陶瓷加热器以及筒状轴的制法的制作方法

文档序号:20081663发布日期:2020-03-10 10:46阅读:144来源:国知局
陶瓷加热器以及筒状轴的制法的制作方法

本发明涉及陶瓷加热器以及筒状轴的制法。



背景技术:

一直以来,作为陶瓷加热器,公知一种具备陶瓷制的板和陶瓷制的筒状轴的陶瓷加热器,陶瓷制的板具有载置晶片的晶片载置面并内置有电阻发热体,陶瓷制的筒状轴与板的晶片载置面的相反侧的面(背面)接合。专利文献1中公开有在这样的陶瓷加热器中朝向上方展开的喇叭状的筒状轴。筒状轴的下端经由o型圈安装于底板。在该筒状轴的外壁的一部分,形成有用于沿高度方向插通热电偶的插通路。插通路由设于筒状轴的外壁且沿高度方向延伸的凹槽和以封堵该凹槽的方式熔敷并接合的盖部件构成。

现有技术文献

专利文献

专利文献1:日本特开2009-010195号公报



技术实现要素:

发明所要解决的课题

然而,专利文献1中,筒状轴呈喇叭状,但在筒状轴内通过的热的路径较短,因而有无法防止筒状轴的下端面的高温化的问题。若筒状轴的下端面的温度变得过高,则超过o型圈的耐热温度,从而有o型圈无法发挥充足的密封性的担忧。并且,专利文献1中,由于插通路是在凹槽覆盖有盖部件的构造,所以外观上不美观,而且有盖部件的接合不充分则盖部件脱落的担忧。

本发明是为了解决这样的课题而完成的,其主要目的在于,防止筒状轴的下端面的高温化,而且外观上美观且能够长时间维持贯通孔构造。

用于解决课题的方案

本发明的陶瓷加热器具备陶瓷制的板和陶瓷制的筒状轴,上述板具有载置晶片的晶片载置面并内置有电阻发热体,上述筒状轴的一端与上述板的背面接合,上述陶瓷加热器中,上述筒状轴的纵截面的形状是具备至少在一处具有s字形部分或者拐点的弯曲部分的形状,上述筒状轴具有从上述筒状轴的上述一端贯通至另一端且轴线沿上述筒状轴的上述纵截面的形状的贯通孔。

在该陶瓷加热器中,筒状轴的纵截面的形状是具备至少在一处具有s字形部分或者拐点的弯曲部分的形状。因此,在筒状轴内通过的热的路径(从筒状轴的一端至另一端为止的路径)变长,能够防止筒状轴的另一端面的高温化。并且,由于从筒状轴的一端贯通至另一端的贯通孔并非如专利文献1所述地接合盖部件来形成,所以外观上美观,并且能够长时间维持贯通孔构造。

本发明的陶瓷加热器也可以构成为,上述贯通孔是气体通路,上述板具有与上述贯通孔连通并在厚度方向上贯通上述板的气体流通孔。在该情况下,在筒状轴的贯通孔内通过的是气体,因而无论贯通孔的形状如何,都能容易地通过。因此,即使筒状轴的纵截面的形状是在两处以上具备s字形部分或者弯曲部分的形状,并且贯通孔的轴线沿该形状,气体也容易地通过贯通孔。若筒状轴的纵截面的形状是在两处以上具备s字形部分或者弯曲部分的形状,则能够使在筒状轴内通过的热的路径变得更长,因而更容易防止筒状轴的另一端面的高温化。此外,气体通路可以用作经由气体流通孔向载置于晶片载置面的晶片的背面供给气体(例如导热用气体),也可以用作从载置于晶片载置面的晶片的背面经由气体流通孔排出气体来进行抽真空。

本发明的陶瓷加热器也可以构成为,上述贯通孔是热电偶配置孔,上述板具有与上述热电偶配置孔连通并在上述板的内部具有底部的有底孔。在该情况下,由于在贯通孔内通过的是有形的热电偶,所以贯通孔的形状最好为较简单。即,筒状轴的纵截面的形状优选是仅在一处具备s字形部分或者弯曲部分的形状。

本发明的陶瓷加热器也可以构成为,上述贯通孔是具有不足上述筒状轴的壁厚的直径的孔。

本发明的陶瓷加热器也可以构成为,上述贯通孔是上述筒状轴的内周壁与外周壁之间的筒状空间,上述筒状空间的横截面的形状是与上述筒状轴的横截面呈同心圆(允许公差等)的环状,在上述筒状空间设有将上述内周壁与上述外周壁局部地连结的连结部。这样一来,筒状轴的横截面积变小,因而从筒状轴的一端至另一端的热电阻变大。其结果,从筒状轴的一端至另一端的导热量变少,减少或消除板中的与筒状轴接触的部分和该部分以外的部分之间的温差。并且,由于也减少热应力,所以能够防止使用中的破损。另外,在使用这样的贯通孔作为气体供给孔或者抽真空孔的情况下,与使用小径(直径不足筒状轴的壁厚)的贯通孔的情况相比,能够防止气体流动局部地集中,从而板的热均匀性变得良好。

本发明的陶瓷加热器也可以构成为,上述筒状轴的壁厚(从内周面至外周面的长度)为10mm以下。这样一来,由于筒状轴的壁厚较薄,所以减少热应力。此外,当考虑筒状轴的强度时,壁厚优选为6mm以上。

本发明的筒状轴的制法是制造陶瓷制的筒状轴的方法,上述筒状轴的纵截面的形状是具备至少在一处具有s字形部分或者拐点的弯曲部分的形状,上述筒状轴具有从上述筒状轴的上述一端贯通至另一端且轴线沿上述筒状轴的上述纵截面的形状的贯通孔,上述筒状轴的制法包括:

(a)使用含有陶瓷粉末的浆料并利用3d打印机来制作与上述筒状轴形状相同或相似的成形体、或者使用含有陶瓷粉末的浆料并利用模铸法来制作与上述筒状轴形状相同或相似的成形体的工序;和

(b)通过对上述成形体进行烧成来获得上述筒状轴的工序。

根据该制法,即使筒状轴形成为较复杂的形状,即纵截面的形状是具备至少在一处具有s字形部分或者拐点的弯曲部分的形状,并且筒状轴具有从筒状轴的一端贯通至另一端且轴线沿筒状轴的纵截面的形状的贯通孔,也能够较容易地制造该筒状轴。

附图说明

图1是实施方式的陶瓷加热器10的立体图。

图2是陶瓷加热器10的纵剖视图。

图3是筒状轴30的俯视图。

图4是筒状轴30的仰视图。

图5是陶瓷加热器110的纵剖视图。

图6是筒状轴80的俯视图。

图7是筒状轴80的横剖视图(图5的a-a剖视图)。

图8是陶瓷加热器210的纵剖视图。

图9是陶瓷加热器10的变形例的纵剖视图。

具体实施方式

以下,参照附图对本发明的优选的实施方式进行说明。图1是陶瓷加热器10的立体图,图2是陶瓷加热器10的纵剖视图(以包含中心轴的面剖切陶瓷加热器10时的剖视图),图3是筒状轴30的俯视图,图4是筒状轴30的仰视图。

陶瓷加热器10用于加热被实施蚀刻、cvd等处理的晶片,设置在未图示的真空腔内。该陶瓷加热器10具备能够载置晶片的板20和支撑板20的筒状轴30。

板20是内置电阻发热体22的陶瓷制的圆板。板20的表面成为载置晶片的晶片载置面20a。通过模压加工在晶片载置面20a设有多个细小的圆柱突起(图示省略),并在突起的上表面支撑晶片。在板20设有在厚度方向上贯通板20的多个(在本实施方式中为两个)气体流通孔26。气体流通孔26在晶片载置面20a的未图示的圆柱突起彼此之间开口。作为陶瓷,没有特别限定,例如可以举出以氮化铝、氧化铝、碳化硅、氮化硅等为原料的陶瓷。

电阻发热体22呈线圈形状、带形状、网眼形状、板状或者薄膜状,例如由以w、mo、ti、si、ni的单体或者化合物(碳化物等)为主要成分的材料、将上述材料组合而成的材料、或者上述材料与板20所使用的陶瓷原料的混合材料等来制作。电阻发热体22布设为从一端至另一端以一笔写下来的要领遍及晶片载置面20a的整个区域。电阻发热体22的一端和另一端分别与从板20的背面20b露出至筒状轴30的内部空间的供电端子(图示省略)连接。一对供电端子经由各自所连接的棒状的供电部件(图示省略)与外部电源(图示省略)连接。棒状的供电部件配置为通过筒状轴30的内部空间。若从其外部电源供电,则电阻发热体22发热来加热载置于晶片载置面20a的晶片。

筒状轴30是陶瓷制的筒状部件,与板20的背面20b接合。筒状轴30具有笔直状的轴下方部31和呈朝向上方而向径向外侧方向缓缓地扩大的形状的轴上方部32。如图2所示,轴上方部32的纵截面的形状是具备s字形部分(在本实施方式中为具有拐点32a的弯曲部分)的形状。筒状轴30的上端面30a与板20的背面20b接合。作为陶瓷,能够使用已经示例出的材料,但优选使用与板20相同的材料。

筒状轴30具有从上端面30a贯通至下端面30b的多个贯通孔36。在本实施方式中,如图3所示,沿筒状轴30的周向隔开180°地设有两个贯通孔36。贯通孔36的直径φ1比筒状轴30的壁厚t(从内周面至外周面的长度)小。当考虑减少筒状轴30的热应力时,壁厚t优选为10mm以下。其中,当考虑筒状轴30的强度时,壁厚t优选为6mm以上。如图2所示,贯通孔36的轴线沿筒状轴30的纵截面的形状。贯通孔36与板20的气体流通孔26连通。

筒状轴30具有从下端部的外周面向径向外侧方向突出的凸缘33。如图2所示,筒状轴30的下端面30b包含凸缘33的下端面,并安装于作为真空腔的一个部件的板状的基座40的圆孔42的周围。具体而言,在基座40的圆孔42的周围设有环状的凹槽44,筒状轴30的下端面30b经由嵌入该凹槽44内的氟树脂(例如特氟龙(注册商标))制的o型圈50并由螺纹件等固定于基座40。筒状轴30的内部s1与外部s2由o型圈50来密封。

筒状轴30的上端面30a固相连接或者tcb接合(thermalcompressionbonding,热压接合)于板20的背面20b。固相连接的详细内容记载在日本专利第2783980号、日本专利第4070752号、日本专利第3316167号等中,tcb接合的详细内容例如记载在日本专利第5008875号等中。

基座40具有在圆孔42的径向外侧贯通基座40的多个(在本实施方式中为两个)插通孔46。基座40的插通孔46经由筒状轴30的贯通孔36与板20的气体流通孔26连通。

接下来,对陶瓷加热器10的使用例进行说明。首先,在真空室内设置陶瓷加热器10,将晶片载置于该陶瓷加热器10的晶片载置面20a。而且,调整向电阻发热体22供给的电力来将晶片的温度调整至设定温度。并且,经由基座40的插通孔46、筒状轴30的贯通孔36以及板20的气体流通孔26向载置于晶片载置面20a的晶片的背面供给氦气、氩气、氮气等导热用气体。由该导热用气体使晶片与晶片载置面20a之间的导热变得良好。而且,将真空腔内设定成真空气氛或减压气氛,在真空腔内产生等离子体,利用该等离子体对晶片实施cvd成膜、或者实施蚀刻。

接下来,对筒状轴30的制造例进行说明。使用3d打印机并利用浆料层叠造型技术来制作与筒状轴30形状相似的成形体(预计烧成时的收缩而较大地设计),并且对所获得的成形体进行烧成来获得筒状轴30。“浆料层叠造型技术”是以下方法:使用在光固化性或者热固化性的液体树脂中分散有陶瓷原料粉末的浆料,精密且高速地制作上述的成形体。具体而言,利用机械控制的刀刃将浆料涂覆于作业区域,通过激光照射使液体树脂固化,仅在所希望的区域内产生光固化或者热固化,从而形成任意形状的二维截面。通过反复进行该操作,使二维截面逐个层叠,最终获得所希望的形状的成形体。

在以上说明的陶瓷加热器10中,筒状轴30的纵截面的形状是具备s字形部分的形状。因此,在筒状轴30内通过的热的路径(从筒状轴30的上端面30a至下端面30b为止的路径)变长,能够防止筒状轴30的下端面30b的高温化。由此,能够将与下端面30b接触的氟树脂制的o型圈50保持为耐热温度以下,进而能够长时间维持o型圈50的密封性。并且,由于在上下方向上贯通筒状轴30的贯通孔36并非如专利文献1所述地接合盖部件来形成,所以外观上美观,并且能够长时间维持贯通孔构造。

并且,贯通孔36是流通导热用气体的气体通路,板20具有与该贯通孔36连通且在厚度方向上贯通板20的气体流通孔26。这样,在贯通孔36内通过的是气体,因而无论贯通孔36的形状如何,都能容易地通过。因此,即使筒状轴30的纵截面的形状是具备弯曲部分的形状,并且贯通孔36的轴线沿该形状,气体也容易地通过贯通孔36。

另外,筒状轴30的制法包括以下工序:(a)使用含有陶瓷粉末的浆料并利用3d打印机来制作与筒状轴30形状相同或相似的成形体的工序;和(b)通过对该成形体进行烧成来获得筒状轴30的工序。因此,即使如筒状轴30那样形成为复杂的形状,也能够较容易地制造该筒状轴30。

此外,本发明不限定于上述的实施方式,当然在属于本发明的技术范围的范围内能够以各种方式来实施。

例如在上述的实施方式的陶瓷加热器10中,示出具备贯通孔36的筒状轴30的例子,但也可以如图5~图7的陶瓷加热器110所示地采用具备贯通空间86的筒状轴80。图5是陶瓷加热器110的纵剖视图,图6是筒状轴80的俯视图,图7是筒状轴80的横剖视图(图5的a-a剖视图)。图5~图7中,对与上述的实施方式相同的构成要素标注了相同的符号。筒状轴80具备贯通空间86而并非贯通孔36,除这一点以外与筒状轴30相同。即,筒状轴80是陶瓷制的筒状部件,与板20的背面20b接合。筒状轴80具有笔直状的轴下方部81和呈朝向上方而向径向外侧方向缓缓地扩大的形状的轴上方部82,并在下端部具有凸缘83。轴上方部82的纵截面的形状是具备s字形部分(此处是具有拐点的弯曲部分)的形状。贯通空间86是从筒状轴80的上端面80a贯通至下端面80b且设于内周壁80c与外周壁80d之间的筒状空间。如图7所示,该贯通空间86的横截面的形状是与筒状轴80的横截面大致呈同心圆的环状。在该贯通空间86设有将内周壁80c与外周壁80d局部地连结的连结部80e。此处,在筒状轴80的上段和下段,连结部80e沿周向隔开90°地各设有四个,合计设有八个。贯通空间86与基座40的插通孔46连通并且也与板20的气体流通孔26连通。这样的陶瓷加热器110也能获得与上述的实施方式相同的效果。而且,筒状轴80的横截面积比筒状轴30小,因而从筒状轴80的上端面80a至下端面80b的热电阻变得更大。其结果,从筒状轴80的上端面80a至下端面80b的导热量变少,可减少或消除板20中的与筒状轴80接触的部分和该部分以外的部分之间的温差。并且,由于也减少热应力,所以能够防止使用中的筒状轴80的破损。另外,在将贯通空间86用作气体通路的情况下,与上述的实施方式的使用贯通孔36的情况相比,能够防止气体流动局部地集中,因而板20的热均匀性变得良好。

在上述的实施方式的陶瓷加热器10中,筒状轴30的多个贯通孔36全部用作气体通路,但也可以如图8的陶瓷加热器210所示,将多个贯通孔36中的一个贯通孔361用作热电偶配置孔。图8中,对与上述的实施方式相同的构成要素标注了相同的符号。在该情况下,在板20设有与贯通孔361连通且在板20的内部具有底部的折曲形状的有底孔261。使未图示的线状的热电偶通过基座40的插通孔46、筒状轴30的贯通孔361以及板20的有底孔261,并使前端部与有底孔261的底部接触。在使用陶瓷加热器210时,以使从该线状的热电偶获得的温度与设定温度一致的方式调整向电阻发热体22供给的电力。此外,图8中使有底孔261为折曲形状,但也可以为在上下方向上延伸的形状。

在上述的实施方式中,也可以如图9所示,筒状轴30的截面形状是在两处具备s字形部分的形状,并且贯通孔36的轴线沿该形状。这样,由于贯通孔36是气体通路,所以气体也能够容易地通过贯通孔36。若筒状轴30的纵截面的形状是在两处具备s字形部分的形状,则能够使在筒状轴30内通过的热的路径变得更长,因而能够更容易防止筒状轴30的下端面30b的高温化。

在上述的实施方式中,将贯通孔36作为流通导热用气体的气体通路,但也可以作为用于抽真空的气体通路。在该情况下,从载置于晶片载置面20a的晶片的背面排出气体来使晶片的背面成为真空气氛,因而能够将晶片吸附于晶片载置面20a。

在上述的实施方式中,示出在板20内置有电阻发热体22的情况的例子,但也可以除内置有电阻发热体22之外,在板20还内置有静电电极或者内置有高频电极。静电电极是用于将晶片吸附于晶片载置面20a的电极,高频电极是用于产生等离子体的电极。

在上述的实施方式中,使用3d打印机来制作筒状轴30,但也可以使用与筒状轴30形状相似的金属模具(近净成形的金属模具)并利用模铸法来制作成形体,并且对所获得的成形体进行烧成来获得筒状轴30。“模铸法”是以下方法:向成型模内注入含有陶瓷原料粉末和成型剂的陶瓷浆料,在该成型模内使成型剂产生化学反应来使陶瓷浆料成型,由此获得成形体。作为成型剂,例如可以包括异氰酸酯以及多元醇,通过聚氨酯反应来使之成型。此外,作为向3d打印机供给的浆料,可以采用在模铸法中使用的陶瓷浆料。

本申请主张基于2018年8月29日申请的日本专利申请第2018-160303号作为优先权,并通过引用将其全部内容并入本说明书中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1