功率放大装置的制作方法

文档序号:7506027阅读:155来源:国知局
专利名称:功率放大装置的制作方法
技术领域
本发明涉及将从声音信号等得到的输入交流信号进行功率放大,并施加在扬声器等的电声音转换器中的功率放大装置,特别是具备输入交流信号的D级放大功能的功率放大装置中的电源电压变动补偿。
背景技术
声音扬声器的驱动多利用构成简单的A级、B级、AB级等的线性型的功率放大装置。这种线性型功率放大装置,从工作原理来看,由于功率放大装置自身的功率损耗大,随着输出功率变大,功率放大装置自身的消耗功率所带来的发热也变大。因此,存在需要用于使这些热发散的大散热器等的课题。在此,在输出功率大的功率放大装置中,使用称作D级的切换型的功率放大装置。
具备D级放大功能的功率放大装置,通过接通或断开供给功率的输出段的功率开关,在输出端子间高速切换产生正电源电压或零电压或负电源电压。由在该输出端子与负载之间具备的功率低通滤波器(LPF)除去可听外高频域功率,对负载只供给可听频域的功率。在开关处于接通状态时,电流流过端子间电压极小,此外在断开状态时,与电压相关,但通过电流几乎为零,因此作为这些积的开关自身的功率消耗都变小。
在这种功率放大装置中,存在根据电源电压的变动输出交流信号Vo也变动的问题。作为改善该问题的方法,具有例如让用于接通、断开功率开关的驱动脉冲的脉宽调制的三角波电压Vt的振幅Et与电源电压Vc成比例的技术(例如,参照专利文献1)。除此之外,作为现有技术,有专利文献2、3、4、5。
作为涉及具备D级放大功能的功率放大装置的技术,一般公知如图6A所示,由H形桥式构成的4个开关电路驱动负载,即称作桥式连接负载(bridge-tied load;以下称作BTL)的技术。如图6A所示的功率放大装置的构成及其动作概述如下。
从直流电源10供给电压值Vc的第1开关电路11,由作为N沟道MOSFET的第1高端(high side)开关111与第1低端(low side)开关112构成。同样,第2开关电路12,由作为N沟道MOSFET的第2高端开关121与第2低端开关122构成。将第1开关电路11的输出端子、即第1高端开关111与第1低端开关112之间的连接点作为端子X,将第2开关电路12的输出端子、即第2高端开关121与第2低端开关122之间的连接点作为端子Y,在端子X与端子Y之间连接电感线圈13与负载14的串联体。
控制电路150是控制第1开关电路11以及第2开关电路12的各开关电路的电路,由脉宽调制(PWM)电路40、第1驱动电路51以及第2驱动电路52构成。信号源16输出输入交流信号Vi。
PWM电路40是将输入交流信号Vi的振幅变为脉宽的电路,将由三角波发生电路300产生的三角波电压Vt与输入交流信号Vi通过比较器41进行比较,将该结果作为M1输出,此外,将该结果用反相器42反转,输出反转后的M2。
第1驱动电路51,由输入信号M1并驱动第1高端开关111的放大器511,和输入信号M1并驱动第1低端开关112的反相放大器512构成。第2驱动电路52,由输入信号M2并驱动第2高端开关121的放大器521,和输入信号M2并驱动第2低端开关122的反相放大器522构成。
图6B是以上所述构成的现有的功率放大装置的时序图。
如图6B所示,三角波电压Vt将电压值Et作为振幅,以周期T在+Et之间增减。周期T设置为比输入交流信号Vi(t)的变化快得多。该三角波电压Vt与输入交流信号Vi由比较器41进行比较。输出该比较器41的输出信号M1以及通过反相器42的其反相信号M2。三角波电压Vt的瞬时值比输入交流信号Vi的瞬时值小,信号M1在Vt(t)<Vi(t)时,变为高(H)电平。信号M1的周期T中的高电平的期间的比例δ(称作占空比),由下式表示。
δ=(1+Vi/Et)/2 ...(1)
第1高端开关111根据信号M1接通、断开,第1低端开关112根据信号M1的反转信号接通、断开。即第1开关电路11中的第1高端开关111与第1低端开关112交替接通、断开。另一方面,第2高端开关121据信号M2接通、断开,第2低端开关122根据信号M2的反转信号接通、断开。即第2开关电路12中的第2高端开关121与第2低端开关122分别进行与第1开关电路11相反的开闭动作。
因此,在信号M1为高电平期间,端子X变为直流电源10的一端的电压值Vc,端子Y变为直流电源10的另一端的电压值0,即零电位;在信号M1为低(L)电平期间,端子X变为零电位,端子Y变为电源电压值Vc。以上所述的切换动作以三角波电压Vt的周期T重复进行。由于该周期T被设定为很短到可忽略输入交流信号Vi的变动的程度,因此出现于端子X的脉冲电压的平均电位Vx、另一方端子Y的平均电位Vy,采用信号M1的占空比δ表示为Vx=δ·VcVy=(1-δ)·Vc根据由电感线圈13的平滑作用,在负载14的两端产生平均电位Vx和平均电位Vy的差电压。负载14的两端电压即输出交流信号Vo由下式表示。
Vo=Vx-Xy=(2δ-1)·Vc ...(2)在此,若将(1)式代入(2)式,则可得到Vo=(Vc/Et)·Vi ...(3)即输出交流信号Vo变为将输入交流电压Vi放大为(Vc/Et)倍的电压。
由此,在图6A、图6B中所示的现有技术中,输入交流电压Vi由PWM电路40进行脉宽调制,由BTL输出部放大,整体的增益变为(Vc/Et)。(3)式中的Et是涉及部分PWM电路40的脉冲调制部的调制灵敏度,Vc是BTL输出部的增益要素。
在这种直流电源10的电压值Vc中,重叠由将大电流供给负载14时的输出内部电阻引起的脉动(ripple)变化或整流商用电源后时残留的脉动量,随着减小这些量电路规模或损耗功率增大。在图6A的功率放大装置的构成中,通过Vc的变动,放大率(Vc/Et)变动,这使得输出交流信号Vo的电平变动或失真增加。
关于改善由这种电源电压的变动引起的输出交流信号Vo的变动,作为一例,如专利文献1中公开的那样,存在使三角波电压Vt的振幅Et与电源电压Vc成比例的技术。图7A是专利文献1中所示的三角波发生电路的电路构成与其动作波形图。
以下说明图7A的三角波发生电路的构成与其动作。在图7A中,端子A1是输入直流电源电压Vc的端子,与电阻R1连接。由字母符号表示的ADD是运算放大器,电阻R2与电阻R3连接,进行反相放大器的动作。相同的Cx、Cy是比较器,同样FE是触发器。此外,INT是运算放大器,在这种情况下,电阻R0与电容器C0相连接,进行模拟积分器的动作。模拟积分器INT的输出为三角波电压Vt。
首先,运算放大器ADD放大率足够大,由电阻R3进行负反馈,由于按照其正负输入端子间几乎不产生电位差的方式进行动作,因此电阻R2与电阻R3之间的连接点G的电位变为零电位。因此,电阻R1与电阻R2之间的连接点A2的电位Va2变为由电阻R1与电阻R2分压直流电源电压Vc后的电位,由下式表示。
Va2=Vc·R2/(R1+R2)...(4)此外,运算放大器ADD的输出端子A3的电位Va3若电阻R2与电阻R3的各电阻值相等,则如下式所示,变为反相连接点A2的电位。
Va3=-Va2=-Vc·R2/(R1+R2) ...(5)另一方面,在运算放大器INT中,设置触发器FE,如图7B的虚线所示,其输出Q(连接点A4的电压)变为正一定电压(Vf)时,积分电压Vf,其结果输出Vt直线下降。反过来,复位触发器FE,连接点A4变为负一定电压(-Vf)时,输出Vt直线上升。在此,触发器FE,如果输出Vt变为连接点A2的电压(Va2),则由比较器Cx置位,此外如果输出Vt变为连接点A3的电压(-Va2),则由比较器Cy复位。因此,输出Vt变为在电压值±Va2间增减的三角波电压,如(4)式以及(5)式所示,其振幅与电源电压Vc成比例。
在此,由于(3)式的电压值Et变为(4)式以及(5)式表示的电压值Va2,因此如果将(4)式以及(5)式的电压值Va2代入(3)式的电压值Et,则可得到Vo=(Vc/Va2)·Vi=(1+R1/R2)·Vc ...(6)由此,通过使三角波电压Vt的振幅与电源电压Vc成比例,D级功率放大装置的放大率不受其电源电压Vc的影响,可变为恒定。
如上所述,图7A中所示的构成的现有的具有D级放大功能的功率放大装置,是用决定脉冲调制部的增益的三角波电压Vt的振幅补偿BTL输出部的Vc的增益变化的装置。即通过使三角波电压Vt的振幅与电源电压Vc成比例,其放大率不受电源电压的影响成为恒值。
另一方面,具有与这些现有技术的目的不同的式(3)的其他的利用方法。该方法着重于输出交流信号Vo与电源电压Vc成比例,以音量调节等的目的利用该条件。由现有的构成降低音量时,一般采取减小输入交流信号Vi的振幅,或减小脉冲调制部的调制灵敏度的对策。
但是,在这种情况下,第1,存在脉冲调制变弱,信噪比降低,或者在数字式的情况下存在分辨率降低的问题。此外,第2由于D级放大器中的转换损失依赖于其转换次数,因此即使输出电平变小也不减小,存在在低输出时功率的转换效率不高的课题。
此外,作为音量以外的第3课题,在驱动存储以及放出能量的负载,即电动机、电动型扬声器、压电型调节器、感应线圈等的情况下,由于其放出能量从D级放大器的输出电路逆流(再生)到电源部,因此存在搅乱电源部的稳定化控制,或由再生的功率的废弃所引起的消费功率增大的问题。
本发明解决的课题是,由电源电压的操作解决上述第1以及第2课题,同时抑制作为现有的已有技术的课题的电源变动的输出电平的快速变动的失真,还有也改善上述的第3再生功率所带来的影响。
即在图6A中所示的现有的功率放大装置中,输出交流信号Vo如(3)式表示的那样,与电源电压Vc与输入交流信号Vi的积成比例。例如负载14是扬声器,想抑制其音量的情况下,即减小输出交流信号Vo的情况下,虽然可减小电源电压Vc或减小输入交流信号Vi,比较两者来看,减小电源电压Vc消耗功率小。这是因为虽然在减小输入交流信号Vi的情况下占空比δ接近与50%,但在减小电源电压Vc的情况下,施加于电感线圈13与负载14的串联电路的电压变小,流过的电流的有效值也变小。在负载14具有压电扬声器那样的电容性、电感线圈那样的感应性以及扬声器或电动机那样的电机械转换系统的情况下,该倾向更明显。以下说明该倾向。
例如,在由图8所示的升压转换器100实现图6A中所示的现有的功率放大装置的直流电源10的情况下,即由升压转换器100将电池的电压进行升压转换,将其输出作为电源电压Vc供给的情况下,存在在电源电压Vc中产生脉动电压,该电压成为输出交流信号Vo的失真的原因的问题。
升压转换器100从电池101供给功率,由电感线圈102、开关103、二极管104、电容器105以及控制电路106构成。其输出电压值Vc由可变电阻对107分割检测出,调整开关103的接通、断开比以使其检测电压稳定化。因此,升压转换器100,可由可变电阻对107调整来自电容器105的输出电压,即电源电压Vc。以下,为了对该构成的D级功率放大装置进行简单说明,将负载14作为电容性的器件,将其静电电容作为Co处理。
在图8所示构成的D级放大装置中,其各部动作波形由图9A~图9C表示。如图9A所示,按照下述方式将振幅Eo的正弦波电压假设为输出交流信号Vo。
Vo=Eo·sin[ωt]此时,流过负载14的平均电流Io如图9B所示由以下的方式表示。
Io=Co·dVo/dt=ω·Co·Eo·cos[ωt]在该电流Io流过H形桥式构成的开关电路的情况下,来自电源的供给电流Ic成为如图9所示的样子。即电容器105,不仅放电电流,而且也流过相同的充电电流。升压转换器100,可将来自电容器105的放电电流作为输出电流,不与充电电流对应,这导致电源电压Vc上升。该结果,在电源电压Vc中产生再生功率的脉动电压,使在输出交流信号Vo中产生失真。
而且,作为补偿电源电压Vc的变动引起的输出交流信号Vo的变动的技术,除专利文献1以外,例如象专利文献2或专利文献3的各公报等中公示的那样,也具有根据电源电压的变动使三角波电压的振幅变化的方法,其中使三角波电压的振幅与电源的电压值成比例。
此外,在专利文献4或专利文献5中,也存在使电源电压的变动不向三角波电压的振幅,而向脉冲信号的脉宽的设定反馈。但是,在这些情况下,均不具有将电源的电压值利用于增益调节的功能。
专利文献1特开昭54-80657号公报(第4图);专利文献2特开昭60-190010号公报;专利文献3特开2002-64983号公报;专利文献4特开昭61-39708号公报;专利文献5特开平3-159409号公报。

发明内容
本发明的目的在于提供一种补偿作为输出交流信号的失真的原因的电源电压Vc的快速变动的、补偿了脉动的功率放大装置。该功率放大装置是特别在驱动伴随功率的再生的负载时,使其消耗功率不增加而实现该再生功率的电源电压的脉动的补偿的装置。此外,通过操作电源的电压值,也可进行抑制功率损耗的放大率的调整。
在本发明的第1方式中,提供一种具有以下那样构成的功率放大装置。功率放大装置,具备开关部,其包括被供给电源电压的高端开关与低端开关的串联电路;和控制部,其用于与输入交流信号Vi对应并以设定了规定的接通、断开期间比的周期使所述开关部进行动作,驱动连接于所述高端开关与所述低端开关的连接点之间的负载。控制部,具有脉冲调制部,其将输入交流信号Vi输入,从其输入交流信号Vi由规定的调制灵敏度生成脉冲信号并输出;运算部,其从电源电压Vc检测出其直流电压成分(Ec),将电源电压值(Vc)对直流成分(Ec)的比(Vc/Ec)与调制灵敏度相乘,或者将直流成分(Ec)对于电源电压值(Vc)的比(Ec/Vc)与输入交流信号Vi相乘;和驱动部,其基于脉冲信号驱动所述开关部。
在本发明的第2方式中,提供一种功率放大装置,由乘以了电源电压Vc对被供给的电源电压Vc的直流成分电压值Ec的比率(Vc/Ec)的调制灵敏度,调制输入交流信号而得到的脉冲信号,驱动开关。
在本发明的第3方式中,提供一种功率放大装置,由与乘以电源电压Vc的直流电压成分Ec对被供给的电源电压Vc的比率(Ec/Vc)的输入交流信号对应的脉冲信号,驱动开关。
还有,作为本发明的另一方式,功率放大装置也可具有以下的构成。功率放大装置,具备包括高端开关与低端开关的串联电路,在高端开关与低端开关的连接点连接负载的开关部;将电源电压(Vc)供给开关部的电源部;用规定的调制灵敏度将输入信号(Vi)转换为脉冲信号,并且将驱动信号输出到开关部的脉冲调制部;和使调制灵敏度与电源电压成比例的运算部,在从电源电压(Vc)检测出其直流电压成分(Ec)的同时,将直流电压成分作为电源部的输出稳定化的负反馈信号。
(比现有技术更有利的效果)根据本发明,即使电源电压Vc交流变动,也可得到该功率放大装置的放大率也不受影响,防止起因于此的输出交流信号的失真的有利效果。通过该电源电压的直流成分Ec的增益的减小,可使流过驱动功率放大装置内的负载的各开关电路的电流的有效值变小,得到谋求消耗功率的减小的效果。此外,由于可变由高端开关与低端开关之间的串联构成的开关电路中的电源电压Vc的直流成分Ec,因此可高效率调整功率放大装置的放大率。
进一步,通过稳定化电源部等供给电源的情况下,通过将用于使输出电压稳定化的反馈的检测电压限于其直流成分,为了按照只使电源电压的直流成分稳定化,在交流信号频域中不稳定化的方式构成,不吸收出现于驱动随着功率的再生的负载时产生的电源的再生功率的电源电压的脉动,可再利用该功率。因此,作为整体,可得到大幅降低消耗功率的效果。


图1A是本发明的实施方式1中的功率放大装置的电路构成图。
图1B是本发明的实施方式1中的运算电路的电路构成图。
图2是本发明的实施方式2中的功率放大装置的主要部分的电路构成图。
图3是本发明的实施方式3中的功率放大装置的主要部分的电路构成图。
图4A是现有的输出放大装置的输出交流信号波形的动作仿真特性图。
图4B是本发明的功率放大装置中的电源电压变动补偿动作的输出交流信号波形的动作仿真特性图。
图5是本发明的功率放大装置中的运算电路的另一例的电路构成图。
图6A是现有的功率放大装置的电路构成图。
图6B是图6A的功率放大装置的三角波产生电路与PWM电路的输出特性图。
图7A是现有的功率放大装置的电路构成图。
图7B是图7A的功率放大装置的输出特性图。
图8是现有的功率放大装置的电路构成图。
图9A是表示图8的功率放大装置的输出电压波形(Vo)的图。
图9B是表示图8的功率放大装置的输出电流波形(Io)的图。
图9C是表示图8的功率放大装置的电源电流波形(Ic)的图。
具体实施例方式
以下,参照附图,通过优选的实施方式,详细说明本发明的功率放大装置。
(实施方式1)在图1A中,表示实施方式1的功率放大装置的功率构成图。
功率放大电路包括第1以及第2开关电路11、12,和控制这些开关电路的动作的控制电路15。控制电路15具有分别驱动第1以及第2开关电路11、12的第1以及第2驱动电路51、52,检测电源电压Vc、输出规定电压的运算电路20,和脉宽控制电路40。
第1开关电路11包括从直流电源10供给电源电压、作为H形桥式构成开关电路的一方的N沟道MOSFET的第1高端开关111与第1低端开关112。同样,第2开关电路12包括作为N沟道MOSFET的第2高端开关121与第2低端开关122。在第1开关电路11的输出端子即第1高端开关111与第1低端开关112之间的连接点X,与第2开关电路12的输出端子即第2高端开关121与第2低端开关122之间的连接点Y之间,连接电感线圈13与负载14的串联电路。信号源16是输入交流信号Vi的产生源。
本实施方式的构成与图6A的现有技术的构成的不同点在于,控制电路15具备运算电路20,和将运算电路20的输出电压作为振幅、产生三角波电压Vt的三角波产生电路30。
运算电路20如图1B所示,按照如下所述方式构成从电源电压Vc检测出其直流成分Ec,将其直流成分Ec与电源电压Vc之间的比率(Vc/Ec)与三角波产生电路30的三角波信号的基准振幅(规定电压Et)相乘,输出所得到的振幅。
脉宽控制电路(PWM电路)40是将输入交流信号Vi的振幅转换为脉宽的电路,用比较器41对由三角波产生电路30产生的三角波电压Vt与输入交流信号Vi进行比较,将其结果作为M1输出,此外输出将该结果用反相器42反相后的M2。
第1驱动电路51由输入信号M1并驱动第1高端开关111的放大器511,和输入信号M1并驱动第1低端开关112的反相放大器512构成。第2驱动电路52由输入信号M2并驱动第2高端开关121的放大器521,和输入信号M2并驱动第2低端开关122的反相放大器522构成。
以下,说明实施方式1的功率放大装置的动作。
三角波电压Vt的振幅Vtc是通过运算电路20将规定的电压值Et与电源电压Vc和其直流成分Ec之间的比率(Vc/Ec)相乘的值,由下式表示。
Vtc=(Vc/Ec)·Et ...(7)由此,在本实施方式中,将三角波电压Vt的振幅Vtc的值作为将规定的电压值Et与电源电压Vc和其直流成分Ec之间的比率(Vc/Ec)相乘的值而使用。在此,规定的电压值Et是作为用于生成没有进行调制时的三角波电压的振幅电压的基准的电压值,是三角波的振幅控制中的调整灵敏度。即(7)式意味着将电源电压Vc和其直流成分Ec之间的比率(Vc/Ec)与调整灵敏度相乘。
输入交流信号Vi与三角波电压Vt,由比较器41进行比较,变为作为该比较器41的输出的信号M1,还有从反相器42,输出信号M1的反相信号M2。在三角波电压Vt比输入交流信号Vi的瞬时值小、Vt(t)<Vi(t)时,信号M1变为高电平。信号M1的周期T中的高电平的期间的比例(占空比)δ,由下式表示。
δ=(1+Vi/Vtc)/2 ...(8)第1开关电路11,根据信号M1接通、断开第1高端开关111,根据信号M1的反相信号接通、断开第1低端开关112。即第1高端开关111与第1低端开关112交替接通、断开。另一方面,第2开关电路12,根据反相信号M2接通、断开第2高端开关121,根据信号M2的反相信号接通、断开第2低端开关122。即第2高端开关121与第2低端开关122的开闭动作进行与第1开关电路11相反的动作。
因此,在信号M1为高电平的期间,输出端子x被施加电源电压Vc,输出端子y成为零电位,另一方面,在信号M1为低电平期间,输出端子x为零电位,在输出端子y上被施加电源电压Vc。以上所述的转换动作由三角波电压Vt的周期T重复。还有,该周期T被设定为很短到可忽略输入交流信号Vi的变动的程度。
一方的输出端子X的平均电位Vx以及另一方的输出端子y的平均电位Vy,如果采用信号M1的占空比δ,则成为Vx=δ·Vc,Vy=(1-δ)·Vc。
通过电感线圈13的平滑作用,在负载14的两端产生平均电位Vx与平均电位Vy之间的差电压。负载14的两端电压,即输出交流信号Vo由在上述的“背景技术”中所示的(2)式表示。
Vo=Vx-Xy=(2δ-1)·Vc ...(2)在此,若将(8)式代入该(2)式,则可得到Vo=(Vc/Vtc)·Vi...(9)进一步若将(7)式代入该(9)式,则可得到Vo=(Ec/Et)·Vi ...(10)根据上述(10)式,功率放大装置的增益成为电源电压Vc与三角波信号的规定振幅Et的比(Ec/Et)。因此,即使电源电压Vc变动,若直流成分Ec不变动,则输出交流电压Vo也不受其影响。由此,在本实施方式的构成中,设置从电源电压Vc区别直流成分的低通型滤波器(LPF)等的机构,由此将补偿电源电压的变动的频带集中在脉动成分等的信号频域,边补偿起因于电源电压Vc的交流变动量的输出交流信号Vo的失真,边容许直流成分Ec的变动即增益的可变。
因此,由于可改变施加在H形桥式构成的开关电路的电源电源Vc的直流成分Ec,因此本实施方式的功率放大装置变为可调整放大率。如上所述,由对负载14的供给电流或来自负载14的再生电流所引起的直流电源10的电压值Vc的交流的变动,也可边补偿由此带来的输出交流信号Vo的失真,边增减放大率。
(实施方式2)图2表示实施方式2中的功率放大装置的主要部分的电路构成图。在图2中,对与在图1中所示的实施方式1的功率放大装置相同的构成要素付与相同符号,进一步由于PWM电路40以后的驱动电路51、52、H形桥式构成的开关电路11、12以及负载电路14等与图1的情况实质相同,因此省略。与图1的构成不同的点在于,代替直流电源10,由所谓的直流-直流转换的升压转换器(converter)(DC-DC转换器)100,对电池101的电压进行升压转换,供给电源电压Vc。此外,还有详细表示了运算电路20以及三角波电压产生电路30的各构成这一点。进一步,运算电路20的三角波发生电路30的三角波的振幅的控制是,与图6A、图6B及图7A、图7B那样的现有的功率放大器相同,即通过使三角波电压的最大振幅值与电源电压Vc成比例,由直流区域对脉冲调制部的调制灵敏度进行补偿的控制。
以下,说明本实施方式的功率放大装置的动作。
升压转换器100,由与电池101并联的电感线圈102与开关103的串联电路,和与开关103并联的二极管104与电容器105的串联电路,和由规定的接通、断开比驱动开关103的控制电路106构成。基准电压Vr输入给控制电路106,控制开关103的接通、断开以使输出电压Vc与该基准电压Vr相等。该升压转换器100,由开关103的接通动作,将磁能储存在电感线圈102中,由开关103的断开动作,通过二极管104将电感线圈102的磁能向电容器105放出。该电容器105的电压,作为H形桥式构成开关电路的电源Vc被施加。
运算电路20由下述部分构成供给电容器105的电压Vc的可变电阻器201与电阻202的串联电路;反馈连接电阻203并进行反相放大器的动作的运算放大器204;和将可变电阻器201与电阻202的连接点电位平均化,输出直流成分Ea的由电阻205与电容器206构成的低通滤波器。
在此,可变电阻器201具有电阻值(VR),此外,电阻202与电阻203是分别具有相等电阻值(R20)的电阻。此外,运算放大器204由于放大率充分大并由电阻203进行负反馈,从而其正负各输入端子间的电位差大致为零,因此电阻202与电阻203的连接点电位变为零电位(地电位)。因此,可变电阻器201与电阻202之间的连接点电位Va成为由可变电阻器201与电阻202分压电源电压Vc后的值,由下式表示。
Va=Vc·R20/(VR+R20)...(11)电阻202与电阻203之间的连接点电位是零电位,此外,由于电阻202与电阻203分别具有相等的电阻值(R20),因此运算放大器204的输出端子的电位成为(-Va)。
另一方面,由电阻205以及电容器206构成的低通滤波器,对可变电阻器201与电阻202的连接点电位Va进行平均化,输出其直流成分Ea,向升压转换器100内的控制电路106供给。可变电阻器201与电阻202之间的连接点电位Va的直流成分Ea与电源电压Vc中的直流成分Ec成比例,由下式表示。
Ea=Ec·R20/(VR+R20) ...(12)升压转换器100进行负反馈控制,以使分压输出电压Vc,除去其脉动成分后的连接点电位Va的直流成分Ea的值成为内部的基准电压Vr,按照使(12)式的Ea的值成为Vr那样在输出电压Vc的大小中感应出。由于包括这种升压转换器的稳定化电源电路中的负反馈,一般扩大其稳定化的频域,因此不具备低通滤波器。但是,在本申请中,在负反馈的路径中具备低通滤波器(205、206),因此将稳定化的频域集中在直流域,以使在被放大信号的频域中不进行负反馈。不进行这种负反馈的频域的电源电压Vc,虽然起因于负载变动而使脉动增加,但这种增加是处理上述那种失真补偿而处理的。
根据(11)式和(12)式,由下式得到Va。
Va=(Vc/Ec)·Ea...(13)在上式中,如下所述,Va是供给由三角波产生电路30产生的三角波振幅的电压,Ea是供给该三角波振幅的基准的电压。在此,如果假设Ea为三角波振幅控制中的调制灵敏度,则(13)式表示将调制电压比(Vc/Ec)与调制灵敏度相乘。此外,也可将Va作为三角波振幅控制中的调制灵敏度,在这种情况下,变为使调制灵敏度与电源电压Vc成比例。
三角波电压产生电路30由两个比较器301、302,触发器303,和连接电阻304与电容器305、进行模拟积分器的动作的运算放大器306构成,运算放大器306的输出成为三角波电压Vt。触发器303被置位,且其输出变为正的一定电压时,由运算放大器306构成的积分器对该电压进行积分,其结果输出Vt直线下降。反过来,触发器303被复位,且其输出变为负的一定电压时,输出Vt直线上升。在此,在该输出Vt的上升中,如果输出Vt超过可变电阻器201与电阻器202之间的连接点电位(+Va),则由比较器301置位触发器303,输出Vt开始下降。若输出Vt变为运算放大器204的输出端子的电位(-Va)以下,则由比较器302复位触发器303。
因此,输出Vt成为在两个电位(±Va)间增减的三角波电压,如(11)式所示,其振幅成为与电源电压Vc成比例的值。该三角波电压Vt与输入交流信号Vi由比较器41进行比较,与实施方式1的情况相同信号M1的周期T中的高电平的期间的比例δ(占空比)由下式表示。
δ=(1+Vi/Va)/2 ...(14)进一步,输出交流信号Vo使用占空比δ与电源电压Vc,由下式表示,也与实施方式1相同。
Vo=(2δ-1)·Vc ...(15)如果将(14)式代入(15)式,则可得到Vo=(Vc/Va)·Vi ...(16)如果将(13)式代入(16)式,则可得到
Vo=(Ec/Ea)·Vi...(17)即输出交流信号Vo成为将输入交流信号Vi放大(Ec/Ea)倍的电压。
由17式还可知,本实施方式的功率放大装置的放大率由H形桥式构成开关电路的电源电压Vc的直流成分Ec与作为升压转换器100的检测电压的直流电压Ea之间的比(Ec/Ea)表示。因此,即使电源电压Vc变动,若直流电压Ea不会变动,则输出交流电压Vo也不受其影响。由此,在本实施方式的构成中,设置从电源电压Vc区别直流成分的机构,由此将补偿电源电压的变动的频带集中在脉动成分等的信号频域,达到容许直流成分的变动。
由(12)式可知,升压转换器100,虽然与基准电压Vr对应按照稳定化直流电压Ea的方式进行动作,但另一方面通过可变电阻器201的电阻值VR,H形桥式构成开关电路的电源电压Vc的直流成分Ec可变。在本实施方式中,负反馈的路径中具备低通滤波器,将稳定化的频带集中在直流域,在被放大信号的频域中不进行负反馈。即在本实施方式的功率放大装置中,由可变电阻器210可调整放大率(Ec/Ea)。并且即使由对负载14的供给电流或来自负载14的再生电流,作为升压转换器100内的电容器105的端子电压的电源电压Vc交流变动,也对该功率放大装置的放大率没有影响,输出交流信号Vo没有失真。进一步,通过升压转换器100,由于容许对负载14的供给电流或来自负载14的再生电流所带来的电源电压Vc的变动,因此可在电源控制中减小功率消耗。
此外,在输出交流信号Vo变小的情况下,电源电压Vc中的直流成分Ec变小。由此,可使流过H形桥式构成的并联一对的两个开关电路的电流有效值变小,也可得到作为整体可大幅减小消耗功率的效果。
(实施方式3)图3表示实施方式3的功率放大装置的主要部分的电路构成。在图3中,对与图2中所示的实施方式2的功率放大装置相同的构成要素付与相同的符号,此外图2中的三角波电压产生电路30更后段的电路构成与图2的情况相同,还有图2中没有示出的PWM电路40以后的驱动电路、H形桥式构成开关电路以及负载部的构成等也与图1的情况实质相同,因此省略。运算电路20的内部构成与图2的电路构成不同。
以下,说明图3中所示的本实施方式的功率放大装置的动作。
升压转换器100,在电池101的两个端子间连接电感线圈102与开关103的串联电路,开关103还与二极管104和电容器105的串联电路并联。
该升压转换器100,由开关103的接通动作将磁能储存在电感线圈102中,由开关103的断开动作将电感线圈102的磁能通过二极管104向电容器105放出,将该电容器105的两端子间电位作为H形桥式构成开关电路的电源电压Vc输出。
此外,开关103由控制电路106以规定的接通、断开比驱动。控制电路106具有误差放大器108和PWM电路109,误差放大器108在其负极输入端子上接收检测电压Es,在正极输入端子上接收来自电压源110的一定值的基准电压Vr。并且,由该控制电路106调整开关103的接通、断开,以使上述检测电压Es与上述基准电压Vr相等。
运算电路20首先构成放大电路,该放大电路具有检测电源电压Vc的电阻210、电流值(I11)的恒流源211、流过恒流源211的电流(I11)的电阻212以及PNP晶体管213、在恒流源211与电阻212之间的连接点上连接基极端子并供给第1电流(电流值I1)的NPN晶体管214、供给第1电流(电流值I1)的二极管连接的NPN晶体管215以及在NPN晶体管215上由电流镜构成耦合的一对NPN晶体管216、217。
即在增加了电源电压Vc的情况下,通过电阻210,晶体管213的基极电位上升,因此其发射极电位也上升。同样,虽然在该节点连接基极端子的晶体管214的发射极电位也上升,但由于其发射极端子通过二极管连接的晶体管215接地,因此电位上升较小,集电极电流增加。晶体管215是电流镜的输入,其集电极电流的增加表现为晶体管216的集电极电流的增加,使电阻210的通过电流增加,使其电压降增加,进行抑制晶体管213的基极电位的上升的负反馈的动作。
由此,晶体管213的基极端子从动作的角度来看,是上述放大电路的假设接地点,通过增大放大电路的增益,该基极端子的电位几乎不动。从而,电阻210的功能,是通过作为输入的电源电压Vc与假设接地点电位之间的电位差除其电阻值,转换为电流的功能。
将电阻210的电阻值作为Rs,将电阻212的电阻值作为R212,各晶体管的基极、发射极间电压,在Vbe记号后付与其晶体管号码的后两位进行说明。首先,PNP晶体管213的基极端子的电位是,Vbe15+Vbe14-I11·R212-Vbe13。
另一方面,根据流过NPN晶体管216的电流(与第1电流I1等价)所引起的电阻210的电压降,该电压表示为,Vc-I1·Rs由于各基极、发射极间电压是相近的值,因此如果将该值表示为Vbe,则第1电流I1可近似由下式表示。
I1=(Vc-Vbe+I11·R212)/Rs在此如果设为I21·R212≈Vbe,则变为I1≈Vc/Rs ...(18)第1电流I1得到与电源电压Vc大致成比例的值。
运算电路20接下来,具有接受第1电流I1,再供给该电流的电流镜构成的各NPN晶体管218、219、220、恒流源221以及基极端子与该恒流源221连接的NPN晶体管222。还有,在NPN晶体管222的集电极端子上连接PNP晶体管219的集电极端子,此外,NPN晶体管223以及NPN晶体管229的各基极端子也分别连接。进一步,NPN晶体管222的基极端子和恒流源221与该NPN晶体管223的发射极连接,流过恒流It。在该构成中,在此如果流入晶体管223的基极端子的节点的电流增加,则该节点电位上升,使晶体管223的发射极电位与晶体管222的基极电位上升。于是,晶体管222的集电极电流增加,抑制最初的晶体管223的基极端子的接点的流入电流的增加,最终流入电流平衡在大致与晶体管222的集电极电流相等的点,在与流入该节点的电流相对应的晶体管223的基极电位稳定。
进一步,运算电路20,在PNP晶体管220的集电极端子上连接电容器224,还通过电阻225连接二极管连接的NPN晶体管226。该PNP晶体管220的集电极电流是电源电压Vc除电阻210的Rs后的电流I1,虽然该电流I1是由电阻225以及二极管连接晶体管226的动电阻被转换为电压,但由于其变动量迂回于电容器224中并流动,因此在二极管连接晶体管226中流过被平滑化的直流成分的电流I2。由于该NPN晶体管226的集电极端子成为电流镜的输入端子,因此NPN晶体管227以及NPN晶体管228的各集电极端子中分别出现该直流成分的电流I2。由于该NPN晶体管227的集电极端子与NPN晶体管229的发射极端子连接,因此其电流I2成为晶体管229的发射极电流。该晶体管229的发射极端子还与NPN晶体管230的基极端子也连接。该NPN晶体管230的集电极端子与作为二极管连接的电流镜的输入的PNP晶体管231连接,流过作为NPN晶体管230的集电极电流的电流I3。出现于作为该电流镜的输出的PNP晶体管232的集电极端子的电流I3导入由与实施方式2的图2的运算电路20相同的电阻202、电阻203以及运算放大器204构成的反相放大器。
接着,说明该运算电路20的动作。与电源电压Vc成比例的第1电流I1,成为其集电极电流并流过NPN晶体管222的基极、发射极间电压Vbe22由下式表示。
Vbe22=(k·T/q)·In(I1/Is) ...(19)式中,K波尔兹曼常数,T绝对温度,q电子电荷,Is基极、发射极二极管的逆方向饱和电流。
同样,恒流源221的电流It成为其集电极电流并流过的NPN晶体管223的基极、发射极间电压Vbe23,以及作为第1电流I1的直流成分的第2电流I2成为其集电极电流并流过的NPN晶体管229的基极、发射极间电压Vbe29分别由下式表示。
Vbe23=(k·T/q)·ln(It/Is) ...(20)Vbe29=(k·T/q)·ln(I2/Is) ...(21)还有,由于流过作为NPN晶体管230的集电极电流的第3电流I3,因此该NPN晶体管230的基极、发射极间电压Vbe30由下式表示。
Vbe30=(k·T/q)·ln(I3/Is) ...(22)在此,流过电源电压Vc除以电阻210的Rs后的电流I1电流的晶体管223的基极端子的节点电位,在电路构成上可由以下的(23)式表示。即由于左边NPN晶体管222的发射极端子接地,NPN晶体管223的发射极端子还与该基极端子连接,因此该基极端子的电位成为串联该两晶体管的基极、发射极间电压后的大小。同样,右边也成为串联NPN晶体管230与NPN晶体管229的基极、发射极间电压后的大小。由上述的动作原理可知,该晶体管223的基极端子的节点电位由左边侧的电流I1以及电流It决定其值,其结果右边与此对应生成根据电流I2的电流I3。因此,得到Vbe22+Vbe23=Vbe29+Vbe30 ...(23)如果将(19)~(22)式逐次代入(23)式,则作为第3电流I3,可得到下式I3=I1·It/I2=(I1/I2)·It ...(24)第1电流I1与电源电压Vc成比例,第2电流I2是第1电流I1的直流成分,因此在将电源电压Vc中的直流成分作为Ec时,成为I2=Ec/RsI1/I2=Vc/Ec如果第3电流I3用电源电压Vc与其直流成分Ec之间的关系来表示,则可得到I3=(Vc/Ec)·It...(25)该第3电流I3通过PNP晶体管231与PNP晶体管232的电流镜,流过电阻202。由于电阻202、电阻203与构成反相放大器的运算放大器204均放大率充分大,因此电阻202与电阻203的连接点电位成为零电位。因此,如果将电阻202的电阻值作为R20,则电阻202的电压降成分(电位差)Va可由下式表示。
Va=I3·R20=(Vc/Ec)·It·R20 ...(26)式中,(It·R20)是供给由三角波产生电路30产生的三角波的振幅的基准电压的电压值,即调制灵敏度。因此,(26)式表示将电压比(Vc/Ec)与调整灵敏度相乘的值。电压Va是向三角波产生电路30输入的信号电压(参照图2)。
此外,由于将电阻202以及电阻203设定为相同的值,因此运算放大器204的输出端子的电位成为(-Va),对三角波产生电路30供给±Va=±(Vc/Ec)·It·R20作为其输出信号,产生从(+Va)到(-Va)的电位间振动的三角波电压Vt。
实施方式3是实施方式1与实施方式2的组合方式。并且,该三角波电压Vt与输入交流信号Vi与实施方式2的图2相同,由比较器41进行比较,信号M1的周期T中的高电平的期间的比例δ(占空比)由下式表示,δ=(1+Vi/Va)/2 ...(14)并且,输出交流信号Vo使用占空比δ与电源电压Vc,由下式表示。
Vo=(2δ-1)·Vc ...(15)如果将(14)式代入(15)式,则与实施方式1的情况相同也可得到Vo=(Vc/Va)·Vi ...(16)接着,如果将(26)式代入(16)式,则得到Vo=(Ec/(It·R20))·Vi...(27)即输出交流信号Vo成为将输入交流电压Vi放大(Ec/(It·R20))倍的电压。
在本实施方式中,在运算电路20中,成为电流镜输入的二极管连接的PNP晶体管233与NPN晶体管228的集电极端子连接,流过作为NPN晶体管228的集电极电流的电流I2。并且,从作为该电流镜输出的PNP晶体管234的集电极输出作为该电源电压Vc除电阻210的Rs后的电流I1的直流成分的电流I2,该电流流过电阻235。在将电阻235的电阻值作为R35时,产生于该电阻235的电压Es变为Es=Ec·(R35/Rs) ...(28)将该电压Es施加在升压转换器100的误差放大器108的负极输入端子上。与实施方式2的图2相同,由于升压转换器100由该控制电路106进行动作以使检测电压Es与基准电压Vr相等,因此作为升压转换器100的输出电压的电源电压中的直流成分Ec由下式表示。
Ec=Vr·(Rs/R35) ...(29)本实施方式的功率放大装置的放大率如(27)式所示,由H桥式构成开关电路的电源电压Vc中的直流成分Ec、恒流It和电阻值R20构成的(Ec/(It·R20))表示。
因此,升压转换器100,通过可变基准电压Vr或电阻202的电阻值R20等,可改变H桥式电源电压Vc中的直流成分Ec,其结果可调整本实施方式的功率放大装置中的放大率。并且,即使由向负载14的供给电流或来自负载14的再生电流,使作为升压转换器100的电容器105的电压的电源电压Vc交流变动,也对该功率放大装置的放大率没有影响,输出交流信号Vo没有失真。
根据上述构成,在可进行电源电压Vc的增益控制,将电源电压Vc变小且将增益变小的情况下,由于可将流过H形桥式构成开关电路的电流的有效值变小,并且升压转换器也抑制其输出,因此作为整体可谋求消费功率的大幅减小。
在实施方式2中所详细叙述的功率放大装置中,由包括可变电阻的多个电阻构成的分压机构检测出电源电压Vc,由于在采用该电压生成三角波电压Vt的同时,进一步通过低通滤波器将该电压作为对电源电压Vc进行稳定化控制的电源部的负反馈控制的检测信号使用,因此电源电压Vc中的直流成分Ec即使将可变电阻器201的电阻值VR作为最小值零,也不能比三角波电压Vt的振幅的直流成分Et小。对此,在本实施方式的功率放大装置中,运算电路20独立并从电源电源Vc得到三角波电压Vt,并且通过低通滤波器,输出分压电源电压Vc中的直流成分Ec后的电压,升压转换器通过将该电压与基准电压Vr进行比较,调整电源电压Vc中的直流成分Ec。因此,电源电压Vc中的直流成分Ec从理论的角度来看可调整为比零大的任意的电压值。
图4A、4B是对本实施方式的功率放大装置中的补偿由电源电压Vc的变动所引起的输出交流信号Vo的失真的效果进行仿真的特性图。
在图4A中,从电压值5伏的恒压源,通过二极管与100Ω的电阻,将电容值0.47μF的电容器作为电源。该构成模拟由一般的稳定化电源进行功率的流动从输入到输出的一方通行。图4B表示在将负载作为电容值0.27μF的电容器、将输入交流信号Vi作为在2.5kHz具有有效值0.7伏(Vrms)的正弦波、将三角波电压Vt作为在250kHz1伏(V)的振幅的情况下的电源电压Vc以及输出交流信号Vo的各波形。在电源电压Vc中,由峰-峰间电压产生约0.5伏(Vpp)的变动,因此输出交流信号Vo的失真率为4.2%。图4B虽然表示与图4A相同条件的特性,但也表示在本实施方式的功率放大装置中实施该失真补偿的情况下的电源电压Vc与输出交流信号Vo的各波形。虽然在电源电压Vc中产生约0.7伏(Vpp)的变动,但将输出交流信号Vo的失真率改善到1.0%以下。
在以上的实施方式1至3中,在实施方式1中电源电压Vc的变动的失真补偿操作使用电源电压Vc与其的直流成分的两个信号,将失真补偿的频域作为交流信号的频域,将低于该频带的频带使用于功率放大装置的增益的加减用的电源电压操作中。
在实施方式2中,还具备生成电源电压Vc的稳定化电源,将用于进行稳定化控制的负反馈集中在直流成分,减弱交流信号域的稳定化控制。由此,在驱动伴随再生的负载时防止由返回到电源部的功率所带来的外扰,通过对电源部的输出暂时存储再生功率而提高效率。进一步,通过连动进行这些操作,可进行增益的操作。
实施方式3是实施方式2与实施方式3组合的方式。在实施方式3中,在电源电压Vc的电源部中将用于进行稳定化控制的负反馈仅限于直流成分,因此得到驱动伴随再生的负载时的优点。此外,在失真补偿动作中采用电源电压Vc与其直流成分Ec的两个信号,对交流信号的频域进行失真补偿,将该频域以下的频域使用于功率放大装置的增益操作中。特别,在实施方式3中,由于除去电源电压Vc的交流成分后的直流成分Ec的生成,和用于电源部的稳定化控制的负反馈用信号的生成,采用相同的LPF,因此电源部允许通过再生功率等进行变动的边界频率和由脉冲调制部的电源电压Vc变动的失真补偿的边界频率相同,在该边界频率以下的频域中,也可进行放大装置的增益控制。这些边界频率可被适当地设定,以使电源电压变动的失真补偿和实施电源电压的稳定化的频域适当,从动作原理上来看可知边界频率并不限定于上述值。
(变形例)在实施方式1到3中,虽然任一个都将三角波电压Vt的振幅Vtc作为Vtc=(Vc/Ec)·Eta或Vtc=(Vc/Ec)·Et,说明进行电源电压补偿的例子,但是将该三角波电压Vt的振幅Vtc作为固定值,将比率(Ec/Vc)乘以输入交流信号Vi也可得到同样的效果。即如果将电压比(Ec/Vc)乘以(9)式,则可得到下式。
Vo=(Vc/Vtc)·Vi·(Ec/Vc)
=(Ec/Vtc)·Vi根据上式,可知边从输出交流信号Vo除去电源电压Vc的变动量,边由电源电压Vc的直流成分Ec调整放大率。还有,输入交流信号也可是电流。
此外,在上述的实施方式中,虽然着重于三角波的振幅控制中的调制灵敏度进行了说明,但调制灵敏度并不限于此。即如果考虑调制三角波的振幅控制,则可知控制其振幅与加减调制灵敏度相等。因此,从电源电压Vc抽出其直流成分Ec,将比率(Vc/Ec)乘以调制灵敏度(振幅)的本发明的思想,可广泛适用于输入输出信号的关系满足下式的关系,具有调制灵敏度“A”的功率放大装置。
Vo=(Vc/A)·Vi ...(30)此外,也可适用于在输入输出的维数不相同的情况下,例如在由下式表示那样的输入交流信号不是电压而是电流Ii的情况下。
Vo=(Vc/A)·Ii ...(31)根据上式,从电源电压Vc抽出其直流成分Ec,将(Vc/Ec)乘以调制灵敏度或者,将(Ec/Vc)乘以输入交流信号Vi的本发明的思想也可广泛适用于输入输出信号的关系由(30)、(31)式表示的功率放大装置中。例如,如果将比率(Ec/Vc)乘以(30)式的Vi,则可得到下式。
Vo=(Vc/A)·Vi·(Ec/Vc)=(Ec/A)·Vi ...(32)根据上式,可知从输出交流信号Vo除去电源电压Vc的变动量,同时可由电源电压Vc的直流成分Ec调整放大率。图5表示用于将比率(Ec/Vc)乘以输入信号Vi的构成。在该图中,运算电路20b按照下述方式构成检测出电源电压Vc的直流成分Ec,将电源电压Vc和直流成分Ec的比率(Ec/Vc)与输入信号Vi相乘。
此外,在上述的实施方式中,虽然对本发明的适用于所谓的BTL方式或H形桥式构成的各功率放大装置进行了说明,但本发明也可适用于这些构成以外的构成。
例如,也可适用于下述结构,该结构只由包括一对高端开关与低端开关的串联电路的开关电路和在其中间连接的负载部构成。
如果将高端开关的占空比作为δ,则产生于负载部的电压Vx成为
Vx=δ·Vc另一方面,占空比δ使用输入交流信号Vi与三角波电压Vt的振幅Vtc,由下式表示。
δ=(1+Vi/Vtc)/2如果本发明适用于这种情况,则由于三角波电压Vt的振幅Vtc是将规定的电压值Et乘以电源电压Vc与其直流成分Ec的比率(Vc/Ec)的值,因此可由下式表示。
Vtc=(Vc/Ec)·Et根据上述,电压Vx由下式表示。
Vx=Vc/2+(Ec/Et)·Vi/2通过从电压Vx减去电源电压Vc的1/2的电压Vc/2,作为输出交流信号Vo得到如下式那样的将输入交流电压Vi放大到{(Ec/Et)/2}倍的电压。
Vo=(Ec/Et)·Vi/2根据上式,通过可改变电源电压Vc中的直流成分Ec可调整放大率。此外,即使交流变动电源电压Vc,也不影响放大率,输出交流信号Vo没有失真。
由此,本发明并不限于由双对的开关电路构成的BTL方式,也可适用于由一对开关电路构成的功率放大装置。
进一步,本发明可适用于所有功率放大装置中,该功率放大装置具有由高端开关与低端开关串联构成的开关电路,具备通过该开关电路,将电源电压间断或者脉冲式地外加在负载上,其放大率与上述电源电压成比例的D级放大功能。即除了采用本实施方式中所述的那种三角波,对模拟的输入信号进行脉宽调制以外,也可由西格玛-德尔塔(sigma-delta)调制器等对模拟信号或数字信号的输入信号进行脉冲密度调制或脉宽调制。
本发明虽然对特定的实施方式进行了说明,但本行业的技术人员可知其他的更多的变形例、修正以及其他利用。因此,本发明并不限于这里的特定的公开,可只由添加的请求范围限定。
还有,本申请与日本国专利申请、特願2002-331898号(2002年11月15日提出)相关,通过参照其内容,而可以组合入本文中。
工业上的可利用性本发明的功率放大装置作为将音频信号等功率放大并供给扬声器等的功率放大装置有用。
权利要求
1.一种功率放大装置,其特征在于,具备开关部,其包括被供给电源电压的高端开关与低端开关的串联电路;和控制部,其用于与输入交流信号Vi对应并以设定了规定的接通、断开期间比的周期使所述开关部进行动作,驱动连接于所述高端开关与所述低端开关的连接点之间的负载,所述控制部,具有脉冲调制部,其输入所述输入交流信号Vi,从其输入交流信号Vi由规定的调制灵敏度生成脉冲信号并输出;运算部,其从所述电源电压Vc检测出其直流电压成分(Ec),将电源电压值(Vc)对所述直流成分(Ec)的比(Vc/Ec)与所述调制灵敏度相乘,或者将所述直流成分(Ec)对所述电源电压值(Vc)的比(Ec/Vc)与所述输入交流信号Vi相乘;和驱动部,其基于所述脉冲信号驱动所述开关部。
2.根据权利要求1所述的功率放大装置,其特征在于,所述开关部是将两个高端开关与低端开关的串联电路并联连接的全电桥构成,在各串联电路中的高端开关与低端开关的连接电间连接所述负载。
3.根据权利要求1所述的功率放大装置,其特征在于,进一步具备可控制所述直流电压成分的稳定化电源部,从该稳定化电源部供给所述电源电压。
4.根据权利要求3所述的功率放大装置,其特征在于,所述稳定化电源部控制所述电源电压的直流成分,具备调整作为所述输入交流信号Vi对输出交流信号Vo之比的信号放大率的功能。
5.根据权利要求4所述的功率放大装置,其特征在于,所述运算部具有实质地连接于所述开关部的两端的、包括可变电阻器的多个电阻器的串联电路;和连接于设置在比所述可变电阻器更低电位侧的所述电阻器间的第1连接点的低通滤波器,所述脉冲调制部具有三角波电压产生电路,其分别输入设置于比所述可变电阻器更低电位侧的所述电阻器间的第2连接点的电位与所述第1连接点的电位,产生将所述第1连接点与所述第2连接点之间的电位差作为振幅的三角波电压,对所述三角波电压与所述输入交流信号进行比较,生成脉冲信号,所述稳定化电源部,为了控制电源电压的直流成分Ec,控制所述低通滤波器的输出电压。
6.根据权利要求1所述的功率放大装置,其特征在于,所述运算部将所述比率(Vc/Ec)与规定电压相乘并输出,所述脉冲调制部,具有产生将所述运算部的输出电压作为振幅的三角波电压Vt的三角波电压产生电路,将所述三角波电压Vt与所述输入交流Vi进行比较,生成脉冲信号。
7.根据权利要求6所述的功率放大装置,其特征在于,所述运算部具有第1电流源电路,其产生与所述电源电压Vc对应的第1电流;第2电流源电路,其产生从所述第1电流通过所述低通滤波器得到的第2电流;恒流源电路,其供给规定的电流;第1晶体管,其将所述第1电流作为集电极电流流过;第2晶体管,其将所述第2电流作为集电极电流流过;第3晶体管,其将所述恒流作为集电极电流流过;和第4晶体管,所述第1晶体管与所述第3晶体管被连接以使各自的基极—集电极电压相加;所述第2晶体管与所述第4晶体管被连接以使各自的基极—集电极电压相加;进一步,各个的晶体管被连接以使两方的相加电压相等,输出与流过所述第4晶体管的集电极电流对应的电压。
8.一种功率放大装置,其特征在于,由乘以电源电压Vc对被供给的电源电压Vc的直流成分电压值Ec的比率(Vc/Ec)后的调制灵敏度调制输入交流信号而得到的脉冲信号,驱动开关。
9.根据权利要求8所述的功率放大装置,其特征在于,由与输入交流信号和三角波电压的比较结果相对应的脉冲信号,驱动开关,将规定的电压与电源电压Vc对电源电压Vc的直流成分Ec的比率(Vc/Ec)相乘后的电压作为所述三角波电压的振幅。
10.一种功率放大装置,其特征在于,由与被供给的电源电压Vc相对的、乘以该电源电压Vc的直流电压成分Ec的比率(Ec/Vc)后的输入交流信号所对应的脉冲信号,驱动开关。
全文摘要
将音频信号等的输入交流信号高效率地进行功率放大的转换型的功率放大装置,具有供给电源电压Vc的第1开关电路(11)以及第2开关电路(12);连接在这些开关电路间的电感线圈(13)以及负载(14);和接收输入交流信号Vi设定规定的接通、断开期间比、驱动各开关电路的控制电路(15)。控制电路(15)具备运算电路(20),其将电源电压Vc与其直流成分比Ec之间的比率(Vc/Ec)与调制灵敏度(例如,生成驱动开关电路的脉冲信号时的三角波电压的振幅)相乘并输出。根据该构成,补偿再生功率等的电源电压的脉动变动的失真,此外可调制电源电压的放大率。
文档编号H03F1/02GK1711678SQ200380103239
公开日2005年12月21日 申请日期2003年11月6日 优先权日2002年11月15日
发明者石井卓也, 池田雅春, 明石裕树 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1