数字控制式ac保护及衰减电路的制作方法

文档序号:7520659阅读:574来源:国知局
专利名称:数字控制式 ac 保护及衰减电路的制作方法
技术领域
本发明涉及用于敏感负载(sensitive load)的保护及衰减电路。更具体地,本发明涉及针对被设计用于保护敏感AC负载的应用所优化的低成本、高效、数字控制的AC保护及衰减电路。
背景技术
通常期望(尤其是当经常以或接近额定负载电压或电流运行时)保护敏感负载使其免受过高的AC电压、电流、频率、温度、机械极限、或可能导致对负载造成永久损坏的其他情况。还期望使容许AC电压和电流经过负载而没有显著的衰减、失真、滤波。由于被AC 电源驱动的负载的多样性,电压和电流保护限制变化显著,从而需要能够支持许多不同跳变阈值(trip threshold,跳闸阈值)的保护电路。扩音器由于以下事实而表现为经常以或接近其额定AC功率运行的敏感负载并对AC电源保护的技术提出了挑战扩音器换能器通常能够处理大功率电平达较短持续时间,处理降低的功率水平达较长持续时间。换句话说,过度的持续时间对于针对保护的监测是关键的;功率限制(power limiting)太快则不能充分利用换能器,而功率限制太迟将导致对换能器的永久损坏。另外,这些持续时间系数随换能器温度和环境条件而改变。保护敏感负载免受过高的AC功率可能是困难的任务,并且许多现有技术都未能在使容许电压和电流保持不变地流过的同时来充分地保护负载免受所有过度的情况。除了 AC保护,还存在着期望对已知负载供电的AC电压进行持续衰减的情况,诸如降低向扩音器供电的AC信号电平。一些扩音器应用需要AC功率衰减从而控制扩音器的输出水平。例如,考虑由以并行布线配置连接的四个扩音器组成的简单音频系统。可能出现期望降低四个扩音器之一的电平的情况。这可以是分布式多分区应用或需要调低阵列中的若干元件的线阵列应用。遗憾地是,衰减这些高功率信号是高成本的、低效的,并且导致信号劣化。持续AC衰减的另一应用是在照明调光器中。用于照明应用的现有AC衰减器已关注到标准线电压正弦曲线的衰减,即,50Hz至60Hz的120伏至240伏AC,而没有致力于解决覆盖整个音频带宽(20Hz至20Khz)的复杂信号。此外,AC调光器没有致力于与保护监测电路的结合,使得灯或负载没有受到AC过度情况的保护。被设计为保护敏感负载免受AC功率过度的现有电路已通常使用起动装置 (actuating device)和衰减装置的组合。已经结合了起动装置以在过电压或过电流情况中起动或改变导电状态,而衰减系统已经被用于衰减或降低不需要的电压或电流。一些装置由于在满足了特定条件时起动或改变电气状态以及一旦起动就引入衰减的固有能力,因此这些装置是自起动及衰减装置。自起动及衰减装置的实例是瞬态电压抑制二极管(TVS,相当于大齐纳二极管),其可以用于自整流或起动,并通过将多余电流分流至地或者中和,有效地将电压箝位于预定阈值。已经特别地开发了双向TVS 二极管用于AC或双极DC系统。 金属氧化物变阻器(通常称为MOV)是另一普遍使用的自起动及衰减装置,其与双向TVS 二极管类似地运行。遗憾地是,诸如TVS 二极管、MOV、热敏电阻等的自起动装置是不可调节的,并且起动阈值根据环境温度和/或生产公差可以有显著变化。通常在扩音器换能器保护电路中找到的另一起动及衰减装置是灯。如图2B所示,通常应用在串行配置中,灯被认为是自起动的,原因在于直到流过了足够电流时灯丝才加热(点亮)。但是,一旦建立了足够电流,灯丝发光,并且其阻抗增加,因此允许光和热形式的功率衰减/耗散。遗憾地是,灯也有许多不足,诸如灯丝损坏、插入损耗、标称最大阻抗、光输出、以及过高热生成。已经针对单独作为起动器或电路断续器的装置选择了其他保护设计,原因在于这些保护设计能够在跳闸时引入断路情况。最常见的自起动、电路断续装置是保险丝,其中, 在出现过电流情况时,特殊尺寸和成型的导体被设计为烧掉。保险丝是相对廉价并有些作用的;然而,它们被设计为具有固定的跳闸阈值,它们具有预定的响应时间,并且一旦熔断, 将永久性损毁,即,它们必须被实体地更换。对于大多数敏感负载应用,由于可能使负载遭受永久损坏的过长响应时间,因此保险丝并不可用。已经开发了专用正温度系数热敏电阻 (PTC),以解决对于保险丝或熔线来说普遍的永久损毁问题,然而它们未能解决固定阈值和响应时间问题。诸如继电器的其他起动装置,因为它们要求触发电路来控制起动,因此被认为是受控起动装置。由于易于对导致起动的电压或电流阈值进行改变或编程,因此受控起动是理想的,但是诸如继电器的许多机电起动器存在有限响应时间的问题。例如,标准功率继电器具有大约5毫秒的典型打开时间,并且在一些情况下,起动中的该延滞可能导致对敏感负载的损坏。受控起动的另一重要方面是用于控制或触发起动器的电路。在扩音器保护的技术中,控制起动器的电路已经利用非可编程组件实现,诸如电阻器、电容器、和齐纳二极管;没有致力于利用基于微处理器的装置用于起动控制。虽然非可编程起动控制电路是有效的,但是它们不允许在没有改变电路部件值(电阻器和电容器)的情况下调整阈值和时间系数。该实现方式根本上需要对跳闸阈值和时间系数的各个期望组合的不同控制电路。AC功率衰减是实现针对敏感负载的高性能保护电路的另一关键方面。一旦起动装置跳闸,则可以使用衰减装置将AC功率降低到安全水平。先前的设计已经结合了功率衰减器,该衰减器以热的形式以及在一些情况下以光能的形式来耗散不需要的功率。衰减装置可以分为可变衰减器或固定衰减器。具有恒定阻抗的电阻器可被认为是固定衰减器,而具有依赖于灯丝热的阻抗的灯可被认为是有限范围可变衰减器。用于AC功率衰减的常见装置是电阻器。功率电阻器有许多不同形状、尺寸、和结构(厚膜、绕线等),并通常封装在允许显著散热的壳中。虽然电阻衰减已经实现了期望的结果,但是缺点是明显的。过高的功率耗散要求大的、成本高的电阻器,并且在一些情况下,需要专用散热器和/或液体冷却设备来耗散热能量。在扩音器保护及衰减的技术中,电阻器和灯是针对高功率衰减的两种最常见装置;没有致力于使用晶体管化的、可编程衰减器。被设计为对驱动扩音器的AC功率信号进行连续衰减的现有电路(诸如被设计为降低分布式或线阵列系统中的信号幅度的电路)已经采用了以下两种方法之一电阻衰减或变压器电压步降。遗憾地是,这些连续衰减或步降AC功率信号的现有技术存在着数个显著问题。被设计为使用电阻衰减来衰减AC功率信号的电路有过高功率损耗的问题,从而需要产生大量热以及高成本的高功率电阻元件。可选地,使用变压器步降方法的方法受益于大大降低的损耗(通常IdB至2dB的插入损耗),但是将以下缺点引入了系统(I)由于低频磁芯导致的极大的物理尺寸和重量,(2)频率响应退化(低频滚降),(3)由于功率增大而成本升高,(4)变压器铁芯饱和问题限制了对低功率应用(通常100W以下)的有效使用,
(5)固定数量的次级绕组“抽头”(通常为4)不允许精细的幅度控制。这些问题已经普遍存在了几十年,在需要连续衰减的情况下,没有建立改进的解决方案。为了说明在许多现有AC功率保护电路中发现的不足,给出了若干实例,其中,负载是敏感的电感负载、扩音器,具有随持续时间和过度而变化的动态功率处理特性。参照图1,给出了典型的扩音器功率处理性能的两个方面所需的衰减和持续时间。典型的扩音器具有额定功率处理规格,低于该规格,换能器将在由点线44示出的没有损坏的情况下运行。左轴40对应于以分贝(dB)计的衰减值。实线42表示扩音器在没有损坏的情况下维持正常运行所需的衰减。右垂直轴46对应于以秒(sec)计的时间。虚线48表示作为以秒计的持续时间的函数的扩音器功率处理。公共的横轴50表示增大的功率。在图IA中显而易见,随着输入功率水平超过扩音器的额定功率,换能器要求增大的衰减。此外,随着输入功率增大,换能器没有损坏地运行的持续时间稳步减小。有效的保护应当力求在扩音器的额定功率处理之上提供足够衰减,并能够控制超过额定值的功率水平的持续时间。另外,有效的保护应当力求允许在扩音器额定值以下的所有功率水平未被改变地通过,即,最小的衰减、滤波、和失真。参照图2A,典型的扩音器所需的衰减和持续时间图叠加了典型的自起动、自衰减灯。灯的衰减由实线52表示,并且灯的时间响应由虚线54表示。在图2A中显而易见,灯的自起动和衰减在负载的功率处理额定值44之前,并在衰减中开始线性增加。遗憾地是, 灯的衰减达到稳定水平并显著小于负载要保持无损坏运行所需的衰减。阴影区56示出了负载会遭到比指定的额定值更多的功率的损坏区。从点线54显而易见,灯的时间响应有些快,显然比扩音器最初所需的响应时间48要快。该初始过快速度将比所需更快地箝位许多安全瞬时功率水平。然而,在极高的功率水平,灯起动和衰减时间滞后于扩音器所需的响应时间48,其允许在损坏区58中运行。灯即使在不起动或照明时,也具有标称阻抗,这导致了可测量的插入损耗。最终,灯具有最大功率额定值(在对装置过度供电时,灯丝在该额定值处被损坏),这极大地限制了结合有不具备后续灯丝保护的灯的电路的运行功率范围。图 2B中给出了单个灯、扩音器保护电路的代表性示意图。参照图2C,典型的扩音器换能器所需的衰减和持续时间图叠加典型的自起动热敏电阻(通常是正温度系数器件,PTC)。PTC衰减由实线52表示,并且达到标称衰减的时间响应由虚线54表示。从图IB中显而易见,PTC在负载的功率处理额定值44之前轻微起动, 并且衰减快速步进。在PTC未提供足够衰减的同时,快速(fast-acting)的步进衰减响应不是最佳的,并且当用于扩音器保护时容易被人耳觉察。从点线54显而易见,PTC时间响应非常慢,并且明显慢于负载所需的响应时间48。阴影区56示出了负载将遭受到比指定的额定值更长的功率持续时间的损坏区。遗憾地是,尽管选择较小的PTC器件会加快时间响应,但起动阈值通常远小于负载所需的功率额定值。另外,PTC器件将利用小量的涓流电流来保持起动,导致了不良的释放和恢复性能。PTC起动阈值还将根据环境温度而变化极大, 这极大地限制了结合了这种器件的电路的有效工作温度范围。由于这些问题,设计者要找到满足关于时间、衰减、起动阈值、和释放性能的所有期望要求的单个PTC器件有很大的困难。图2D中给出了自起动PTC扩音器保护电路的代表性示意图,其中,利用可选的固定衰减器10对PTC 12设置旁路。
参照图2E,典型扩音器换能器所需的衰减和持续时间图与非延时继电器驱动器和单个灯衰减器叠加。衰减特性(实线52)与单个灯相同;然而,灯不被允许在负载的功率额定值44以下衰减。遗憾地是,灯在较高功率水平的衰减不足仍然是一个问题,并使得在损坏区56中运行。由于在触发电路内缺少时序级,因此从点线54显而易见,继电器时间响应有些快,明显快于扩音器最初所需的响应时间48。该初始过快速度将比所需更快地箝位许多安全瞬时功率水平。然而,在极高的功率水平,继电器驱动时间滞后于扩音器所需的响应时间48,这使得在损坏区58中运行。典型的机电继电器具有5毫秒至10毫秒的响应时间, 并且在这些极高的功率水平下,敏感负载可能需要短于毫秒的保护。非延时继电器电路的总体效果对于诸如扩音器的动态敏感负载并不是最佳的保护结构。另外,典型的继电器设计遭受了起动颤振(actuation chatter),其中,当输入信号与继电器线圈阈值相交时,继电器起动并快速释放。这种颤振显著降低了继电器触点的寿命。图2F给出了非延时继电器起动器和单个灯衰减电路的代表性示意图,其中,继电器由分压的、非定时的、整流信号控制。参照图2G,典型的扩音器换能器所需的衰减和持续时间图与时控的、双继电器起动器以及单个灯衰减器叠加。相比于图2E中给出的非定时方法,时间响应特性(线54)有了很大改善。然而,仍然有易受损坏的小区域58,其中,起动延迟并没有快到足以保护扩音器免受大的瞬变。衰减特性(实线52)与单个灯相同;然而,由于第一起动级阈值(线44), 灯不被允许在负载的功率额定值以下衰减,并且灯电路在第二起动级阈值60之上被中断。 第二起动器使电流流动停止,从而确保充分的灯丝和负载保护,但是引入了阴影区62中突出显示的过多衰减,其中,负载被有效地断开。图2H中给出了时控的、双继电器起动的、单个灯衰减电路的代表性示意图,其中,通过检测的、定时的、整流信号来控制继电器。要考虑的最后一类设计是结合了电路部件(诸如,半导体闸流管、金属氧化物压敏电阻、触发三极管和/或TVS 二极管)、被配置为在过电压情况下进行箝位的那些设计。箝位器件通常与负载并联连接,从而在过度的情况下使电流分流至地或中和。虽然这些器件非常快,但是对于高性能的保护电路仍表现出了一些问题(1)当箝位时存在过电流,并能够导致对箝位器件、AC电源、或连接至此的无源线调节电路的损坏;(2)箝位技术对AC驱动装置产生了非线性负载,并且对于需要连接至各种不同AC电源的保护电路是不可接受的; 以及(3)当电压箝位或“削波”有效时,增加了显著的信号失真。由于关于箝位和撬棒设计的这些显著问题,没有努力来呈现它们性能的图形化图。总之,应当充分地理解,用于保护敏感AC负载的现有技术的现有状态都没有结合高效、数字可编程的衰减或基于微处理器的控制。所有先前的尝试都依赖于具有固定的固有特性的分立控制电路和有损耗衰减器,即,灯丝、电阻器、热敏电阻。因此,应当强调的是, 缺少数字可编程衰减以及基于微处理器的控制是敏感负载的AC功率保护的现有技术中的两个根本不足。总之,现有的AC功率保护电路遭受了以下问题非可编程衰减、生成了过量热和 /或光输出的有损耗衰减器、非可编程阈值和时序系数、高插入损耗、突然步进的起动、非线性负载、不足的峰值电压和电流保护、有限的工作功率范围、以及起动颤振。另外,用于连续 AC衰减的现有电路设计遭受了过量功率耗散(热)、成本、有限控制、磁芯饱和问题、频率响应异常、以及没有过功率保护监测。

发明内容
根据本文描述的概念的保护及衰减电路的实施方式,通过提供可操作地提供高效、数字控制、宽带、可编程的衰减以及对功率、电流、电压、频率、机械极限、或其他情况的可编程监测的电路,克服了现有技术中上面指出的以及其他问题和缺点。虽然不限于此,但是所描述的电路的实施方式对于敏感负载(诸如要求平均和峰值功率保护的扩音器装置) 是理想的。尽管本文描述了应用于扩音器和其他敏感负载,但是本文描述的保护及衰减电路的概念和实施方式可以应用于期望过电压、过电流、或其他有害情况的保护及衰减的任何负载。还应当注意的是,本发明的实施方式可以被配置为从驱动扩音器的音频信号获得所有必需的工作电力,从而不需要次电源。这对于没有次电源可用的无源扩音器是理想的。以上已经非常宽泛地列出了本发明的特征和技术优势,以更好地理解随后对本发明的详细描述。以下将描述本发明的其他特征和优点,其形成本发明权利要求的主题。本领域技术人员应当意识到,可以容易地将所公开的概念和具体实施方式
用作修改或设计用于执行本发明的相同目的的其他结构的基础。本领域技术人员还应当认识到,这种等价结构没有背离所附权利要求中阐述的本发明的精神和范围。当结合附图来考虑时,从以下的描述将更好地理解被认为是本发明的组织和操作方法的特征的新颖的特征、以及其他目的和优点。然而,需要明确理解,提供各个附图仅用于说明和描述,并不旨在作为本发明的限
制的定义。


为了更完整地理解本发明,现在将结合附图来参考以下的描述,附图中
图I是典型扩音器功率处理特征的曲线图2A是叠加了典型自起动及衰减灯的典型扩音器功率处理特征的曲线图2B是典型自起动及衰减灯保护电路的示意图2C是叠加了典型自起动及衰减热敏电阻(PTC)的典型扩音器功率处理特性的曲线图2D是典型自起动及衰减热敏电阻保护电路的示意图2E是叠加了具有灯衰减器的典型非定时受控起动继电器的典型扩音器功率处理特征的曲线图2F是典型非定时的、单个继电器、灯衰减器保护电路的示意图2G是叠加了典型定时及检测的、双继电器和灯衰减器的典型扩音器功率处理特征的曲线图2H是典型定时及检测的、双继电器、灯衰减器保护电路的示意图3A是根据本文描述的概念的保护和/或衰减电路的实施方式的框图3B是图3A中示出的电路的示例性实施方式的电路图4A是根据本文描述的概念的可替换实施方式的框图4B是图4A中示出的电路的示例性实施方式的电路图5A是根据本文描述的概念的电路的可替换实施方式的框图5B是图5A中示出的电路的示例性实施方式的电路图5C是图5A中示出的电路的可替换实施方式的电路图;图6A是根据本文描述的概念的电路的可替换实施方式;图6B是图6A中示出的电路的示例性实施方式的电路图;图7是示出了根据本文描述的概念的保护和/或衰减电路的示例性实施方式的操作的时序图;图8 是脉宽调制回转(pulse width molulation slewing)的时序图;图9是示出了图6A所示的电路的实施方式中使用的调制的时序图;图IOA是叠加了图3A中示出的电路的实施方式的示例操作的图示的典型扩音器功率处理特征的曲线图;图IOB是叠加了图4A中示出的电路的实施方式的示例操作的图示的典型扩音器功率处理特征的曲线图;图11是示出了根据本文描述的概念的电路的系统控制级的实施方式的操作的基本算法流程图。
具体实施例方式本文描述的概念和实施方式提供了使用高效开关模式技术的AC保护及衰减,通过结合由脉冲宽度调制信号PWM驱动的双向、晶体管化的开关来衰减AC信号。本文描述的电路的实施方式监测负载或AC信号的特征,并基于有害事件的持续时间和幅度来确定脉冲宽度调制信号PWM的占空比。有害事件可以包括过电压、过电流、过限、温度、频率、机械极限、或可能对负载有害的其他情况。例如,如果AC功率信号超过预定安全操作阈值达 10 %,则将以90 %的占空比导出脉冲宽度调制信号PWM。导出脉冲宽度调制信号PWM的优选方法是使用具有机载模数转换器ADC的微控制器装置,用于监测AC功率信号。然而,应当注意,脉冲宽度调制信号PWM的导出可以通过功率管理领域常见的各种技术来完成,诸如滞回控制、三角形或锯形拦截、或Σ -Δ调制。使用高效开关模式衰减使得本发明的实施方式提供低损耗、完全可编程压限器保护电路,其解决了困扰AC功率保护及衰减领域的现有技术的许多问题。根据本文描述的概念的AC功率保护电路的实施方式大致包括电源级、信号调节级、系统控制级、隔离级、以及双向开关级。可以结合多个操作级,从而创建将在详细描述中呈现的后续实施方式。重点放在优选实施方式,电源级可操作地接收AC或DC信号并从该信号获得调整的DC输出电压REG、以及共地信号COM。在自AC功率信号而运行时,电源级可以接收与提供到双向开关级相同的AC功率信号,这意味着本发明实施方式能够从以下各项获得功率
(I)辅助AC功率信号,(2)经过双向开关级的初级AC功率信号,或者(3)DC功率信号。调整的DC输出电压(REG)和共地(COM)被后续级用于为多个电气装置和电路供电。在特定实施方式中,信号调节级可操作地接收AC输入信号,并从该信号获得调整的输出信号VM0N,通常通过整流和分流AC输入来获得。提供到信号调节级的AC输入信号可以从双向开关级的输入端或输出端接收,这样允许前馈或反馈控制回路拓扑。因此,将输入驱动到信号调节级的信号可以连接到双向开关级之前或之后。经调节的输出信号VMON 被传递到后续的系统控制级,用于电压监测和脉冲宽度调制导出。虽然不限制于此,信号调节级可以包括过滤部件,该部件被设计为限制经调节的输出信号VMON的频谱成分。对VMON 的频谱成分进行有效地限制产生了以下系统其对过滤的通带内的过电压更敏感,并且对通带外的过度不敏感。这种过滤可以看作预加重的形式,其中,初级电压监测信号VMON在进入系统控制器之前已经被预整形(pre-shaped)。在特定实施方式中,系统控制级可以被配置为接收以下输入信号(a)来自电源级的供电电压,REG和COM; (b)从信号调节级接收的电压监测信号,VMON ;以及(c)从隔离级接收的可选电流监测信号,頂0N。借助于上面提到的输入信号,系统控制级可以被配置为导出以下的输出信号(a)脉冲宽度调制控制信号,PWM、PWM2等;(b)可选的电源使能信号, ENBL ; (c)可选的起动器旁路控制信号,BYPAS ;以及(d)从极限感应级、或者监测负载或感兴趣的其他元件的机械或电气特征的其他传感器接收的可选的极限感应信号,LIMIT。电流监测信号MON可以从隔离级接收,并可以用于监测流经双向开关级的电流。在该配置中, 系统控制级能够监测输入AC电压以及AC电流这两者,从而有助于导出脉冲宽度调制输出信号PWM,并检测负载特性、变化、或故障。类似地,极限感应信号LIMIT可以从极限感应级接收,并可以用于监测AC负载或双向开关的各种机电极限。在该配置中,系统控制级能够监测诸如负载温度、负载机械运动(锥冲程或换能器RPM)、或衰减器温度的参数,从而有助于导出脉冲宽度调制输出信号PWM,检测负载特性,或者检测双向开关级内的过温情况。系统控制级是核心计算引擎,并能够利用本领域技术人员熟悉的各种技术来实现;然而,优选的实现方式使用适当的微控制器装置以及模数转换器(ADC),以允许所有系统控制任务的完全可编程。虽然不限于此,但是系统控制级可以包括被设计为对监测输入信号的输入电压或电流(VM0N和ΙΜ0Ν)的频谱成分进行限制的过滤部件或信号处理算法。脉冲宽度调制信号PWM的生成是系统控制级的首要任务,原因在于该输出信号可以用于有效地将AC输入信号衰减到期望水平。PWM的计算可以基于过极限、过电压、或过电流情况的程度。例如,如果电压监测输入VMON已经在足够长的持续时间超过了期望的跳闸阈值达3分贝(dB),则系统控制级将生成70%的占空比波形,导致-3dB的电压降低。可选地,占空比转换率(slewing rate,回转率)限制可以被编程为创建衰减特性的软拐点。这在保护扩音器换能器的应用中实现了 “软”声。在某些实施方式中,隔离级可操作地在双向开关级和系统控制以及电源级之间提供电隔离,因此允许双向开关相对于共地COM浮置。虽然不限于此,但是隔离级通常被配置为接收⑴来自电源级的供电电压,REG和COM ;⑵来自系统控制级的脉冲宽度调制信号,PWM;以及⑶来自系统控制级的可选电源使能信号,ENBL0借助于上面提到的输入信号,隔离级可以被配置为导出相对于共地COM浮置的以下电隔离信号(1)浮置脉冲宽度调制信号,PWM_A ; (2)浮置调整输出电压,REG_A ;以及(3)浮置共地参考,C0M_A。还可以从双向开关级接收可选的浮置电流监测信号Μ0Ν_Α,并被用于导出电流监测信号ΙΜ0Ν,以发送到系统控制器。用于实现隔离级的各种技术将在详细描述中给出。在某些实施方式中,双向开关级可以被配置为接收从隔离级接收的输入AC功率信号ACIN、浮置脉冲宽度调制信号PWM_A、以及浮置调整输出电压REG_A和C0M_A。双向开关级将从这些信号导出开关AC输出信号AC_SW以及可选的浮置电流监测信号ΙΜ0Ν_Α。虽然不限于此,优选实施方式使用场效应晶体管(FET)器件和适当的门驱动器来实现双向开关级。由于降低的开关损耗,因此使用FET半导体可实现高效;由于可在宽范围的电压和电流条件运行的现成商品设备供应,提供了可容易地扩展的功率水平;由于固有的半导体特性(通常导通时间< 100纳秒),实现了高速响应;并可以实现使用内部FET导通电阻的可选无损电流监测器。所有这些都得益于使用场效应晶体管。另外,可以使用耗尽型或增强型FET器件或实现本文描述的概念的任何其他适合装置来实现双向开关级。本发明的可替换实施方式结合附加的双向开关级,从而向AC输入源和AC负载提供续流或分流电流路径。在这些实施方式中,上面提到的串联双向开关级与输入AC功率信号串行连接,而续流双向分流开关与AC输入源和开关AC输出AC_SW并行连接。当从诸如变压器或滤波电感器的电感源驱动AC输入时,或者输出AC负载(诸如扩音器或感应电机) 是电感的时,则需要续流或分流路径。在某些应用中,由于电源和负载装置和条件的特征, 仅需要一个续流路径。在某些实施方式中,极限感应级可操作地监测AC负载、双向开关级、和/或其他有关元件的电气或机械特性,并从中生成一个或多个限制信号LIMIT用于发送到系统控制级。虽然不限于此,但是典型的极限传感器可以包括用于AC负载和/或双向开关的温度监测传感器、以及感应AC负载移动(诸如电机旋转或扩音器锥位移)的负载移动传感器。这对于以下情况尤其有用在保护扩音器低音喇叭免受可能导致装置的机械损坏的过度锥位移时。本发明的总体结果是新颖的AC功率保护和衰减电路,其产生很少的热,提供了简单的可扩展性,并完全可编程从而与最苛刻的敏感AC负载的功率处理特征匹配。有效地, 本发明制造了在AC功率保护以及持续AC衰减应用方面表现卓越的高功率AC压限器电路。现在参照图3A,描述了可以用作保护和/或衰减电路的AC电路20的实施方式。 保护电路20可以包括可选的电流监测或极限感应,并被描绘为示出了前馈或反馈电压监测的选项。保护电路20大致包括电源级22 ;系统控制级24 ;信号调节级26 ;隔离级28 ; 双向开关级30 ;以及可选的极限感应级38。电源级22可操作地导出两个电压电势,REG和C0M,其中REG是相对于共地基准 COM的调整DC输出电压。虽然不限于此,但是图3A中的电源级22被示为具有连接至输入 AC功率信号ACIN的输入功率信号。该拓扑允许保护电路20从同一 AC信号导出所有需要的运行功率,其中出于保护和/或衰减的目的而监测和衰减该AC信号。存在不依赖于输入 AC信号(ACIN)的其他供电选项,针对电力,诸如可选的DC输入40。从辅助的DC输入40 来运行电源级允许保护电路20在没有AC输入信号ACIN的情况下起作用。这对于以下情况将是有益的如果AC输入信号(ACIN)幅度变化极大并可能低于为后续级供电所需的水平。图3A中的实施方式被示为具有连接至电源级输入端的AC输入功率信号ACIN。在后续电压调节器44之前,整流块42整流AC输入信号ACIN。可以选择多个不同拓扑来创建所述的电压调节器44,两种最常见的方法包括线性或开关模式调节技术。电压调节器44的输出是电源级22的输出,S卩,REG和C0M,其将被用于为后续级供电。电路20的系统控制级24可操作地导出第一脉冲宽度调制信号PWM和可选的使能信号ENBL(其用于使能隔离级28内的隔离电源)。系统控制级24的目标是监测一个或多个输入信号的过度情况,并从中导出前面提到的脉冲宽度调制信号PWM。系统控制级24能够以多个不同输入信号运行,诸如电压监测信号VM0N,电流监测信号IMONjP /或温度、移动、位置、或其他监测信号LIMIT。虽然不限于此,优选第一实施方式中的系统控制级24监测电压信号VM0N、电流信号ΙΜ0Ν、和极限信号LIMIT。电压监测信号VMON接收自信号调节级26,电流监测信号MON接收自隔离级28,极限信号LIMIT接收自极限感应级38。在实际使用中,保护电路20仅需要一个输入监测信号从而提供最小级别的保护。例如,保护电路20可以在没有一系列电流监测信号IMON的情况下实现。在该配置中,保护电路将提供对过电压事件的保护,而没有监测电流的能力。类似地,保护电路20能够在没有电压监测信号VMON的情况下实现。在该配置中,保护电路将提供对过电流事件的保护,而没有监测 AC电压的能力。通过监测电压和电流情况这两者所实现的一个好处是系统控制器能够有效地计算负载阻抗并检测可能导致双向开关级30或负载70损坏的情况。另外,通过监测一个或多个极限信号(诸如负载温度、负载机电移动、和/或双向开关温度),系统控制器45能够更好地保护AC负载以及双向开关30。系统控制器45可以用多种器件和/或电路来实现, 包括但不限于微控制器、可编程逻辑器件、特定用途集成电路、脉冲宽度调制集成电路、或分立脉宽调制电路。系统控制级24由从电源级22接收的DC电压电势REG和COM供电。电路20的信号调节级26可操作地接收AC电压,并从其导出电压监测信号VM0N, 用于发送到上面提及的系统控制级24。信号调节级26能够从AC输入(ACIN)或来自双向开关级30的输出(AC_SW)接收AC电压,从而允许前馈或反馈控制回路。AC信号的调节通常涉及整流、分压、和/或过滤。根据系统控制级24的实现方式,对于信号调节级26会有不同的要求。例如,当针对系统控制级24使用微控制器装置和片上模数转换器(ADC)时, 需要信号调节级26导出电压监测信号VMON作为具有有限信号电压摆幅(通常小于2伏峰值)的单极信号。这可以用简单的整流电路、分压电路、用于附加保护的限压装置(通常是齐纳二极管)来实现。电路20的隔离级28可操作地提供所有共地COM基准信号和双向开关级30之间的电隔离。这允许双向开关级30相对于由电源级22提供的共地基准信号COM电浮置。对于第一优选实施方式,隔离级28从电源级22接收电源信号REG和COM ;从系统控制级24接收脉冲宽度调制信号PWM ;从系统控制级24接收可选的使能信号;以及从双向开关级30接收可选的电流感应监测信号Μ0Ν_Α。从上面提到的输入信号,隔离级28从中导出了隔离的 DC电压REG_A和C0M_A ;隔离的脉冲宽度调制信号PWM_A ;以及隔离的电流监测信号Μ0Ν。 隔离的DC电压REG_A和C0M_A以及隔离的脉冲宽度调制信号PWM_A被传递到双向开关级 30。隔离的电流监测信号MON被传递到系统控制级24用于导出脉冲宽度调制信号PWM和 /或使能信号ENBL。虽然不限于此,但是隔离级28的实现方式可以通过使用隔离的开关调节器52和通常使用光隔离技术的信号隔离装置50来实现。电路20的双向开关级30可操作地接收主AC输入信号ACIN以及来自隔离级28的信号,并从中导出电控开关AC信号AC_SW。在第一优选实施方式中,双向开关级30从隔离级28接收功率信号REG_A和C0M_A以及脉冲宽度调制信号PWM_A。功率信号REG_A和C0M_ A用于建立适当地驱动双向开关54所需的电压电势。虽然不限于此,但是可以使用以串联模式与共源极端子连接的两个金属氧化物场效应晶体管(MOSFET)来实现双向开关54。这种器件通常需要5伏到10伏的栅极驱动来使能全导通。脉冲宽度调制信号PWM_A用于控制双向开关的驱动,并且在MOSFET实现方式的情况下,PWM_A将有效地控制晶体管的栅极驱动电路。存在着脉冲宽度调制信号PWM_A以100%占空比或连续运行的情况;从而将双向开关30保持在连续导通模式。双向开关级30可以实现为允许通过使用电流感应技术的电流监测。如果包括在设计中,则电流监测的输出信号ΙΜ0Ν_Α可以传递到隔离级28,用于有效传递到系统控制级24。在双向开关54是MOSFET实现方式的情况下,由于MOSFET器件固有的导通阻抗可以用作电流感应元件,因此电流感应电路可以是无损的。将电流监测信号ΙΜ0Ν_Α反馈到系统控制器24,允许更彻底地保护控制回路,并提供了监测负载阻抗变化和实际交付的电力的途径。电路20的所述双向开关级30的输出端直接连接至负载70 ;然而,可能的情况是, 在双向开关级30的输出端和负载70之间期望无源滤波。该滤波可以用电感电容滤波器电路来实现,然而也可以应用其他装置和技术来实现所期望的特征。另外,还可能的情况是, 期望在AC输入ACIN和双向开关级30的输入端之间设置无源滤波器。电路20的极限感应级38可操作地提供一个或多个极限感应信号(诸如UMIT), 用于发送到上面提及的系统控制级24。极限信号LIMIT可以导出作为离散时间数字信号或模拟信号。在模拟信号的情况下,极限感应级38可以结合模拟滤波从而削减极限信号 LIMIT的频谱成分。若如此连接,则极限感应级38能够接收来自电源级22的功率。尽管不限于此,优选实施方式可以包括多个极限感应信号LIMIT,大致包括(I)耦接到包括双向开关级30的物理装置的温度感应信号;(2)耦接到AC负载70的温度感应信号;以及(3) 耦接到AC负载70的移动感应信号。移动感应对于AC电极应用是理想的,诸如电机具有特定的机械偏移极限的扩音器,如果超过极限则导致负载的永久损坏。极限感应级38中的移动传感器的实现方式可以使用诸如加速度计、光学拾波器、简单的光断路器的现成的集成电路来实现。类似地,极限感应级38内的适当的温度传感器的实现方式可以用热敏电阻、 恒温器、温度依赖二极管、或集成电路温度传感器来实现。图3A的电路20所获得的特征在图IOA中示出。值得注意的是,可以调整第一优选实施方式的幅度特征(线52),从而以高精确度匹配AC负载要求。类似地,可以对第一优选实施方式的持续时间特征(线54)进行编程,从而匹配敏感AC负载时序要求。最终结果是在整个负载功率处理规格上的不间断运行,同时确保负载总是在安全的运行区内,即,无损坏区。时域特征在图7中示出,其中,时序图包括ACIN、VM0N、定时计数器、PWM、以及AC_ SW。现在参照图3B,描述了实现图3A的电路20的电路的详细实例。如图3A所示,电路的实施方式可以包括单个电源级122、系统控制级124、信号调节级126、隔离级128,以及双向开关级130。呈现了详细图示,其中,信号调节级126可操作地接受从双向开关级130 的输出端接收的反馈AC信号或前馈AC输入信号。在实际应用中,优选地,信号调节级126 可以仅由这两个可能的AC输入信号(FDFW或FDBK)中的一个来构造;然而,仅为了说明,在图3B中包括了这二者。所呈现的电源级可以利用从初级AC输入信号ACIN导出的输入功率来实现。在该配置中,第一优选实施方式将从由系统控制级124和双向开关级130监测和衰减的AC功率信号导出所有运行功率。整流是电源级122中的第一部分,并通常通过使用全波桥整流电路42来完成。在整流之后,优选实施方式使用电容器43来提供电压平滑,之后,简单的线性电压调节器44将电压相对于共地电势COM调节到标称DC电势REG。可选的技术可以用于导出调整的输出电压REG,诸如降压或升压开关调节拓扑。这些技术将允许降低功耗,而代价是系统价格升高。在优选第一实施方式的实验室测试中,在电源级122中已经使用了线性电压调节器和开关调节器这两者。根据优选实施方式示出了系统控制级124,其中,微控制器装置用于系统控制任务。具体地,微控制器45负责监测电压监测信号VMON和/或电流监测信号ΙΜ0Ν,并从中导出脉冲宽度调制信号PWM以及可选的使能信号ENBL,用于在隔离级128中使用。理想地,微控制器45被选择为包括适当的模数转换器(ADC),用于将电压监测信号VMON或电流监测信号IMON转换成离散时间数字信号。该拓扑允许微控制器45在离散时域内监测电压和/ 或电流,从而使能对所述脉冲宽度调制信号PWM和可选的使能信号ENBL的导出的固件算法控制。可以开发这种算法,以保持100%的占空比,直到监测的AC电压和/或电流超过针对幅度和持续时间的可编程阈值。如果输入信号VMON或IMON超过了算法幅度和持续时间阈值,则可以使用回转算法降低脉冲宽度调制PWM占空比,其中,通过时序系数控制占空比的变化率。控制占空比变化或回转率,允许微控制器45在幅度降低中创建软拐点,从而允许能够模拟灯丝的软特征的拓扑。图8中给出的时域图示出了脉冲宽度调制回转。虽然不限于此,但是图7中给出了进入过电压事件以及从过电压事件退出的典型脉冲宽度调制信号的时域图,其中,信号 TIMER COUNT代表结合在该算法中的简单递增计数器。有一些情况是,根据过电压或过电流事件的幅度,增大或减小诸如TIMER COUNT的时序信号的速度是有利的。在这些情况下,可以开发算法来增大或减小定时器时钟速度或定时器到期值。这些技术对于本领域技术人员来说是显而易见的。另外,有一些情况是,系统控制级124可以在不使用可编程微控制器或现场可编程门阵列FPGA的情况下实现,并且在这些情况下,TIMER COUNT可以用各种数字或模拟定时器来实现,诸如离散计数器或简单的电阻电容RC定时器。最后,微控制器45从电源级的输出信号REG导出所有必需的运行功率,并参考共同信号COM接地。参考图11,给出了用于在上面提到的系统控制级中操作的基本算法流820的实施方式,其中,算法流820是能够在系统控制级固件、软件、或硬件中实现的代表算法。实现方式的优选方法是在使用标准编码习惯的固件中,标准编码习惯允许多个阈值 THRESHOLD (η)、差分比较45、以及可变定时器46 ;从而实现了支持多阈值和延迟时间的算法。这通常使用循环算法来实现,该算法将每个采样输入VMON或IMON与阈值THRESHOLD (η) 以及最大上升时间MAX_ATTACK(n)相比较,产生多级实现。例如,最小实现将要求(I)直接涉及AC负载规格的均方根(RMS)电压阈值;以及(2)峰值电压阈值。最大上升时间通常远短于峰值电压阈值的持续时间,并且远长于RMS电压阈值的持续时间;因此,需要多个延迟时间。在该情况下,基本算法流820将具有两个阈值,THRESHOLD (I)和(2)、两个最大上升时间MAX_ATTACK(1)和(2)、以及两个比例因子SCALE (I)和(2),并且该算法将对于每个输入数据采样VMON或IMON重复两次。在第二优选实施方式中的操作的情况下,其中,需要旁路信号BYPAS,基本算法 820可以用第三组参数THRESHOLD (3)、MAX_ATTACK (3)、以及SCALE (3)来实现,这些参数设置为在RMS或峰值电压阈值THRESHOLD (I)和(2)之前恰当地跳闸,并能够生成信号BYPAS 来控制开关旁路级(其将在稍后描述)。基本算法流820类似于第2008/0165977号US专利申请公开中给出的离散实现方式;然而,计算对增益降低、衰减、电平的精确控制,包括对衰减冲击(attenuation attack)和释放拐点成型的能力。这是通过脉冲宽度调制块48和占空比回转块49来完成的。定时器46将拖延对于脉冲宽度调制器48和占空比回转49的输入,直到输入信号已经超过了阈值THRESHOLD (η)长达计算的持续时间,等式11. I。一旦定时器46超时,则可以使用简化的占空比计算器,等式11. 2,来计算脉冲宽度调制占空比,在等式11. 2中,计算阈值THRESHOLD (η)与输入信号VMON或MON的比率。 占空比回转49提供了控制衰减冲击和释放拐点的能力,从而在利用扩音器负载使用时,实现更悦耳的声音,并且提供了仿真诸如灯或热敏电阻的已知衰减装置的能力。占空比回转 49可以通过监测由脉冲宽度调制器48计算的目标占空比并以计算方式朝目标占空比移动来实现。例如,如果目标占空比有些靠近输出信号PWM的当前占空比,则占空比回转49可以将PWM的输出占空比步进较小值。然而,如果脉冲宽度调制器48计算的目标占空比与所述信号PWM的输出占空比显著不同,则占空比回转49可以将PWM的输出占空比步进较大值。 这样,占空比回转49可以被提供各种输入参数(包括可变计时器46的输出),以控制输出信号PWM占空比的步进动作。基本算法820可以在包括可编程逻辑器件、微控制器、或离散逻辑电路的各种平台内实现。已经开发了可替换的算法,其使可变计时器46的使用率最小化,并依赖于占空比回转49来达到针对保护所需的期望冲击和释放时间。再次参照图3Β,并考虑上面关于基本算法流(图11)的讨论,对于本领域技术人员来说显而易见的是,系统控制级124的非可编程实现方式可以使用选通脉冲宽度调制电路来实现。虽然潜在地在功能上有所限制,但是可以实现如第2008/0165977号US专利申请公开(其全部内容包括于此作为参考)所示的检测和时序级,从而将脉冲宽度调制器电路(其将模拟输入信号VMON或頂ON与三角形或锯形波形比较)选通,用于脉冲宽度调制信号PWM的导出。对于本领域技术人员显而易见的是,在系统控制级124内可以应用许多不同的算法,其中,输入的监测信号VMON或IMON在微控制器内可以经历离散时间、数字滤波器。这种数字滤波器可以用于针对过电压、过电流检测、冲击/释放、以及PWM算法来成型输入的频率成份。信号调节级126可操作地接收AC电压输入信号,并从中导出调节的电压监测信号 VM0N。图3Β中示出的电路中给出了两个可选的信号调节级的配置(I)前馈信号路径FDFW ; 以及(2)反馈信号路径FDBK。优选实施方式通常以两种信号路径(FDFW或FDBK)中的一种来实现;然而,这并不限制将两个信号都馈送到系统控制级的能力。不论是哪种信号路径 (FDFW或FDBK)用于导出电压监测信号VM0N,用于实现信号调节级的典型装置都相同。看一下前馈信号路径FDFW,AC输入信号ACIN连接至信号调节级的输入端,其中ACIN被全波整流器46整流,从而产生信号AREC。在整流之后,优选第一实施方式通过电阻器47和48实现的简单分压来降低信号 AREC的幅度。虽然不限于此,但是通常安装齐纳二极管50来保护后续的微控制器45免受过电压损坏。电容器49和51提供了在信号调节级126的传递功能中引入极点和/或零点的能力。这些过滤元件(电容器49和51)是可选的,并可以用于有效地将输出的电压监测信号VMON的响应进行成型。现在考虑反馈信号路径FDBK,可以直接应用上面提到的、在前馈信号路径FDFW中使用的技术和部件。虽然在图3Β中没有示出,但是诸如运算放大器或开关电容电路的有源部件可以用在信号调节级126中,其中,可以由电源信号REG提供运行功率。所得到的输出电压监测信号VMON是分压的、限压的、以及频率成型的信号,可操作地传递到系统控制级124用于电压监测。
隔离级128可操作地在所有共地COM基准信号和双向开关级130之间提供电隔离。这包括但不限于以下的共地COM基准信号REG、PWM、MON、以及ENBL。对于电隔离的结合允许双向开关级130相对于共地信号COM浮置,从而允许双向开关在高电压电势起作用。图3B的实施方式使用组合的技术来实现电隔离。具体地,为了产生从电源信号REG导出的电隔离功率信号,第一优选实施方式使用与开关调节器电路52隔离的变压器。开关调节器52可以用开关晶体管54、利用至少一个初级线圈和一个次级线圈可操作的高频变压器53、以及一个或多个非同步整流和电容平滑电路55和56来构造。包括开关调节器52的上面提到的部件可以按照降压、升压、或降压/升压配置来布置。图3B中示出的实施方式以升压配置来构造,其中,高频变压器53具有双次级线圈或单个中心抽头次级线圈。在该拓扑中,开关调节器52提供了两个隔离电压信号 REG_B,以及共中心点基准信号C0M_A,从而实现了以中点C0M_A为中心的双极输出电压。除了导出浮置功率信号REG_A、REG_B、以及C0M_A,隔离级128可操作地电隔离从系统控制级 124接收的脉冲宽度调制信号PWM。隔离诸如PWM的数字逻辑信号可以用多种不同的拓扑和/或隔离装置来实现。虽然本实施方式使用诸如光学隔离器57的标准隔离装置用于PWM,但是在图6A和图6B的描述中将给出用于隔离PWM的其他技术。光学隔离器57的结合,允许共地COM(脉冲宽度调制信号PWM以其为基准)与双向开关级130电隔离。光学隔离器57从系统控制级 124接收所述的脉冲宽度调制信号PWM,并提供相对于共地基准COM电浮置的脉冲宽度调制输出信号PWM_A。浮置脉冲宽度调制输出信号PWM_A连接至双向开关级130的输入端(门驱动器59)。最后,隔离级可操作地隔离从双向开关级130接收的浮置电流监测信号ΙΜ0Ν_ A,并从中导出电流监测输出信号ΙΜ0Ν,用于传递到系统控制级124。虽然不限于此,通过双极输入光学隔离器58来实现浮置电流监测信号ΙΜ0Ν_Α的隔离。再次参照图3B,双向开关级130可操作地接收AC输入信号ACIN ;浮置脉冲宽度调制信号PWM_A ;浮置功率信号REG_A、REG_B、和C0M_A ;并从中导出开关输出AC信号AC_ SW。另外,双向开关级可操作地导出电流监测信号ΙΜ0Ν_Α,用于传递到隔离级128。双向开关级130包括共源极连接FET晶体管60和61、栅极驱动电路59、以及可选的电流感应放大器62。在优选第一实施方式中,选择晶体管60和61作为N沟道耗尽型MOSFET器件,该器件即使具有最小的AC输入幅度,也允许AC输入(ACIN)与开关AC输出(AC_SW)之间的导电。这是由于耗尽型FET的固有设计,其中,FET提供了自由电子沟道,用于在没有任何栅源电压(Vgs = O)的情况下导电。换句话说,选择耗尽型FET器件用于晶体管60和61,实现了常闭型双向开关操作。这对于输入AC信号(ACIN)的幅度变化极大并且不会超过最大栅极导通阈值的音频扩音器应用是理想的。晶体管60和61被配置为它们的源极端子连接在一起,从而消除了相反极性条件期间的体二极管传导。晶体管60的漏极端子形成了对于双向开关的输入端,而晶体管61的漏极端子产生了双向开关的输出端。晶体管60和61这两者的栅极端子连接在一起并由门驱动器59 驱动。诸如串联栅极电阻器63的典型栅极驱动元件可以用于控制晶体管60和61的导通或截止时间。门驱动器59导出来自浮置功率信号REG_A和REG_B的功率,而晶体管60和 61的共源极端子连接至浮置共中心点基准信号C0M_A。该拓扑允许门驱动器59有效地将晶体管61和61的栅极端子拉至源极端子的电势之上以及之下,从而实现耗尽型FET器件60和61的全导通和全截止。通过测量双向开关晶体管61和61两端的电压降,双向开关级 130可以提供无损电流监测输出ΙΜ0Ν_Α,这样消除了对于有损电流感应电阻器的需求。差分放大器62的非反相和反相输入端连接在双向开关晶体管的两端,以产生与双向开关晶体管60和61两端的差分电压降成比例的单端输出信号。通过使用常见的运算放大器增益以及本领域常见的过滤拓扑,可以适当调整差分放大器62的传递功能以满足不同需求。差分放大器62由浮置功率信号REG_A和REG_B供电,其相对于共源极基准C0M_ A提供了双极性。通过用相对于晶体管60和61源极端子的双极电源为差分放大器62供电,该电路可以测量通过双向开关晶体管60和61的任一方向的电流,从而实现双向电流感应。AC输入信号(ACIN)连接至双向开关级130的输入端(晶体管60的漏极端子), 并且AC负载70连接到双向开关级的输出端AC_SW(晶体管61的漏极端子);然而,在AC输入信号路径134和/或开关AC输出信号AC_SW的每一个中放置感应式过滤是理想的。感应式过滤平滑了由于AC输出AC_SW的脉冲宽度调制开关引起的电流纹波,并降低了 AC输入ACIN和开关AC输出AC_SW的高频信号成分。虽然不限于此,但是图3B示出了块134和 136中的感应式过滤的可能位置(状态)。这些感应式滤波器可以由简单的低值电感器或者电感和电容元件的组合来制成。现在参照图4A,示出了根据本文描述的概念的可替换实施方式的简化框图。电路220大致包括与图3A的实施方式中描述的相同的级,然而,电路220还包括开关旁路级 232,其可操作地提供绕过双向开关级230的信号路径。虽然不限于此,但是开关旁路级232 通常利用系统控制级224输出信号BYPAS控制的机电或固态晶体管继电器装置来实现。添加开关旁路级232的目的在于在AC输入(ACIN)低于双向开关54导通所需的最小可操作阈值期间,允许用于AC电流的信号路径,从而允许为双向开关54选择增强型模式器件。增强型器件比高功率耗尽型FET器件更容易获得,从而降低了系统成本;然而,不同于耗尽型器件,它们并没有受益于固有零栅极电压导电状态。使用增强型模式FET器件不允许常闭操作,相反,它们本质上形成常开双向开关,因此在没有足够的栅极驱动电压的情况下,要求AC电流的闭合回路。在某些应用中,使用有效地为AC电流创建固态继电器或旁路路径的较小耗尽型FET器件来构造开关旁路级232。在该情况下,旁路级232已经从双向开关级230接收功率。为了减小框图尺寸,电路220中并没有示出双向开关级230的电流监测输出;然而,针对第一优选实施方式讨论的电流监测功能也可以应用于电路220。现在参照图4B,给出了实现图4A的电路220的电路的详细框图。在该实施方式中,双向开关级330由选作N沟道增强型MOSFET器件的晶体管60和61来实现,由于增强型模式器件的显著可用性,实现了成本降低的实现方式。另外,对于大范围的电压和电流性能规格的增强型器件有更宽的选择,从而允许将电路320容易地扩展为更高或更低功率操作。由于仅需要一个正导通栅极电压,因此增强型模式器件的驱动更容易。因此,晶体管60 和61的共源极端子可以连接至浮置地基准信号C0M_A,该信号也是门驱动器59的基准电势。驱动晶体管60和61的单电源方法还消除了对来自开关调节器52的隔离级328的负电势的需要。根据第二优选实施方式来实现电路320的开关旁路级332,其中,简单的机电继电器43和44用于旁路双向开关级330。经由系统控制级324、微控制器45导通或截止的晶体管42,通过对继电器线圈43通电来完成对继电起动器44的控制。继电起动器44被选作常闭装置;因此,对继电器线圈43通电,打开了起动器触点,并断开了旁路信号路径。该结构允许微控制器45监测电压信号VM0N,并决定何时打开继电起动器44并开始调制脉冲宽度调制信号PWM。通常,微控制器45将在存在足够的AC电压来确保晶体管60和61的足够栅极驱动时打开继电器驱动器44。该阈值通常远低于保护阈值(在该阈值处需要衰减)。由于消除了对负电压电势的需求,可以与图3A的实施方式不同地实现电路320的隔离级328的一些元件。不使用高频变压器53的中心抽头来构造隔离的开关调节器52。 次级整流减少到只有单个二极管电容电路55,而不是像第一优选实施方式中使用的两个。 然而,值得注意的是,就第一优选实施方式讨论的双极性、隔离的开关调节器将在电路320 内同样良好地起作用。示出了简化隔离开关调节器52,从而示出了当使用增强模式晶体管 60和61时的成本节约潜力和板上不动产(real-estate)的减少。可以包括可选的负载平衡级338,以提供与初级AC负载70平行的阻抗。当结合该负载平衡级时,电阻器62连接至继电器驱动器44的常开端子和AC返回信号NEU。在图IOB中示出了根据图4A和图4B中描述的概念的实施方式的结果特征。值得注意的是,可以适当调整第二优选实施方式的幅度特征(线52)从而以高精确度匹配AC负载要求。类似地,第二优选实施方式的持续时间特征(线54)可以被编程为匹配敏感AC负载时序要求;然而,机电继电器的使用并不限制最大起动速度。最终结果是在大部分的负载功率处理规格的不间断运行,同时确保负载通常在安全的运行区内,即,最小化的损坏区。将图IOA的第一优选实施方式幅度和时序特征与图IOB的第二优选实施方式特征进行比较,将看到,第二优选实施方式实现了与第一实施方式相同的结果,而没有提供超高速(小于I毫秒)的冲击时序(attack timing,上升时序)。然而,第二实施方式以更容易的扩展性实现更低成本的解决方案,并且在负载不要求超高速的情况下,第二实施方式将是优选的。如果使用图4A和4B中描述的概念的同时避免损坏区56,则必须结合通常由如先前图3B中描述的耗尽型器件构造的晶体管化旁路级。使用图4A和图4B中的固态晶体管化旁路级的实施方式将大致包括以上描述的第一和第二优选实施方式的组合。现在参照图5A,描述了保护和/或衰减电路的可替换实施方式的简化框图。电路 420大致包括与参照图3A和图3B描述的实施方式中讨论的相同的级,然而,电路420包括双向分流开关级432,其在双向开关54非导通或打开的循环期间可操作地为AC负载70提供续流电流路径。当AC负载70是诸如扩音器或电动机的导电负载时,这会是理想的。虽然不限于此,但是双向分流开关级432的配置通常连接到串联双向开关54的输出端,从而形成标准半桥、双向开关输出。结合诸如双向分流开关级432的双向分流开关级,需要导出两个脉冲宽度调制信号PWM和PWM2以及其浮置等效信号PAM_A和PWM2_A。这些信号用标称死区时间导出,在该时间中两个信号都截止,从而消除了串联双向开关54与双向分流开关56之间的跨导。所述的死区时间通常经由固件编程或数字延迟逻辑从系统控制级424 内导出。现在参照图5B,描述了实现关于图5A描述的实施方式的详细电路的实施方式。在串联的双向晶体管对60和61非导通或打开的循环期间,双向分流开关级532可操作地提供针对AC负载70的续流电流路径。与串联双向开关级530类似,分流双向开关使用各自的源极端子连接在一起的两个FET器件63和64来构造。晶体管63的漏极端子连接至串联双向开关晶体管61的漏极,晶体管64的漏极端子连接至AC返回路径NEU。虽然不限于此,如果提供续流电流路径对于AC输入驱动信号ACIN是理想的,则晶体管63的漏极端子可以连接至晶体管60的漏极(S卩,串联双向开关级530的输入端)。另外,可以采用两个分流双向开关,其中,第一所述的分流双向开关连接在AC输入ACIN与AC返回NEU之间;第二分流双向开关连接在开关AC输出AC_SW与AC返回NEU之间,从而产生pi衰减器。使用针对串联双向开关的耗尽型FET器件60和61,并使用针对分流双向开关的增强型FET器件63和64而示出该实施方式。增强型器件仅需要单个正电压电势用于导通,从而得到更简单的栅极驱动电路62。隔离级528可操作地为串联双向开关级530和双向分流开关级532提供供电所需的浮置电压电势。通过将额外的次级绕组54结合到高频变压器53,隔离开关调节器52能够为双向分流开关级532提供浮置电压电势REG_C和C0M_C。由于针对晶体管63和64使用了增强型FET器件,则高频变压器52上的新绕组54只需要单个二极管55用于次级整流。 类似地,如果第二分流双向开关对于产生Pi衰减器是理想的,则可以将第四绕组和次级整流器添加到开关调节器52。除了结合新的电压输出1 6_(和C0M_C,第三优选实施方式中的隔离级528还包括额外的数字隔离器56,其允许第二脉冲宽度调制信号PWM2参考的共地 COM与双向分流开关级532电隔离,从而导出浮置脉冲宽度调制信号PWM2_C。系统控制级524可操作地提供用于控制双向分流晶体管63和64的第二脉冲宽度调制信号PWM2。与所述第一脉冲宽度调制信号PWM的导出类似,系统控制器经由监测电压和/或电流信号VMON和/或IMON的算法导出第二所述脉冲宽度调制信号PWM2。在系统控制级524内采用死区时间导出,以允许可编程的时间量,其中,所述的脉冲宽度调制信号 PWM和PWM2都以有效低状态被驱动,从而确保串联和分流双向开关级530和532这两者是非导通的。这对于消除两个双向开关晶体管对60/61和63/64之间的跨导是理想的。对于本领域技术人员显而易见的是,可以通过包括以下各项的多种技术来完成死区时间的导出,包括但不限于数字逻辑门、可编程逻辑、微控制器、或工业标准集成电路。现在参照图5C,描述了图5A中示出的保护和/或衰减电路的可替换实施方式的简化框图。电路920大致包括参照图5A描述的实施方式中讨论的相同的级;然而,电路920 包括双向分流开关级934,其在双向开关54不导通或打开的循环期间,可操作地为AC输入信号ACIN提供续流电流路径。在该配置中,分流开关58为驱动AC输入信号ACIN的外部电路提供了续流电流路径。当从对许多无源扩音器系统常见的电感电容电路驱动AC输入 ACIN时,这会是理想的。虽然不限于此,但是对于本领域技术人员来说显而易见的是,可以结合两个不同的双向分流开关级934和932,形成pi衰减器。第一双向分流开关58连接在串联双向开关54的输入端与AC返回NEU之间,而第二双向分流开关56连接在串联双向开关54的输出端与AC返回NEU之间(如电路920中所示)。双向分流开关级934的纳入,需要导出两个脉冲宽度调制信号PWM和PWM3,该调制信号通常经由固件编程或逻辑推导在系统控制级内被导出。虽然不限于此,但是信号可以用标称死区时间导出,其中,两个信号均截止,从而消除了串联双向开关54和分流双向开关58均导通的情况。现在参照图6A,描述了保护和/或衰减电路的可替换实施方式的简化框图。电路 620大致包括与参照图3A、图4A、和图5A描述的实施方式中讨论的相同的级,然而,电路 620显著改变了上述实施方式中描述的隔离级。更具体地,电路620采用隔离级628,其消除了对于诸如上述实施方式常见的光学隔离器的数字隔离器件的要求。为了实现去除数字隔离器件,第四优选实施方式620使用系统控制级624使能信号ENBL,以用脉冲宽度调制选通开关调节器52,从而利用对上述优选实施方式常见的脉冲宽度调制信号来调制开关调节器。隔离级628被配置为接收电源信号REG和COM以及系统控制使能信号ENBL,并从中导出隔离电压电势REG_A和C0M_A以及脉冲宽度调制信号PWM_A。隔离级628结合了包络检测器44,其可操作地解调存在于开关调节器52的输出中的幅度调制,从而导出包络输出信号ENV。在包络检测之后,使用简单的两态逻辑门46来导出最终恢复的脉冲宽度调制信号PWM_A,用于传递至双向开关级630。系统控制级624可操作地导出脉冲宽度调制使能信号ENBL,用于传递至隔离级 628。脉冲宽度调制使能信号ENBL的导出与上述实施方式中采用的技术相同。对使能信号 ENBL进行脉冲宽度调制的效果是在开关调节器52的输出端产生了幅度调制开关波形,其中,脉冲宽度调制可以由包络检测器44和逻辑门46恢复。现在参照图6B,描述了实现图6A的电路的详细电路的实施方式。电路720包括可操作地提供选通开关调节器52能力的隔离级728,并提供电路以从幅度调制开关调节器输出恢复脉冲宽度调制信号PWM_A。开关调节器的选通是通过允许系统控制器导出能够驱动晶体管54的栅极的高频信号来完成的。通过将高频栅极信号施加于晶体管54,所期望的隔离开关调节器将为变压器53的初级通电,允许通过变压器53的高频磁芯的能量传输。随后,如果微控制器45脉冲幅度调制或选通驱动晶体管54的栅极的高频信号ENBL,结果是在变压器53的次级上的幅度调制输出,其能够被解调来使用包络检测器44恢复幅度包络。隔离级728中包含的包络检测器44可操作地从变压器53的输出中恢复脉冲幅度调制波形,并提供与由系统控制器45导出的脉冲宽度调制使能信号ENBL成比例的数字逻辑水平输出PWM_A。参照图9中的时序图,所期望的脉冲宽度调制信号PWM叠加所需的高频激励,该高频激励是利用得到的脉冲幅度调制输出ENBL驱动晶体管54的栅极GATE所需要的。图9还示出了在变压器53、次级56上看到的次级电压波形MODV以及包络恢复信号 ENV 和 PWM_A。电子领域的普通技术人员将意识到,上述优选实施方式中的系统控制级可以用各种数字或功率管理装置来实现。例如,可以使用可编程逻辑器件、微控制器、特定用途集成电路、功率管理系统常见的标准脉冲宽度调制控制集成电路、或者离散脉冲宽度调制电路。 优选实施方式得益于使用可编程器件,从而允许可编程保护阈值、时序、和监测;然而,可以采用诸如基于三角形或锯齿拦截拓扑的固定结构脉冲宽度调制电路,以监测VMON和/或 ΙΜ0Ν,并产生所期望的脉冲宽度调制信号PWM。虽然已经详细描述了本发明及其优点,但是应当理解,在不背离由所附权利要求限定的本发明的精神和范围的情况下,本文可以做出各种变化、替换、和修改。此外,本申请的范围并不旨在局限于过程、机器、生产、以及说明书中描述的问题、手段、方法、和步骤的组合的特殊实施方式。本领域普通技术人员从本发明的公开将容易意识到,根据本发明,可以使用目前存在的或以后开发的与本文描述的对应实施方式执行大致相同功能或实现大致相同结果的过程、机器、生产、以及问题、手段、方法、和步骤的组合。因此,所附权利要求旨在在其范围内包括这种过程、机器、生产、以及问题、手段、方法、和步骤的组合。
权利要求
1.一种用于接收信号的模拟负载的电路,所述电路包括系统控制器,监测所述信号的至少一个特性,其中,所述系统控制器基于所述信号的所述至少一个特性生成脉冲宽度调制信号;以及开关级,连接至所述信号并由所述系统控制器控制,其中,所述开关级可操作地使用来自所述系统控制器的所述脉冲宽度调制信号来衰减所述信号。
2.根据权利要求I所述的电路,进一步包括电源级,连接至所述信号和所述系统控制器,所述电源级可操作地由所述信号生成经调整的DC输出电压,其中,所述保护电路所需的功率从信号得到。
3.根据权利要求I所述的电路,进一步包括隔离级,连接在所述系统控制器和所述开关级之间,所述隔离级在所述系统控制器和所述开关级之间提供电隔离,从而允许所述开关级相对于所述系统控制器的共地基准电性浮置。
4.根据权利要求I所述的电路,进一步包括信号调节级,连接至所述电路的输入信号,并生成指示所述输入信号的输入电压的前馈电压监测信号,并且其中,所述信号的所述至少一个特性包括所述前馈电压监测信号。
5.根据权利要求I所述的电路,进一步包括信号调节级,连接至所述电路的输出,并生成指示所述电路的输出电压的反馈电压监测信号,其中,所述信号的所述至少一个特性包括所述反馈电压监测信号。
6.根据权利要求I所述的电路,其中,所述信号的所述至少一个特性包括电流监测信号。
7.根据权利要求3所述的电路,其中,所述输入信号的所述至少一个特性包括电流监测信号,所述电流监测信号由所述隔离级生成。
8.根据权利要求I所述的电路,其中,所述输入信号的所述至少一个特性包括电压监测信号和电流监测信号,从而允许所述系统控制器监测传送到所述负载的功率。
9.根据权利要求I所述的电路,其中,所述输入信号的所述至少一个特性包括电压监测信号和电流监测信号,从而允许所述系统控制器导出所述负载的阻抗。
10.根据权利要求I所述的电路,其中,所述开关级包括双向开关。
11.根据权利要求I所述的电路,进一步包括开关旁路级,由所述系统控制器控制并可操作地提供绕过所述开关级的信号路径。
12.根据权利要求I所述的电路,进一步包括双向分流开关级,可操作地为所述负载提供续流电流路径。
13.根据权利要求I所述的电路,进一步包括双向分流开关级,可操作地为电源提供续流电流路径。
14.根据权利要求3所述的电路,其中,所述隔离级可操作地选通隔离开关电压调节器的输入,从所述脉冲宽度调制信号导出所述选通。
15.根据权利要求14所述的电路,其中,所述隔离级可操作地在隔离开关电压调节器的输出端恢复所述脉冲宽度调制信号。
16.一种利用保护电路保护负载免受模拟信号的方法,所述方法包括监测所述模拟信号的至少一个特性;基于所述模拟信号的所述至少一个特性生成脉冲宽度调制信号;当所述模拟信号的一个或多个被监测的所述特性超过预定阈值时,使用开关级将所述脉冲宽度调制信号应用于所述模拟信号,使得由所述脉冲宽度调制信号来衰减所述模拟信号。
17.根据权利要求16所述的方法,其中,所述模拟信号的所述至少一个特性包括反馈电压监测信号。
18.根据权利要求16所述的方法,其中,所述模拟信号的所述至少一个特性包括前馈电压监测信号。
19.根据权利要求16所述的方法,其中,输入信号的至少一个特性包括电流监测信号。
20.根据权利要求16所述的方法,其中,输入信号的至少一个特性包括电压监测信号和电流监测信号。
21.根据权利要求16所述的方法,进一步包括从所述模拟信号生成经调整的DC输出电压,其中,所述保护电路所需的功率从模拟信号得到。
22.根据权利要求16所述的方法,进一步包括提供所述开关级的电隔离,从而允许所述开关级相对于共地基准电性浮置。
23.根据权利要求16所述的方法,其中,所述负载是扩音器。
24.一种用于AC负载的保护电路,包括AC负载,接收具有电压和电流的模拟信号;系统控制器,监测所述模拟信号的电压和电流,其中,所述系统控制器基于所述模拟信号的电压和电流以及所述AC负载的保护阈值生成脉冲宽度调制信号;双向开关级,连接至所述模拟信号,并由所述系统控制器控制,其中,当所述模拟信号超过所述保护阈值时,所述双向开关级可操作地使用来自所述系统控制器的所述脉冲宽度调制信号衰减所述模拟信号;隔离级,连接在所述系统控制器和所述双向开关级之间,所述隔离级提供所述系统控制器和所述开关级之间的电隔离,从而允许所述双向开关级相对于所述系统控制器的共地基准电性浮置;以及电源级,连接至所述模拟信号,所述电源级可操作地从所述模拟信号生成经调整的DC输出电压,其中,所述保护电路所需的所有功率都从模拟信号得到。
25.根据权利要求24所述的保护电路,进一步包括信号调节级,连接至所述模拟信号,并生成指示所述模拟信号的电压的信号。
26.根据权利要求24所述的保护电路,其中,所述隔离级生成指示输入电流的电流监测信号。
27.根据权利要求24所述的保护电路,进一步包括开关旁路级,由所述系统控制器控制,并可操作地提供绕过所述双向开关级的信号路径。
28.根据权利要求24所述的保护电路,进一步包括双向分流开关级,可操作地为所述 AC负载提供续流电流路径。
29.根据权利要求24所述的保护电路,进一步包括双向分流开关级,可操作地为AC 电源提供续流电流路径。
30.一种用于接收信号的模拟负载的电路,所述电路包括系统控制器,监测所述负载的至少一个特性,其中,所述系统控制器基于所述至少一个特性生成脉冲宽度调制信号;以及开关级,连接至所述信号并由所述系统控制器控制,其中,所述开关级可操作地使用来自所述系统控制器的所述脉冲宽度调制信号来衰减所述信号。
31.根据权利要求30所述的电路,进一步包括电源级,连接至所述信号和所述系统控制器,所述电源级可操作地从所述信号生成经调整的DC输出电压,其中,所述保护电路所需的功率从号得到。
32.根据权利要求30所述的电路,其中,所述负载的所述至少一个特性是所述负载的物理特性。
33.根据权利要求状态。
34.根据权利要求
35.根据权利要求频率。
36.根据权利要求电气特性。 ·32所述的电路,其中,所述负载的所述物理特性是所述负载的机械 所述的电路,其中,所述负载的所述物理特性是所述负载的温度。 所述的电路,其中,所述负载的所述物理特性是所述负载的振动·30所述的电路,其中,所述负载的所述至少一个特性是所述负载的
全文摘要
描述了一种用于敏感AC负载的保护及衰减电路。该电路利用高频开关模式技术提供了AC功率保护及衰减,以通过结合由脉冲宽度调制信号PWM驱动的双向晶体管化开关来衰减AC功率信号。该电路监测驱动已知负载的AC功率信号的特征以及负载或其他元件的特征,并基于过电压、过电流、过限制、或其他事件的持续时间和幅度,确定脉冲宽度调制信号PWM的占空比。
文档编号H03F1/12GK102612803SQ201080047547
公开日2012年7月25日 申请日期2010年10月20日 优先权日2009年10月20日
发明者乔尔·巴特勒 申请人:本质音频处理股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1