TFT36连接到结点N9与N11之间,其栅极连接结点N21。P型TFT37连接到结点N10与N12之间,其栅极连接结点N22。
并且,电阻元件31连接到结点N21与负电源电位-VCC(-7.5V)的结点N31之间。电阻元件32连接到结点N22与负电源电位-VCC(-7.5V)的结点N32之间。电容33连接到结点N13与N21之间,电容34连接到结点N14与N22之间。
图12是表示电平移动装置35的动作时序图。图12中,初始状态下,输入信号VI、/VI分别处于“H”电平(3V)和“L”电平(0V),输出信号VO、/VO分别处于“H”电平(7.5V)和“L”电平(0V)。结点N21、N22分别通过电阻元件31、32接收负电源电位-VCC(-7.5V),因而P型TFT36、37导通。所以,结点N9成为与输入信号VI相同电位的3V,结点N10成为与输入信号/VI相同电位的0V。按照这些电位关系,P型TFT5、16和N型TFT8导通,其它TFT6、7、9、17都变成了非导通。即,输出结点N5通过P型TFT5、16接收电源电位VCC(7.5V),输出结点N6通过N型TFT8接收输入信号/VI的电位(0V)。
其次,在某时刻t1,若输入信号VI从“H”电平(3V)下降到“L”电平(0V),同时输入信号/VI从“H”电平(0V)上升到“L”电平(3V),则输入信号/VI的电位变化介以电容13传递到结点N9,结点N9的电位上升到3V以上的电位。同时,输入信号/VI的电位变化介以电容33传递到结点N21,结点N21的电位上升约3V。结点N21的电位一旦上升,电流就从结点N21通过电阻元件31流向结点N31。结点N21返回负电源电位-VCC(-7.5V)。结点N21的电位高于-7.5V的期间,P型TFT36的电阻值将升高。
并且,在时刻t1,若输入信号VI从“H”电平(3V)下降到“L”电平(0V),结点N9的电荷通过P型TFT36向输入结点N11放电。所以,结点N9的电位自3V起上升达到峰值以后,徐徐下降直到0V。
这时,P型TFT36的电阻值,在规定时间内比较高,因而结点N9的电位下降跟图7的电平移动装置23相比变得缓慢。因此,N型TFT9的导通时间延长,输出结点N5的电位下降变得容易了。
另一方面,在结点N10一侧,在时刻t1,若输入信号VI从“H”电平(3V)下降到“L”电平(0V),同时输入信号/VI从“L”电平(0V)上升到“H”电平(3V),则输入信号VI的电位变化介以电容14传递到结点N10,结点N10的电位下降到0V以下的电位。同时,输入信号VI的电位变化介以电容34传递到结点N22,结点N22的电位下降约3V。结点N22的电位一旦下降,电流就从结点N32通过电阻元件32流入结点N22,结点N22返回负电源电位-VCC(-7.5V)。结点N22的电位低于-7.5V的期间,P型TFT37的电阻值将降低。
并且,在时刻t1,若输入信号/VI从“L”电平(0V)上升到“H”电平(3V),则电流从输入结点N12通过P型TFT37流入结点N10。所以,结点N10的电位自0V下降达到峰值以后,徐徐上升直到3V。
这时,P型TFT37的电阻值,在规定时间内比较低,因而结点N10的电位上升跟图7的电平移动装置23相比将提前。因此,很容易进行下一时刻t2的结点N10升压。
由以上,该电平移动装置35的动作容限要比电平移动装置23的动作容限增大。
另外,也可以用N型TFT或P型TFT构成各个电阻元件31、32。给N型TFT的栅极施加高于正电源电位VCC的电位,给P型TFT施加低于负电源电位-VCC的负电位就行。并且,也可以削除P型TFT16和17。
图13是表示本发明实施例4的电平移动装置40构成电路图,也是与图5对比的图。
图13中,该电平移动装置40跟图5的电平移动装置16的不同点是,N型TFT7、8的源极都接地,并用电阻元件41、42和电容43、44置换电阻元件11、12和电容13、14的这方面。
电容43连接到输入结点N11与N型TFT9的源极(结点N41)之间,电容44连接到输入结点N12与N型TFT10的源极(结点N42)之间。电阻元件41、42分别连接到结点N41、N42与接地电位GND的路线之间。输入信号/VI直接加到TFT9和17的栅极上,输入信号VI直接加到TFT10和18的栅极上。
图14是表示电平移动装置40的动作时序图。参照图14,初始状态下,输入信号VI、/VI分别为“H”电平(3V)和“L”电平(0V),输出信号VO、/VO分别为“H”电平(7.5V)和“L”电平(0V)。结点N41、N42通过电阻元件41、42成为接地电位GND。按照这些电位关系,P型TFT5、17和N型TFT8、10导通。其它TFT6、7、9、18变成了非导通。即,输出结点N5通过P型TFT5、7接到电源电位VCC(7.5V),输出结点N6通过N型TFT8接收接地电位GND(0V)。
其次,在某时刻t1,如果输入信号VI自“H”电平(3V)下降到“L”电平(0V),同时输入信号/VI从“L”电平(0V)上升到“H”电平(3V),则输入信号/VI的电位变化通过电容43传递到结点N41,结点N41的电位下降到接地电位GND(0V)以下的电位。电位的下降部分由电容43的电容值与结点N41杂散电容(图未示出)的电容值之比决定。只要把电容43的电容值设定为充分大于杂散电容的电容值,则结点N41的电位仅下降输入信号VI的振幅电压部分,一直下降到-3V为止。
结点N41的电位下降到约-3V,电流从接地电位GND的路线通过电阻元件41流到结点N41。所以,结点N41的电位自0V下降达到峰值以后,徐徐上升直到0V。这里,采用适当设定电阻元件41电阻值的办法,可使结点N41的电位在规定时间内保持0V以下规定的电位。
若结点N41变成规定电位,N型TFT9的栅-源间的电压就变成3V~6V,N型TFT9导通,输出结点N5的电位下降。若输出结点N5的电位下降,P型TFT6就导通,输出结点N6的电位上升。这样,P型TFT5成为非导通,同时N型TFT7导通,输出结点N5的电位迅速下降到“L”电平(0V)。
另一方面,从输入信号/VI的“L”电平(0V)向“H”电平(3V)的电位变化,介以电容44传递到结点N42,结点N42的电位从0V上升直至接近3V。可是,N型TFT10已经变成了非导通,因而对电路动作没有影响。
以上结果,输出信号VO从“H”电平(7.5V)下降到“L”电平(0V),同时输出信号/VO从“L”电平(0V)上升到“H”电平(7.5V),等于进行从3V向7.5V的逻辑电平转换。
结点N41、N42的电位,分别随着电阻元件41、42与时间的推移,分别接近接地电位GND,在时刻t2,结点N41、N42的电位大约成了接地电位GND。在时刻t2,若输入信号VI从“L”电平(0V)上升到“H”电平(3V),同时输入信号/VI从“H”电平(3V)下降到“L”电平(0V),则按与上述相反的电位关系使电路动作。
本实施例4也能获得与实施例1同样效果。
另外,如图15所示,也可以按照实施例2,分别用N型TFT21、22置换电阻元件41、42,在N型TFT21、22的栅极(结点N21、N22)与结点N1之间分别连接电阻元件31、32,输入结点N11、N12与结点N21和N22之间分别连接电容33、34。如图16所示,在时刻t1,若输入信号VI从“H”电平(3V)下降到“L”电平(0V),则结点N21的电位下降约3V,在规定时间内将低于电源电位VCC(7.5V)。结点N21的电位变得低于7.5V的话,N型TFT21的电阻值将升高。所以,结点N41的电平上升变得比图13的电平移动装置40还要缓慢,很容易把输出结点N5降到“L”电平。并且,在时刻t1,若输入信号/VI从“L”电平(0V)上升到“H”电平(3V),则结点N22的电位上升约3V,在规定时间内将比电源电位VCC(7.5V)还要升高。若结点N21的电位比7.5V还高,则N型TFT22的电阻值将降低。所以,结点N42的电平下降会比图13的电平移动装置40提前,很容易进行下一时刻t2的结点N42的降压动作。
应该认为这次公开的实施例所有方面都是举例表示而不是限制性的。本发明的范围不是上述的说明,而是由专利要求保护范围来表示,意图包括与专利要求保护范围等同的意味和范围内的全部变更。
权利要求
1.一种振幅变换电路,将其振幅为第1电压(3V)的第1信号(VI)变换为其振幅比第1电压(3V)要高的第2电压(7.5V)的第2信号(VO),其特征是,具备第1导电类型的第1和第2的晶体管(5、6),那些第1电极同时接收第2电压(7.5V),那些第2电极分别连接到用于输出第2信号(VO)及其互补信号(/VO)的第1和第2的输出结点(N5、N6),那些输入电极分别连接到所述第2和第1的输出结点(N5、N6);第2导电类型的第3和第4的晶体管(9、10),那些第1电极分别连接到所述第1和第2的输出结点(N5、N6);以及驱动电路(11~14、21、22、26、27、31~34、36、37、41~44),由第1信号(VI)及其互补信号(/VI)驱动,响应所述第1信号(VI)的前沿,把高于第1电压(3V)的第3电压加到第3晶体管(9)的输入电极与第2电极间使所述第3晶体管(9)导通,响应所述第1信号(VI)的后沿,把所述第3电压加到所述第4晶体管(10)的输入电极与第2电极间使所述第4晶体管(10)导通。
2.按照权利要求1所述的振幅变换电路,其特征是,所述驱动电路(11~14、21、22、26、27、31~34、36、37、41~44)包括连接到所述第3晶体管(9)的输入电极与第2电极间的第1电阻元件(11、21、36);其一电极接收第1信号(VI)的互补信号(/VI),其另一电极连接到所述第3晶体管(9)的输入电极的第1电容(13);连接到所述第4晶体管(10)的输入电极与第2电极间的第2电阻元件(12,22、37);以及其一电极接收所述第1信号(VI),其另一电极连接到所述第4晶体管(10)的输入电极的第2电容(14),把所述第1信号(VI)及其互补信号(/VI)分别加到所述第3和第4晶体管(9、10)的第2电极。
3.按照权利要求2所述的振幅变换电路,其特征是,所述第1电阻元件(11、21、36)包括,连接到所述第3晶体管(9)的输入电极和第2电极,其输入电极接收第4电压的第5晶体管(21、36);所述第2电阻元件(12、22、37)包括,连接到所述第4晶体管(10)的输入电极与第2电极间,其输入电极接收所述第4电压的第6晶体管(22、37)。
4.按照权利要求3所述的振幅变换电路,其特征是,所述第5和第6晶体管(21、22)是第2导电类型的,所述第4电压等于所述第2电压(7.5V)。
5.按照权利要求2所述的振幅变换电路,其特征是,所述第1电阻元件(11、21、36)包括连接到所述第3晶体管(9)的输入电极与第2电极间的第5晶体管(21、36);所述第2电阻元件(12、22、37)包括连接到所述第4晶体管(10)的输入电极与第2电极间的第6晶体管(22、37);所述驱动电路(11~14、21、22、26、27、31~34、36、37、41~44)还包括用于响应所述第1信号(VI)的前沿脉冲式提高所述第5晶体管(21、36)的电阻值,响应所述第1信号(VI)的后沿脉冲式提高所述第6晶体管(22、37)的电阻值的脉冲发生电路(31~34)。
6.按照权利要求5所述的振幅变换电路,其特征是,所述第5和第6晶体管(21、22)是第2导电类型的;所述脉冲发生电路(31~34)包括连接到跟所述第2电压(7.5V)同极性的所述第4电压的结点与所述第5晶体管(21)的输入电极之间的第3电阻元件(31);其一电极接收所述第1信号(VI),其另一电极连接到所述第5晶体管(36)的输入电极的第3电容(33);连接到所述第4电压(7.5V)的结点与所述第6晶体管(22)的输入电极之间的第4电阻元件(32);以及其一电极接收所述第1信号(VI),其另一电极连接到所述第6晶体管(22)的输入电极的第4电容(34)。
7.按照权利要求6所述的振幅变换电路,其特征是,所述第4电压等于所述第2电压(7.5V)。
8.按照权利要求5所述的振幅变换电路,其特征是,所述第5和第6晶体管(36、37)是第1导电类型的;所述脉冲发生电路(31~34)包括连接到跟所述第2电压(7.5V)相反极性的第4电压(-7.5V)的结点与所述第5晶体管(36)的输入电极之间的第3电阻元件(31);其一电极接收所述第1信号(VI)的互补信号(/VI),其另一电极连接到所述第5晶体管(36)的输入电极的第3电容(33);连接到所述第4电压(-7.5V)的结点与所述第6晶体管(37)的输入电极之间的第4电阻元件(32);以及其一电极接收所述第1信号(VI),其另一电极连接到所述第6晶体管(37)的输入电极的第4电容(34)。
9.按照权利要求2所述的振幅变换电路,其特征是,所述驱动电路(11~14、21、22、26、27、31~34、36、37、41~44)还包括连接到所述第3晶体管(9)的第2电极与输入电极之间的第1二极管元件(26);以及连接到所述第4晶体管(10)的第2电极与输入电极之间的第2二极管元件(27)。
10.按照权利要求1所述的振幅变换电路,其特征是,所述驱动电路(11~14、21、22、26、27、31~34、36、37、41~44)还包括连接到所述第3晶体管(9)的第2电极与基准电压(GND)的结点之间的第1电阻元件(41、21);其一电极接收所述第1信号(VI),其另一电极连接到所述第3晶体管(9)的第2电极的第1电容(43);连接到所述第4晶体管(10)的第2电极与所述基准电压(GND)的结点之间的第2电阻元件(42、22);以及其一电极接收所述第1信号(VI)的互补信号(/VI),其另一电极连接到所述第4晶体管(10)的第2电极的第2电容(44),把所述第1信号(VI)及其互补信号(/VI)分别加到所述第4和第3晶体管(10、9)的输入电极上。
11.按照权利要求10所述的振幅变换电路,其特征是,所述第1电阻元件(41、21)包括连接到所述第3晶体管(9)的第2电极与基准电压(GND)的结点之间的第5晶体管(21);所述第2电阻元件(42、22)包括连接到所述第4晶体管(10)的第2电极与基准电压(GND)的结点之间的第6晶体管,所述驱动电路(11~14、21、22、26、27、31~34、36、37、41~44)还包括,用于响应所述第1信号(VI)的前沿脉冲式提高所述第5晶体管(21)的电阻值,响应所述第1信号(VI)的后沿,脉冲式提高所述第6晶体管(22)的电阻值的脉冲发生电路(31~34)。
12.按照权利要求11所述的振幅变换电路,其特征是,所述第5和第6晶体管(21、22)是第2导电类型的;所述脉冲发生电路(31~33)包括连接到跟所述第2电压(7.5V)同极性的第4电压的结点与所述第5晶体管(21)的输入电极之间的第3电阻元件(31);其一电极接收所述第1信号(VI),其另一电极连接到所述第5晶体管(21)的输入电极的第3电容(33);连接到所述第4电压的结点与所述第6晶体管(22)的输入电极之间的第4电阻元件(32);以及其一电极接收所述第1信号(VI)的互补信号(/VI),其另一电极连接到所述第6晶体管(22)输入电极的第4电容(34)。
13.按照权利要求12所述的振幅变换电路,其特征是,所述第4电压等于所述第2电压(7.5V)。
14.按照权利要求1所述的振幅变换电路,其特征是,还具备用于锁存所述第1和第2示出结点(N5、N6)的电位的锁存电路(7、8)。
15.按照权利要求14所述的振幅变换电路,其特征是,所述锁存电路(7、8)包括第二导电类型的第5和第6晶体管(7、8),那些第1电极分别连接到所述第1和第2的输出结点(N5、N6),那些第2电极分别接收所述第1信号(VI)及其互补信号(/VI),那些输入电极分别连接到所述第2和第1输出结点(N5、N6)。
16.按照权利要求14所述的振幅变换电路,其特征是,所述锁存电路(7、8)包括第2导电类型的第5和第6晶体管(7、8),连接到所述第1和第2的输出结点(N5、N6)与基准电压(GND)的结点之间,那些输入电极分别连接到所述第2和第1输出结点(N5、N6)。
17.按照权利要求1所述的振幅变换电路,其特征是,还具备插入所述第1晶体管(5)的第2电极与所述第1输出结点(N5)之间,其输入电极连接到所述第3晶体管(9)输入电极的第1导电类型的第5晶体管(16);以及插入所述第2晶体管(6)的第2电极与所述第2输出结点(N6)之间,其输入电极连接到所述第4晶体管(10)输入电极的第1导电类型的第6晶体管(17)。
18.按照权利要求1所述的振幅变换电路,其特征是,所述第1~第4的晶体管(5、6、9、10)是薄膜晶体管。
全文摘要
本电平移动装置(3)具备用于锁存第1和第2输出结点(N5、N6)的第1和第2的P型TFT(5、6)与第1和第2的N型TFT(7、8);用于设定第1和第2输出结点(N5、N6)电平的第3和第4的N型TFT(9、10);响应输入信号(VI)的下降边和上升边,把高于输入信号(VI)的振幅电压(3V)的电压(约6V)分别加到第3和第4的N型TFT(9、10)的栅极-源极间的第1和第2电阻元件(11、12)与第1和第2电容(13、14)。
文档编号H03K5/02GK1488193SQ02803843
公开日2004年4月7日 申请日期2002年2月26日 优先权日2002年2月26日
发明者飞田洋一 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1