用于接合流体材料的感测器的方法和装置与流程

文档序号:21368619发布日期:2020-07-04 04:44阅读:203来源:国知局
用于接合流体材料的感测器的方法和装置与流程

相关申请的交叉引用

本申请主张2017年7月7日申请的美国临时案第62/529,945号的优先权,其全部内容通过引用并于此文。

本公开涉及用于开发流体系统的结构和方法。更具体地,本公开涉及流体系统,该流体系统具有在液体介质的生化/生物医学或诊断分析中用于限制和/或防止漏电的感测器。



背景技术:

以表面声波(surfaceacousticwave,saw)为基础的感测器可用于测量液体介质中各种类型的生化分析。表面声波感测器可以包括压电基材,输入指叉换能器(interdigitaltransducer,idt)和输出指叉换能器。当使用saw感测器进行生化或生物医学分析时,会将液体引入至感测器元件,不幸的是,saw感测器的电子元件(例如,idt)与液体接触可能对感测器和/或感测器的读取产生不良影响。因此,迫切需要开发一种流体系统,以防止相应区域(例如,电子元件和液体介质)之间发生不需要的相互作用,例如,防止漏电,同时限制感测器反应的任何减损和/或失真。



技术实现要素:

一方面,本发明提供一种感测器,其包括基板;至少一个感测器单元,其中,所述至少一个感测器单元包括感测器元件;一对电子元件,位在所述至少一个感测器元件的相对端上;至少一个外围壁,其布置在基板上并被配置为围绕所述一对电子元件和所述感测器元件的至少一部分;以及顶层,其设置在至少一个外围壁上方,从而在每个电子元件上方产生气穴(airpocket)。

在一个具体例中,感测器可以是saw感测器或是baw感测器.

在一个具体例中,感测器还可以包括在感测器元件的一部分上方的流体通道,其中,所述流体通道配置为接收液体介质。

在一个具体例中,基板可以是压电材料。

在一个具体例中,感测器元件可包括经修饰的基板表面,其配置为捕获至少一种分析物。

在一个具体例中,所述一对电子元件可以包括指叉换能器。

在一个具体例中,所述一对电子元件中的一个可以包括反射器。

在一个具体例中,所述至少一对电子元件中的一个可以包括至少一个指叉换能器。

在一个具体例中,感测器元件和该一对电子元件可以沿着轴线对齐排列。

在一个具体例中,液体介质可以被配置成通过流体通道的第一端的入口进入流体通道,并通过流体通道的第二端的出口离开流体通道。

在一个具体例中,所述至少一个外围壁由塑料片,双面胶带,注射成型材料和垫片中的任何一种形成。

在一个具体例中,电子元件上方的气穴可以具有约0.1μm至约1mm的厚度。

在一个方面,本公开提供了一种将电子元件与感测器上的流体介质隔离的方法,该方法包括以下步骤:在基板上提供至少一个外围壁,其中,至少一个外围壁包围电子元件;在外围壁的顶部上提供顶层,以在电子元件上方产生气穴。

在一个具体例中,液体介质和气穴的界面处形成一个虚拟壁,其由液体介质和气穴之间的压力差而界定。

在一个具体例中,当该压力差大于零时,虚拟壁可以被配置而设立和维持。

所公开的是一种液体池(liquidcell),其将感测器元件与引入的液体介质接合以进行生化分析。液体池可配置为使用气穴隔离声波路径和感测器元件。在一些具体例中,在不使用物理壁的情况下产生气穴。在一些具体例中,该非物理壁是气液虚拟壁。

在一些具体例中,公开了一种感测器,该感测器包括基板,至少一个感测器单元和顶层。在一些具体例中,每个感测器单元包括:感测器元件;一对电组件,其位于一个感测器元件的相对端上;以及至少一个外围壁,其布置在基板上并被配置为围绕一对电子元件和感测器元件的至少一部分。在一些具体例中,顶层被配置在至少一个外围壁上方,从而在每个电子元件上方产生气穴。

在其他具体例中,感测器是表面声波(saw)感测器。在其他具体例中,感测器是体声波(bulkacousticwave,baw)感测器。在其他具体例中,感测器还包括在感测器元件的一部分上方的流体通道,其中,该流体通道配置成接收液体介质。在其他具体例中,基板包括压电材料。在其他具体例中,感测器元件包括经修饰的基板表面,其被配置为捕获至少一种分析物。在其他具体例中,一对电子元件中的其中一个包括指叉换能器。在其他具体例中,一对电子元件中的其中一个包括反射器。在其他具体例中,至少一对电子元件中的其中一个包括至少一个指叉换能器。在其他具体例中,感测器元件和一对电子元件沿轴线对齐排列。在其他具体例中,液体介质被配置为通过流体通道的第一端的入口进入流体通道,并通过流体通道的第二端的出口离开流体通道。在其他具体例中,至少一个外围壁由塑料片,双面胶带,注射成型材料和垫片中的任何一种形成。在其他具体例中,电子元件上方的气穴的厚度为约0.1μm至约1mm。

在一些具体例中,公开了一种将电子元件与感测器上的流体介质隔离的方法。在一些具体例中,该方法包括以下步骤:在基板上提供至少一个外围壁,其中,该至少一个外围壁包围电子元件。在一些具体例中,该方法包括在外围壁的顶部提供顶层的步骤,以在电子元件上方产生气穴。

在其他具体例中,该方法包括虚拟壁,该虚拟壁形成在液体介质和气穴的界面处,并且由液体介质和气穴之间的压力差界定。在其他具体例中,该虚拟壁被配置为在压力差大于零时被设立和维持。

本文中使用的方位术语,例如“顶部”、“底部”、“水平”、“垂直”、“纵向”、“横向”和“末端”,是用于所示出的具体例的上下文中。然而,本公开不应限于所示出的方位。实际上,其他方位也是可能的,并且在本公开的范围内。本文中使用的与圆形有关的术语(例如直径或半径)应理解为不需要求完美的圆形结构,而应该应用于横截面积可以从一边到另一边测量的任何合适的结构。通常,与形状有关的术语,例如“圆形”或“圆柱形”或“半圆形”或“半圆柱形”或任何相关或相似术语,不必严格符合圆形或圆柱体或其他结构的数学定义,但可以包含合理接近的结构。

除非另有明确说明或在所用上下文中另外理解,否则条件性语言(例如“可以(can)”、“可以(could)”、“可能(might)”或“可以(may)”)通常旨在传达某些具体例包括或不包括某些功能、元素和/或步骤。因此,这种条件语言通常不旨在暗示特征、要素和/或步骤对于一个或多个具体例以任何方式为必需的。

除非另有明确说明,否则連詞(conjunctivelanguage)(例如短语“x、y和z中的至少一个”)应与上下文一起理解,该上下文通常用于传达一个项目、术语等可以是x,y,或z。因此,这种連詞通常不旨在暗示某些具体例需要x的至少一个,y的至少一个和z的至少一个的存在。

如本文中所使用的,术语“大约(approximately)”、“约(about)”和“基本上(substantially)”表示接近规定量的量,其仍然执行期望的功能或达到期望的结果。例如,在一些具体例中,如上下文所指示,术语“大约”、“约”和“基本上”可以指的是小于或等于所述量的10%的量。如本文所用,术语“大致”表示主要包括或趋向于特定值、量或特征的值、量或特征。作为实施例,在某些具体例中,如上下文所指示,术语“大致平行”可以指的是与精确平行偏离小于或等于20度的事物。

除非另有明确说明,否则“一个(a)”或“一个(an)”等冠词通常应解释为包括一个或多个所描述的项目。因此,诸如“一个设备配置为"之类的短语旨在包括一个或多个列举的设备。这样的一个或多个所叙述的设备也可以被共同地配置为执行所陈述的叙述。例如,“被配置为执行述为a,b和c的处理器”可以包括被配置为执行述为a的第一处理器与被配置为执行述为b和c的第二处理器一起工作。

术语“包含(comprising)”、“包括(including)”、“具有(having)”等是同义词,以开放式方式包含在内,并且不排除其他元件、功能、动作、操作等。同样,术语“一些”、“某些”等是同义词,以开放式方式使用。同样地,术语“或”以其包含性的含义使用(而不是排他性的含义),因此,例如在用于连接元件列表时,术语“或”表示列表中一个、部分或全部的元件。

本文提供的范围应理解为该范围内所有值的简写。例如,1到50的范围应理解为包括从1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50所组成之群组中的任何数字,数字组合或子范围,以及上述整数之间的十分位小数值,例如1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8和1.9。关于子范围,尤其预期从该范围的任一端延伸的“嵌套(nested)子范围”。例如,例示性的1到50的嵌套子范围可以在一个方向上包括1到10、1到20、1到30和1到40,或以另一个方向的50到40、50到30、50到20和50到10。

总体而言,权利要求的语言应基于权利要求书中使用的语言来广义地解释。权利要求的语言不限于在本公开中示出和描述的,或者在本申请的审查期间讨论的非排他性具体例和实施例。

附图说明

为了说明的目的,在附图中描绘了各种具体例,而不应将其解释为限制具体例的范围。此外,不同公开具体例的各种特征可以组合以形成附加具体例,其为本公开的一部分。

图1a示出了现有技术的感测器的俯视图,其中感测器元件和电子元件被绝缘体(例如,非腐蚀性硅橡胶,二氧化硅层,气腔)覆盖,以防止流体与电子元件之间发生不必要的相互作用。

图1b示出了另一种现有技术的感测器的俯视图,其中,通过密封围绕感测器元件的液室来分离感测器元件和电子元件,以防止流体和电子元件之间不需要的相互作用。

图2a示出了根据本公开的例示性具体例中,包含成对的输入和输出指叉换能器的液体池的俯视图。

图2b示出了根据本公开的示例性具体例中,图2a的液体池的俯视图,其包括成对的输入指叉换能器和反射器。

图3a和图3b示出了例如在图2a和图2b所示的示例性实施方式中,液体池上的虚拟壁和施加在虚拟壁上的压力的示意图。

图4示出了根据本公开的示例性具体例中,示出指叉换能器和/或反射器以及气穴的位置的液体池的截面图。

图5a和5b示出了图4的液体池的示例性具体例的剖视图,其中气穴可以使用例如双面胶带(例如图5a)或垫片(例如图5b)形成。

图6a和图6b示出了根据本公开的液体池的示例性具体例的俯视图,其中在液体池中形成的流体通道可以由顶层限定为具有各种形状和/或路径。

图7示出了根据本公开的液体池的示例性具体例的照片,该液体池形成一个具有由双面胶带产生的气穴的表面声波装置。

具体实施方式

本公开至少部分地基于以下发现:一个或多个虚拟壁(例如,气液虚拟壁)可以被并入液体池中并且被配置为允许液体(例如,化学样品、样品及类似者等)与表面声波(“saw”)感测器电子元件或指叉换能器(“idt”)或反射器接合,而不会显著改变/破坏saw感测器反应。例如,液体池可以通过声波路径上的气穴将液体与电子元件(例如idt和/或反射器)隔离。与现有技术的感测器相比,声波路径上没有物理壁。

公开了各种液体池组件和制造方法,以说明可以用于实现一个或多个期望的改进的各种实施例。为了呈现的目的,公开了关于生化分析,特别是使用液体介质的某些具体例。然而,本文的技术也可以在其他情况下使用。实际上,所描述的具体例仅是实施例,并且不旨在限制所呈现的一般公开以及本公开的各个方面和特征。在不脱离本公开的精神和范围的情况下,本文描述的一般原理可以应用于与本文讨论不同的具体例和应用。本公开应该被赋予与本文所公开或建议的原理和特征一致的最广范围。

概述

以表面声波(“saw”)为基础的感测器可用于在液体介质中执行各种类型的生化感测和分析。例如,已经开发了各种saw装置,包括水平剪切saw感测器(“sh-saw”),引导式sh-saw感测器(也称为乐甫波(love-wave)装置)和没有波导的saw感测器。

图1a和1b分别示出了现有技术的感测器1和现有技术的感测器5。现有技术的感测器可以包括压电基板(未示出)、在基板表面的一侧上的输入指叉换能器(“idt”)40a、在表面的另一侧上的输出idt40b以及向idt提供电信号的电触点60。输入和输出idt40a和40b之间表面声波将传播通过的空间称为延迟线。感测器元件30沿着延迟线位于压电基板的表面上。

输入idt40a将电信号转换成声机械波,该声机械波被配置为在压电基板的表面上传播。当声波到达输出idt40b时,声波被转换回电信号。当延迟线上发生物理(例如温度)或化学(例如质量或粘度)变化时,这会影响声波的传播。声波传播的变化可以通过检测输入和输出电信号的振幅,相位,频率和/或时延等方差来测量。

在液体介质中使用表面声波感测器进行生化分析时,所面临的挑战是开发可靠的流体系统。idt必须正确密封或与液体介质隔离,以防止任何漏电。已经开发出几种方法来将idt和电触点与流体隔离。图1a示出了一种方法,其中现有技术的感测器1包括流体池(flowcell)20、感测器元件30和电触点60。电触点60以及现有技术的感测器1的输入idt40a和输出idt40b被绝缘体50覆盖。绝缘体50可以由多种材料制成,例如非腐蚀性硅橡胶,二氧化硅层或气腔。现有技术的感测器1可以包括具有入口10和出口12的顶层70,以允许液体流过感测器1。当流体被引入到感测器元件30上时,绝缘体50作为流体和电触点60/idt40a和40b之间的物理屏障。

图1b示出了限制液体介质与电子元件之间的相互作用的另一种方法。在图1b的现有技术的感测器5中,流体池20被放置在压电基板的顶部上以在感测器元件30上方产生流体通道。流体池20具有将idt和感测器元件分开的壁,且通常使用橡胶密封圈密封在基板上。流体被引入到流体池20的顶层70上的入口10中,并被限制在输入idt40a和输出idt40b之间的区域中。流体池20允许液体接触感测器元件30,而不暴露于idt40a和40b以及电触点60,然后液体可以从位于流体池20的顶层70上的出口12除去。

在上述实施例(例如,现有技术的感测器1和现有技术的感测器5)中,这两个感测器在idt和感测器元件之间均具有物理壁。不利的是,当将所述的物理壁压在设备表面上时,声波可能会受到干扰或破坏,从而导致感测器反应的总体损耗和失真大大增加。为了最大化这些以saw为基础的设备的功能,因此应设计感测器,使其结构具有保护电元件不受液体介质影响的结构,同时确保传播通过感测器元件的声信号不会受到声信号的干扰。

本文公开的是液体池的具体例,其允许液体与saw感测器元件相接触而不会显著破坏感测器反应。液体池通过气穴将声波路径和电子元件(例如idt和/或反射器)隔离开。在一些具体例中,这些气穴是通过使用气液虚拟壁产生的。与现有技术的感测器相反,声波路径上没有物理壁。

图2a和2b示出了具有液体池100界面的saw感测器的两个示例性具体例。如将在下面更详细讨论的,液体池100可以包括密封构件210a和210b,其具有设置在感测器基板182上的外围壁180。在一些实施例中,感测器基板是压电或金属波导。液体池100的外围壁180可以包围声波路径和电子元件(例如,诸如140a和140b的idt以及反射器190)。顶板可被配置为位于带有入口110和出口112的外围壁210a,和210b的六边形图案区域上,并提供至少一个开口以允许液体材料被引入到液体池100中或从液体池100中去除。开口110和112可以是任何形状,并且可以直接位于感测器元件130上方或感测器元件130的侧面。在一些具体例中,当引入液体物质时,电子元件之间的整个区域(例如,idt和反射器)被空气覆盖。如以下将更详细讨论的,在将液体样品从开口引入所公开的液体池100时,该液体池100的配置允许产生压力,从而形成可以将电子元件(例如idt和反射器)从引入至感测区的液体隔离的气液虚拟壁。

液体池概述

图2a和2b示出了液体池100的两个具体例的顶视图。分别如图2a和2b中的液体池100和105的两个具体例中所示,液体池100和液体池105可包括装置基板(未示出),用作感测器的基础并支撑多个元件(例如,感测器元件,电子元件等)。在一些具体例中,装置基板包括压电材料。

可以在装置基板的表面上设置多个元件。例如,分别如图2a和图2b所示,液体池100和液体池105可包括设置在基板111的表面上的多个感测器元件120和130(参见图2a中的阴影区域)。图2a中描绘的感测器包括在每个感测器元件130的相对侧上的输入换能器140a和输出换能器140b,以及耦接到输入换能器140a和输出换能器140b的电触点160。

图2b中所示的感测器包括在每个感测器元件130一侧的输入换能器140a,和在感测器元件130另一侧的反射器190。这些换能器耦合到电触点160,并被配置为将电信号传递到输入换能器140a和输出换能器140b,其被配置为将电信号转换为声波。尽管示出了具有两个感测器元件130的液体池100和液体池105,但是所公开的液体池可包括任意数量的感测器元件130(例如,一个、两个、三个、四个、五个等)。在一些具体例中,感测器元件130可以居中在设备基板的表面上。在一些具体例中,感测器元件130可具有偏离中心的配置。感测器元件130设置于沿着声波传播的路径上。

如上所述,感测器元件130可以被配置为将信号从输入换能器140a传播到输出换能器140b。在一些具体例中,感测器元件130是基于表面声波的感测器。感测器元件130的长度可以在1mm至20mm之间。在一些具体例中,感测器元件130的长度可以在1mm以下、介于1mm至2mm之间、介于2mm至3mm之间、介于3mm至4mm之间、介于4mm至5mm之间、介于5mm至6mm之间、介于6mm至7mm之间、介于7mm至8mm之间、介于8mm至9mm之间、介于9mm至10mm之间、介于10mm至11mm之间、介于11mm至12mm之间、介于12mm之间至13mm、介于13mm至14mm之间、介于14mm至15mm之间、介于15mm至16mm之间、介于16mm至17mm之间、介于17mm至18mm之间、介于18mm至19mm之间、介于19mm至20mm之间或20mm以上。在一些实施例中、感测器元件130的长度可以为1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm、11mm、12mm、13mm、14mm、15mm、16mm、17mm、18mm、19mm或20mm。在一些具体例中,感测器元件130可包括在生物或化学层中。在一些实施例中,生物或化学层可以被配置为提供生物材料和/或化学检测。

在一些具体例中,感测器元件130是体声波(“baw”)感测器。baw感测器是一种由夹在两个电极之间的至少一种压电材料所组成的装置。电极在压电材料上施加交变电场而产生一些应力,从而产生baw波。在一些实施例中,baw感测器包括具有高和低声阻抗的层(例如,布拉格(bragg)反射器),并且这些层是悬挂的。用于液体或气体的baw感测器的工作原理是,任何与baw感测器表面相互作用的东西都会改变其共振频率。通过追踪和解码共振频率(例如,通过测量频率或相位),可以测量附着在感测器表面的颗粒的质量负荷和粘度。在一些实施例中,baw感测器可以包括压电基板,该压电基板包括诸如aln,pzt,石英,linbo3,兰格斯特(langasite)等的材料。在一些具体例中,baw感测器可以包括电极,其包含诸如金,铝,铜等材料。在一些实施例中,baw感测器可以包括布拉格反射器,该反射器包含高或低声阻抗材料。在一些实施例中,baw感测器可以包括与分析物相互作用的层,该层可以是生物活性层,可以包含抗体或抗原,可以是气体敏感的,可以包含钯等。在一些具体例中,baw感测器可以包括被配置为传播声波的任何材料。

接下来转向多个输入换能器140a和输出换能器140b,在一些实施例中,一对输入换能器140a和输出换能器140b沿着与感测器元件130相同的轴线对齐排列。在一些具体例中,输入换能器140a在感测器元件130的一侧上设置,并在感测器元件130的另一侧上设置反射器190(例如,参见图2b)。声波从输入换能器140a通过感测器元件130向反射器190传播,然后反射回到换能器140a,并转换回电信号以进行分析。

在一些具体例中,如图2a和2b所示,该对电子元件中的至少一个(例如,输入换能器140a和输出换能器140b)可以与电触点160相邻放置。在图2a所示的示例性具体例中,一对电子元件可以是一对输入140a和输出140b换能器。由于图2a中的两个电子元件都是输入换能器140a和输出140b,因此输入140a和输出140b换能器都与电触点160相邻放置。在图2b中所示的示例性具体例中,一对电子元件中的一个是输入换能器140a,并且该对电子元件中的另一个是反射器190。在图2b所示的实施例中,电触点160被放置为与输入换能器140a相邻,以向输入换能器140a提供电力。

如图2a和2b所示,顶层170(例如,li2tao3晶体区/区域)包括位于感测器元件130的中心上方的裂口,使得可以将液体介质直接插入到感测器元件上方。在一些具体例中,顶层170不包括入口或出口。在一些具体例中,顶层170包括入口110和出口112,入口110和出口112被配置为允许液体介质流过流体通道120。如将在下面更详细地讨论的,当液体介质被引入到流体通道120中时,可以形成气液虚拟壁,从而防止了液体介质与电子元件接触。在一些实施例中,所形成的气液虚拟可以非常薄并且可以大约或大于200μm。在一些具体例中,流体池100和流体池105可包括顶层170,其设置在装置基板(未示出)、电子元件(例如,一对输入140a和输出140b换能器(例如,如流体池100中所示)或输入换能器140a和反射器190(例如,如流体池105中所示)以及感测器元件130的至少一部分的上方。

顶层170可以由诸如聚碳酸酯,聚乙烯、聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯,聚四氟乙烯等的塑料材料构成。在一些具体例中,顶层170可以由诸如玻璃、石英等材料构成。在一些具体例中,顶层170可具有0.1mm至2cm之间的厚度。在一些具体例中,顶层170的厚度可以小于0.1mm、介于0.1mm至0.2mm之间、介于0.2mm至0.4mm之间、介于0.4mm至0.6mm之间、介于0.6mm至0.8mm之间、介于0.8mm至1.0mm、介于1.0mm至1.2mm之间、介于1.2mm至1.4mm之间、介于1.4mm至1.6mm之间、介于1.6mm至1.8mm之间、介于1.8mm至2.0mm之间或大于2.0mm。在一些具体例中、顶层可以是0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm或2.0mm中的任何一个。在一些具体例中,顶层170可以被注射成型。

在一些实施例中,如图2a和2b所示,流体池100可以包括配置为接收流体介质以进行分析的流体通道120。在一些具体例中,流体通道120不平行于多个电子元件和感测器元件130。在其他具体例(未示出)中,流体通道120由顶层170中的开口形成,使得流体通道120(例如,顶层170中的裂口)暴露出100的多个感测器元件130的一部分。在一些具体例中,流体通道120可具有2mm的宽度或10mm的长度。在一些实施例中,流体通道120被配置为限定流体池100的感测区域。

为了将液体介质引入到流体池100和/或105中,流体池100和/或105可包括入口110和出口112。在一些具体例中,入口110和出口112可形成在顶层170中。入口110和出口112可位于延伸至多个感测器元件130的一部分上的流体通道120的相对端上。

液体池100和液体池105可包括外围壁180以形成气穴182,从而在多个电子元件(例如,布置在流体池100中的成对输入140a和输出140b换能器或布置在流体池105中的输入换能器140a和反射器190)和液体介质之间形成气液虚拟壁,使得液体介质不接触电子元件(例如,布置在流体池100中的一对输入140a和输出140b换能器或布置在流体池105中的输入换能器140a和反射器190)。下面更详细地讨论关于气液虚拟壁的形成。

外围壁180可具有多种配置。例如,如图2a和2b所示,液体池100和/或105可包括多个平行的外围壁180,其沿着每个电子元件160的外部并在其之间延伸。液体池105还可以包括垂直的外围壁180,该垂直的外围壁180延伸跨越电子元件160的一部分,使得垂直的外围壁180连接到多个平行的外围壁180中的每一个。在一些具体例中,外围壁180厚度在1μm至1mm之间。在一些具体例中,外围壁180的厚度小于1μm、介于1μm至50μm之间、介于50μm至100μm之间、介于100μm至150μm之间、介于150μm至200μm之间、介于200μm至250μm之间、介于250μm至300μm之间、介于300μm至350μm之间、介于350μm至400μm之间、介于400μm至450μm之间、介于450μm至500μm之间、介于500μm至550μm之间、介于550μm至600μm之间、介于600μm至650μm之间、介于650μm至700μm之间、介于700μm至750μm之间、介于750μm至800μm之间、介于800μm至850μm之间、介于850μm至900μm之间、介于900μm至950μm之间、介于950μm至1mm之间、或大于1mm。在一些实施例中,外围壁180的厚度是1μm、50μm、100μm、150μm、200μm、250μm、300μm、350μm、400μm、450μm、500μm、550μm、600μm、650μm、700μm、750μm、800μm、850μm、900μm、950μm、或1mm。在一些具体例中,外围壁180的厚度可以使用可光图案化的材料(例如,光致抗蚀剂)、双面胶带、3-d印刷材料等来制造。

虚拟墙概述

如上所述,所公开的液体池可以包括气液虚拟壁,以防止液体介质接触电子元件。图3a和3b示出了所施加的各种压力以形成气液虚拟壁184。图3a示出了两个虚拟壁184之间的流体通道120,而图3b示出了各种施加压力在物理壁142和170之间形成的虚拟壁184的截面图。

如图3a和3b所示,在液体池内施加了许多压力以形成气液虚拟壁184。各种压力例如包括:

patm=从流体入口施加的大气压,

pw=通道区域中液体的质量重量,这个重量非常小,对于微流体通道中的液体通常可以忽略不计,

pf=流体通道和出口之间的压力差,

pg=气室内的气压,以及

ps=在液体-气体界面上产生的表面压力。

鉴于上述压力,使用临界压力(δpc)决定虚拟壁184。临界压力(δpc)定义为虚拟墙的空气侧(pg+ps)与液体侧(patm+pw+pf)之间的压差等式[1]:

等式[1]t.pc=(pg+ps)-(patm+pw+pf)

可以使用理想气体定律来计算气压(pg)。当密封的气室(由原始体积为v1的气液虚拟壁所创建)被压缩时,气室的体积将减小并达到平衡(v2)。密封室内的平衡气压(pg)可以使用以下公式[2]计算:

等式[2]pg=patm(v1/v2至1)

其中:

v1=密封室内的原始空气量,以及

v2=被压缩的空气滞留在密封室内。

在一些具体例中,最初时,大气压力(patm)的空气被包含在由虚拟壁界定的已知体积(v1)的密封腔室内。当对虚拟壁施加液体压力时,一些液体被迫进入密封腔室,从而压缩内部的空气并达到pg的平衡压力。在一些实施例中,如果腔室在周围的外围壁上有任何开口,则平衡压力为零。

当将液体泵送通过虚拟壁时,会对虚拟壁施加液体压力(pf),该压力可以使用hagen-poiseuille流量等式[3]来估算:

等式[3]pf=72μ·q·l/(ah2),对于一个w>>h的浅通道

其中:

q=体积流量,

h=液体通道深度,

w=液体通道宽度,

l=虚拟墙和出口之间的距离,

μ=液体粘度,以及

a=通道的横截面积。

可以通过调节体积流量(q)和连接通道的尺寸来控制液体压力。

可以通过公式[4]获得在液体-气体界面上发生的表面压力(ps):

等式[4]ps=2·σ·sin(θ-0.5π)/h

其中:

σ=液体-气体表面张力系数,以及

θ=静态接触角,其取决于材料的表面特性可以是增进的(θ>90°)或退缩的(θ<90°)。取决于材料的表面性质,表面压力可以是正压或负压。对于具有退缩的接触角(θ)的亲水性材料,表面压力为负,而对于疏水性材料(θ>90°),表面压力为正。

可以通过将临界压力t.pc保持大于零来设立和维持虚拟墙。图4示出了液体池100的剖视图,其示出了电子元件(例如,输入换能器140a和输出换能器140b和/或流体池105配置的输入换能器140a和反射器190)和气穴182的位置。如图所示,液体池100具有底部装置基板102,该底部装置基板102具有感测器元件130,感测器元件130在感测器元件130的任一侧上具有一对电子元件160。在一些实施例中,感测器元件130的第一侧具有输入换能器140a,和在感测器元件130的第二侧上具有输出换能器140b或反射器190。如上所述,外围壁180可接合一对电子元件160的一部分,并设置在电子元件160的至少一部分和与该对电子元件对相邻的感测器元件130的任一端的一部分上。为了形成气穴和气液虚拟壁,在装置基板102、多个感测器元件130和多个电子元件160上放置顶层170。在一些具体例中,每个气穴182被配置为覆盖一对电子元件160中的每一个的表面的至少一部分,该气穴182可以被配置为隔离该对电子元件160以免接触流体通道120中的液体介质。在一些具体例中,外围壁180附接到顶层170的表面。

虚拟墙的具体例

气液虚拟墙可以通过多种方式设立。例如,在一些具体例中,通过形成密闭腔室来形成气液虚拟壁。在一些具体例中,顶层可以是疏水或亲水表面。在一些实施例中,通过形成未密封的腔室来创建虚拟墙。在一些实施例中,顶层可以具有疏水表面。

如上所述,为了形成虚拟墙:t.pc=(pg+ps)-(patm+pw+pf),其中,于所述虚拟墙中设立为t.pc>0。在具体例中,形成亲水表面,ps为负。而在具体例中,形成疏水表面,ps为正。

在类似于图2b的具体例中(例如,未密封的腔室),pg可以为零。图2b的液体池100的表面可以是疏水的或亲水的。在一些具体例中,图2b的液体池100优选是疏水的。

在类似于图2a的具体例中(例如,密封腔室),pg可以大于零。图2a的液体池100的表面可以是疏水的或亲水的。在一些具体例中,图2a的液体池100优选是疏水的。

可以使用多种方法设立用于形成虚拟墙的气穴。在一些具体例中,可以使用双面胶带,垫片(例如聚二甲基硅氧烷,硅树脂),光刻法(例如su-8或光致抗蚀剂或可光图案化的材料),注射成型法(例如聚碳酸酯,pmma)等来形成气穴。

在一些具体例中,虚拟壁形成在液体池的基板与顶层之间。在一些实施例中,在顶层和底层之间形成的间隙介于1μm和1mm之间。在一些具体例中,形成的间隙小于1μm、介于1μm至50μm之间、介于50μm至100μm之间、介于100μm至150μm之间、介于150μm至200μm之间、介于200μm至250μm之间、介于250μm至300μm之间、介于300μm至350μm之间、介于350μm至400μm之间、介于400μm至450μm、介于450μm至500μm之间、介于500μm至550μm、介于550μm至600μm之间、介于600μm至650μm之间、介于650μm至700μm之间、介于700μm至750μm之间、介于750μm至800μm、介于800μm至850μm之间、介于850μm至900μm、介于900μm至950μm之间、介于950μm至1mm之间或大于1mm。在某些实施例中、所形成的间隙为1μm、50μm、100μm、150μm、200μm、250μm、300μm、350μm、400μm、450μm、500μm、550μm、600μm、650μm、700μm、750μm、800μm、850μm、900μm、950μm或1mm。

下文描述的液体池200、300、400、500、600在很多方面类似于或相同于液体池100。因此,用于识别液体池100的部件的数字以100的倍数增加,以识别液体池100的相似特征。该编号方法通常适用于其余附图。在本说明书的任何具体例中公开的任何组件或步骤都可以在任何其他具体例中使用。

图5a和5b示出了液体池的截面图,其具有使用不同方法形成的气穴。首先,于图5a中的流体池200,类似于上述的流体池100、105,流体池200具有装置基板202,该装置基板202具有感测器元件230,与多个电触点260相邻的多个电子元件(例如,输入换能器240a和输出换能器240b或反射器(未显示))。气穴282可以使用胶带286(例如,双面胶带)和塑料片280形成。如上所述,胶带286在第一侧附接至多个电子元件260,而第二侧附接至塑料片280。如上所述,塑料片280设置在一对输入换能器240a和输出240b换能器的一部分以及感测器元件230的一部分上。在一些具体例中,塑料片280可以附接到顶层270的下侧。

与液体池100、105相似,图5b中的液体池300具有带有感测器元件330、与多个电触点360相邻的多个电子元件(例如,输入换能器340a和输出换能器340b或反射器,未显示)的装置基板302。气穴382可以使用垫片380形成。在一些具体例中,垫片380附接到电触点360的多个表面并且附接到顶层370的下侧。如上所述,垫片380设置在输入换能器340a和输出换能器340b的一部分以及感测器元件330的一部分上。

在一些具体例中,可以对液体池进行表面处理,以使气穴更疏水。在一些实施例中,通过在基板材料表面上涂覆或化学接枝疏水材料薄层来进行表面处理。气穴可以具有任何形状,大小或尺寸。在一些具体例中,气穴的厚度可以在0.1μm至1mm之间。

在一些具体例中,气穴和/或流体通道的结构可以是自我界定的。在一些具体例中,流体通道的形状可以改变。在一些实施例中,流体通道420的形状可以由顶层470的结构界定。例如,顶层提供气体液体结合部的表面张力。在图6a和6b中示出了各种流体通道的实施例。首先,于图6a,液体池400具有感测器元件430,该感测器元件430在感测器元件430的任一侧上具有一对电子元件。例如,液体池400可包括在其第一端上的输入换能器440a和第二端上的反射器490。电触点460可以位于与输入换能器440a相邻的位置,以向输入换能器440a提供电能。设置了外围壁480以形成气穴482。如上所述,顶层470设置在电子元件460和感测器元件430上方。如图所示,在入口410和出口412之间形成流体通道420。如图6a所示,流体通道420具有倾斜的侧面和弯曲的侧面。

图6b的液体池500示出了自我界定的流体通道的另一实施例。液体池500具有感测器元件530,感测器元件530在感测器元件530的任一侧上具有一对电子元件。例如,液体池500包括在第一端上的输入换能器540a和在第二端上的反射器590。电触点560可设于邻近输入换能器540a以向换能器540a供应电力。设置了外围壁580以形成气穴582。如上所述,顶层570设置在电子元件560和感测器元件530上方。如图所示,在入口510和出口512之间形成流体通道520。如图6b所示,流体通道520具有两个阶梯状成角度的侧面。

实施例

根据本公开,图7示出了的具有由双面胶带设立的气穴的表面声波(“saw”)装置(例如,液体池600)的实施例。图7的液体池600包括流体通道620、多个电子元件(例如,输入换能器640a和反射器690)、多个气穴682以及感测器的接触垫660,读取器于此接触感测器。

该saw装置是使用标准的光刻技术在厚度为500μm,直径为100mm,以36°y轴切角,x轴衍伸的钽酸锂(litao3)晶圆上制造的。可以先在桶式灰炉中清洗晶圆,然后将其浸入1%的氢氟酸(hf)中。然后将光致抗蚀剂施加到晶圆上,并通过光刻程序进行图案化,再进行钛(10nm)/铝(70nm)的金属化和剥离程序,以做出指叉换能器、铝波导和反射器。然后晶圆可以切成个别的晶粒。

在图7所示的saw装置中,使用压敏双面胶带作为(厚度为125μm,adhesiveresearch,目录号90445)产生气穴的空间。以激光切割气腔区域,然后将胶带与250μm厚的塑料薄板粘合在一起。然后以激光切割接触垫和流体通道的开口区域,最后,将塑料片与saw装置粘合在一起。

总结

尽管已经在某些具体例和实施例的文意中公开了液体池(例如,生化分析),但是本公开超出了具体公开的具体例,延伸至其他替代具体例和/或具体例及其某些修改形式和等同形式的使用。例如,任何公开的盖子都可用于干眼检测以测量人眼泪中的盐浓度,在人与动物疾病诊断中可用于从例如血液,尿液,鼻拭子,阴道拭子或其他样本中测量生物体内病毒,细菌,蛋白质,抗体,抗原,dna,rna的数量。所公开的具体例的各种特征和方面可以彼此组合或替代,以形成输送的不同模式。本公开的范围不应由本文描述的特定公开的具体例限制。

在本公开中,以个别实现方式的文意所描述的某些特征,也可以在单个实现方式中组合实现。相反地,在单个实现方式的文意中所描述的各种特征,也可以分别在多个实现方式中或以任何合适的子组合来实现。尽管以上可能将特征描述为以某些组合形式起作用,但是在某些情况下,可以从组合中切除一个或多个所要求保护的组合的特征,并且该组合可以被主张为任何子组合或任何子组合的变体.

此外,尽管可以以特定顺序在附图中描绘操作或在说明书中描述操作,但是不需要以所示的特定顺序或顺序来执行这样的操作,并且不需要执行所有操作来获得期望的结果。未描绘或描述的其他操作可以并入实施例方法和程序中。例如,可以在任何所述操作之前,之后,同时或之间执行一个或多个附加操作。此外,在其他实施方式中,操作可以被重新配置或重新排序。另外,上述实施方式中的各种系统部件的分离不应理解为在所有实施方式中都需要这样的分离,并且应当理解,所描述的部件和系统通常可以集成在单个产品中或包装成多个产品。另外,其他实施方式也在本公开的范围内。

一些具体例结合附图而描述。附图是按比例绘制和/或显示的,但是这种比例不应该是限制性的,因为可以想到所示的尺寸和比例之外的其他尺寸和比例,并且它们在本公开的范围内。距离,角度等仅是示例性的,不一定与所示设备的实际尺寸和布局具有确切的关系。可以添加,删除和/或重新排列组件。此外,与各种具体例有关的任何特定特征、方面、方法、特性、特征、质量、属性、元件等的本文公开内容可以用于本文阐述的所有其他具体例中。另外,可以使用适合于执行所列举的步骤的任何装置来实践本文描述的任何方法。

总之,已经公开了具领导性的装配的各种具体例和实施例。尽管已经在那些具体例和实施例的上下文中公开了该装配,但是本公开超出了具体公开的具体例,延伸至其他替代具体例和/或具体例的其他用途,以及其某些修改和等同形式。本公开明确地预期所公开的具体例的各种特征和方面可以彼此组合或替代。因此,本公开的范围不应由上述具体公开的具体例限制,而应仅由对以下权利要求的公正理解来决定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1