一种带反馈的光接收前端电路的制作方法

文档序号:16244144发布日期:2018-12-11 23:24阅读:197来源:国知局
一种带反馈的光接收前端电路的制作方法

本发明涉及一种集成电路,特别提供一种带反馈的光接收前端电路。

背景技术

在激光多普勒血流仪等应用领域,为了能快速扫描到一幅被检测区域的高清晰度的图像,我们需要把感光器件做成2维阵列的形式,并使每个感光像素对应于被照射区域的某个局部。因此,针对一定大小的被照射区域,我们可以通过增加阵列的规模,即提高感光器像素的数量,来提高图像的清晰度。

传统的激光多普勒血流仪集成度低,感光器件与信号处理电路相对独立。虽然技术上较为成熟,但是体积较大,不方便随身携带,限制了其应用。而且其成本高昂,使得这类产品很难消费类电子市场接受。

如图1所示,传统的对数感光电路中,光敏二极管d将接收的光信号转换成电流,n型mos管栅、漏两端短接。mos管等效为一个负载电阻,将电流信号放大并转换成输出电压信号,以供后续的电路对信号进行进一步处理。受限于感光器件的尺寸和光电转换效率,成像感光器中的晶体管通常工作在弱反型区。其i-v特性呈现以下的指(对)数关系:

(式1)

其中,i为晶体管的漏端电流;w、l则分别为晶体管的宽和长;ido为漏电流;vgs为其栅源之间的电压差;是热电压,与温度(k)成正比;n为一个与工艺有关的系数。

在弱反型区,晶体管的跨导gm与电流i成正比关系,即:

(式2)

则输出小信号电压为:

(式3)

式3中在常温下约为26mv,m为调制系数,n的值在1~1.5之间。从式3可知,原始的对数感光电路所产生的交流输出电压较小,抗噪声和干扰的能力较弱,不利于后续电路的处理。输出带宽为:

(式4)

式4中为光敏二极管的寄生电容。从式4可知,光敏二极管生成的电流通常很小,而其寄生电容较大,因此该电路带宽通常较小。而在激光多普勒血流仪等应用中,需要处理的信号的带宽为20khz。如果带宽低于此值,将导致一些较高频率的信号被滤除,无法被后续电路进一步的处理了。

通过以上分析知道受限于光感器件的尺寸和光电转换效率,现有工艺条件下感光芯片的每个像素所能产生的光电流都比较微弱。因此,传统的指对数感光电路所产生的输出电压信号幅度较小,输出信号带宽也较窄。在系统上表现为较小的信号使得信噪比较低,信号容易受各种干扰的影响,从而使输出图像或者失真或者不稳定。而较窄的带宽则会滤除部分需要的频率信息,最终使得图像数据不完整。



技术实现要素:

为了解决上述问题,本发明的目的是提供一种远远提高输出信号幅度的带反馈的光接收前端电路。

为达到上述目的,本发明的技术方案如下:一种带反馈的光接收前端电路,包括光敏二极管d1、n型mos管mn0、mn1、mn2、mn3和p型mos管mp0;所述p型mos管mp0和n型mos管mn3构成反向放大器,二者的源极与衬底均短接,反向放大器的输入端由p型mos管mp0和n型mos管mn3的栅极连接构成,输出端由p型mos管mp0和n型mos管mn3的漏极连接而成;反向放大器的输入连光敏二极管d1的阴极,输出连n型mos管mn0的栅极,构成一个负反馈电路;所述n型mos管mn0、mn1和mn2串联为光敏二极管d1的负载,n型mos管mn0的漏极和p型mos管mp0的源极均接电源,n型mos管mn0的源极接n型mos管mn1的漏极,n型mos管mn1和n型mos管mn2的栅、漏两极均短接,n型mos管mn1的源极接n型mos管mn2的漏极,n型mos管mn2的源极接光敏二极管d1的阴极,n型mos管mn0、mn1、mn2、mn3的衬底和光敏二极管d1的阳极均接地。

本发明的有益效果是:(1)本发明采用在主动像素传感器(aps)上集成感光器件和信号转换和放大的方案,通过较简洁的电路实现接收光信号,光信号转换为电信号,及信号放大三重功能。(2)本发明的光感电路由光敏二极管实现,放大器由一个带反馈的高增益电路实现。这些电路具有面积小,功耗低,易于在标准cmos工艺上实现的优点。

附图说明

图1为传统的对数感光电路的示意图;图2为基于本发明的感光放大电路的示意图;图3为基于本发明的感光放大电路的小信号等效电路示意图。

具体实施方式

下面结合附图详细描述本发明的具体实施方式。

如图2所示,本发明的光敏二极管d1的负载为3个串联的n型mos管(mn0、mn1、mn2)。而一个p型mos管mp0和一个n型mos管mn3一起构成一个反向放大器,其输入为光敏二极管d1的阴极,其输出连mn0的栅端;构成一个负反馈电路。

图3为图2所示电路的小信号等效电路图。图中,光敏二极管d1被等效为一个电流源ii并联上光敏二极管d1的寄生电容cp;n型mos管mn0、mn1、mn2分别被等效为一个压控电流源和它们各自的寄生电容cgs;反向器被等效为一个放大倍数为-k的放大器。借助kcl定律分析图3所示的小信号等效电路,可以得出输出小信号电压与光敏二极管产生的小信号电流的关系如下:

(式5)

从式5可以推知在低频时,输出小信号电压为:

(式6)

对比式3和式6,可以发现本发明的电路可以在输入信号幅度相同的前提下使输出电压幅度提高到约为传统电路的3倍。从式6还可以推知电路的极点为:

(式7)

在实际电路中cp/cgs约为1000倍,k约为10,因此式7可以简化为:

(式8)

从式8可以得知该电路的带宽为:

(式9)

对比式4和式9,可以发现本发明的电路可以在输入信号幅度相同的前提下使电路提高到传统电路的4倍左右(k10)。

本发明在仅增加很少电路以及功耗的前提下,在同样的输入信号幅度下也可以使输出信号幅度达到原来的3倍,而带宽可以达到原来的4倍以上。这样信噪比和数据完整性都比传统的电路有了明显的改善。这在一些需要比较精确的信号处理的应用上,比如激光多普勒血流仪有着非常重要的意义。

以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1