直线加速器的制作方法

文档序号:71045阅读:297来源:国知局
专利名称:直线加速器的制作方法
技术领域
本发明涉及直线加速器。
背景技术
直线加速器,特别是驻波结构的直线加速器,是一种已知的高能电子束源。这种加速器通常用于医学治疗癌症和病变等。在这种应用中,电子束或者通过薄的可穿透的窗射出并直接照射到病人上,或者用于撞击X射线靶以产生合适的光子辐射。
对于每种治疗,经常需要改变电子束的入射能量。在根据治疗轮廓而需要一个特定的能量的医学应用中,便是这种情况。线性驻波加速器包括一系列的加速腔,它们借助于耦合腔耦合,所述耦合腔和相邻的一对加速腔连通。按照US-A-4382208,通过调节相邻加速腔之间的耦合程度来改变电子束的能量。这通常借助于改变耦合腔的几何形状来实现。
所述几何形状的改变一般利用滑动元件来实现,所述滑动元件可以被插入耦合腔内一或多个位置中,借以改变内部形状。利用这种方法会遇到许多严重困难。通常一个以上的这种元件必须被移动,以便以一被精确限定的值保持腔之间的相位移。所述元件的移动通常是不同的,因此,它们必须被单独地移动,还要以非常高的精度被定位,以便保持所需的相位关系。通常要求±0.2mm的精度。这需要复杂而高度精确的定位系统,这在实际上对于工程人员是困难的。在具有少于两个移动部分的方案中(例如在US4,268,192中提出的),所述装置不能保持在输入和输出之间恒定的相位,使得这种装置不能连续地改变RF电场,因而被降低为简单开关的功能。事实上,它们通常被称为能量开关。
许多方案还提出了使用必须承载大幅度RF电流的滑动触点。这种触点易于发生焊接导致的黏连故障,并且其滑动表面对超高真空系统的质量有害。而维持系统的超高真空性质是保证系统长期可靠地操作的关键。
前面提出的解决办法可以归结为具有一个输入和一个输出孔的腔耦合装置,整个装置在电方面的作用好象一个变压器。为了得到可变的耦合值,必须以某种方式利用例如波纹管、塞子和短路插棒(plunger)等装置改变腔的形状。不过,现有技术没有提供能够通过单一的轴向控制在一个宽的范围内连续地改变耦合值同时保持相位是恒值的装置。
本领域的当前状态是,采用这样一种结构,其在两个预定的能量之间提供有用的转换。然而,使用这种结构难于获得可靠的可变能量的加速器。现有技术的一种好的概括可以在US4,746,839中找到。
我们的早期申请PCT/GB99/00187描述了一种新型的直线加速器,其中沿着粒子束轴线设置有多个谐振腔,至少一对谐振腔是通过耦合腔电磁耦合的,所述耦合腔基本上围绕其轴线是旋转对称的,而且包括适用于破坏所述对称性的元件,该元件可以在耦合腔内转动,所述转动基本上平行于耦合腔的对称轴。
在这种装置中,可以在耦合腔内建立谐振,所述谐振和加速腔内的谐振垂直。一般使用加速腔的TM模谐振,这意味着在耦合腔内可以建立TE模式,例如TE111。因为腔基本上是旋转对称的,故场的方位不由腔确定,而是由转动元件确定。耦合腔和两个加速腔之间可以在耦合腔表面内的两个点上连通,根据TE驻波的方位,此时可以“看到”不同的磁场。因而,耦合的程度可以通过简单方便地转动所述转动元件被改变。
这种结构和前面描述的加速器相比提供的显著的优点在于,利用一种容易制造和维护的装置可以在一个宽的范围内得到真正可变的能量输出。不过,该耦合单元的谐振频率具有对可转动元件角度的小的依赖性,如图6所示。所述谐振频率是这样一个频率,在这个频率上,当在相邻加速单元中的谐振被抑制时,耦合单元发生谐振,并且是影响由所述单元实现的耦合程度的一个因素。图6表示,当所述元件(按照PCT/GB99/00187)被转动时,所述频率以正弦方式改变±40MHz。如果被表示为这个例子的平均频率2985MHz的标称值,则仅仅是相当小的改变。不过,如果可能,希望减小甚至完全消除这个改变。
减小或者消除当元件转动时发生的这个耦合单元的谐振频率的改变的一个优点是,这将有助于保证在可转动元件的所有角度下,在被耦合组的腔所需的π/2工作模式的谐振频率和被耦合组的腔不希望模式的相邻的谐振频率之间,不小于可接受的最小的频率分离。
发明概述因此,本发明提供一种驻波直线加速器,其包括沿着粒子束轴线设置的多个谐振腔,其中至少一对谐振腔通过一耦合腔电磁耦合,所述耦合腔通过孔和谐振腔连通,在该耦合腔内具有一旋转不对称元件,其适于围绕基本上平行于耦合腔轴线的轴线转动,所述耦合腔围绕其轴线是不完全旋转对称的,所述不完全至少是由于该腔内在和所述孔相对的部分设置的材料的相对过量引起的。
因而,虽然在优选实施例中耦合腔是接近旋转对称的,但是由于材料的相对过量而使其脱离精确的旋转对称,这在下面进行说明。材料的相对过量可以通过从想象的旋转对称轮廓向内伸入腔的材料来提供,或者通过除去其它位置的相应材料来提供。
在这方面,最好是材料的相对过量包括在腔的内壁上的向内延伸的凸起,以便在工程上容易制造。对于最大的效果(因而最小的凸出范围),所述凸起最好沿着耦合腔的长度延伸,所述长度大于沿着耦合腔轴线的孔的长度。
此外,材料的相对过量可以包括从腔的端壁伸入腔内的凸起。例如,其可以由不垂直于耦合腔纵轴的腔的端壁限定。
在驻波直线加速器的优选实施例中,所述孔的尺寸是不同的。在这种情况下,最好是材料的相对过量向着与较大的孔相对的位置偏移。
显然,本发明是基于在PCT/GB99/00187中所述的发明的延伸,因此,所述专利的理解对于理解本专利是有用的。因此,上述专利被在此引入作为参考,并且注意,本说明书的内容应当结合上述专利的内容进行阅读,并因而要求对本申请和上述专利披露的特征的组合给予保护。
应当认为这种方法在降低装置对于频率的依赖性方面是有效的,因为当可转动的元件转动时,E场和B场相应转动。在这种耦合腔内,E场和B场相互垂直地对准,因此材料的相对过量有效地从主要在E场中的位置移动到主要在B场中的位置(反之亦然)。当在强的E场中时,导电材料趋于使频率降低。同样,当在强的B场中时,导电材料趋于使频率提高。因而当场转动时,则对频率施加一个可变的校正。所述变化本身和可转动件的角度正弦相关,但是被设置为和频率依赖性反相位。因此净效果可被减少甚至消除。
这意味着,材料的相对过量的大小及其相对于场图形的位置将控制频率响应被阻尼的量。其结果是,合适尺寸的相对过量将由其在E场和B场中的位置决定。如果位于腔的端壁之间的中点,当可转动件转动时,该点的电场强度E和磁场强度B交替地变成非常强,则该凸起具有较大的效果,而且其尺寸不必像位于腔的端部或边沿附近那样大。通过试验和校正,一般可以达到合适的尺寸和位置。
附图简述现在将参照附图以实例说明本发明的实施例,其中,
图1是在PCT/GB99/00187中所示的加速器元件的透视图;图2是图1实施例的轴向视图;图3是图1实施例的分解图;图4是图2的IV-IV剖面;图5是图2的V-V剖面;图6是表示耦合单元的谐振频率对于图1-5所示装置的叶片角度的相关性的曲线;图7是对应于图5的表示本发明第一实施例的视图;图8是表示耦合单元的谐振频率对于图7所示装置的叶片角度的相关性的曲线;图9是对应于图5的表示本发明第二实施例的视图;图10是对应于图5的表示本发明第三实施例的视图;图11是对应于图2的表示本发明第四实施例的视图;图12是对应于图2的表示本发明第五实施例的视图;实施例的详细说明图1-5说明PCT/GB99/00187中所述的加速器。它们不被包括在本发明中,但是将其示于此处以便帮助全面理解本发明及其内容。这些图说明直线加速器的一短的子部件,其由两个加速腔和在所述加速腔的任何一边的两个半个的耦合腔。此外,所述元件包括一实施本发明的单个耦合腔,用于耦合两个加速腔。一个完整的加速器应当由轴向耦合的若干个这种子部件构成。
在图1中,加速腔的轴线100通过小的开孔102进入第一加速腔104(在图1中看不到)。另一个加速腔108通过孔106和第一加速腔104连通。此时所述第二腔108的另一侧上具有另一个孔110,用于和当本实施例的子部件沿着轴线100被重复时而形成的下一个加速腔连通。这样,粒子束按照顺序通过孔102,106,110等被加速。
在所示的子部件中形成一对耦合的半腔。第一半腔112在第一加速腔104和由相邻的子部件形成的相邻的加速腔之间提供固定大小的耦合。所述相邻的子部件提供其余的半个耦合腔112。同样,第二耦合腔114耦合第二加速腔108和由相邻的元件提供的相邻的腔。每个耦合腔包括竖柱116和118,它们调整所述腔,从而提供所需的合适的耦合值。耦合腔112,114的结构是常规的。
第一加速腔104通过可调整的耦合腔120和第二加速腔108相连。其由元件内的圆柱形的空间构成,圆柱的轴线垂直于加速腔轴线100并和其分开。两个轴线在其最接近点之间的空间以及圆柱的半径被这样调整,使得所述圆柱和加速腔104,108相交,从而形成孔122,124。如本实施例中所述,圆柱120的位置稍微靠近第二加速腔108,使得孔124大于孔122。根据加速器其余部分的结构,这种不对称性在某种环境下可能是有利的。不过,这不是重要的,在其它的结构中可能或多或少地需要。
在可调整的耦合腔120的一端形成孔126,从而使轴128能够通过进入腔的内部。轴128按照已知的方法被可转动地密封在孔126中。在可调整的腔120内,轴128支撑着叶片130,因而所述叶片可以可转动地被定位,使得在可调整的耦合腔120内限定场TE111的方向,因而规定了在第一腔104和第二腔108之间的耦合量。
在元件内形成冷却通道,从而使水能够通过整个结构流通。在本例中,总共提供了4个冷却通道,在加速腔周围等间隔地布置。两个冷却通路132,134在固定的冷却腔112,114上下延伸,并直接通过所述装置。两个另外的耦合腔136,138作为可变腔120沿着相同侧延伸。为了阻止所述冷却通路和加速腔104,108或者可调整的耦合腔120冲突,形成一对双向拐弯140,这由图2和图3可以清楚地看出。
图3是该实例的分解的视图,说明其可以构成的方式。中心基体单元150包括耦合腔和两个半个第一、第二加速腔104、108。所述两个加速腔可以通过在铜底板上利用合适的车削制作成形,然后和冷却通路132,134,136,138以及通路136、138的双向拐弯140一道钻出在两个腔之间的中心连通孔106。然后,可以钻出可调整的耦合腔120,从而在所述腔和两个加速腔104,108之间形成孔122和124。然后可以把盖152,154铜焊在可调整腔120的顶端和底端,对其密封。
然后,可以利用铜焊步骤形成端件156,158,用于固定中心单元150的每一侧。此外,耦合腔104,108的其余的半个可以用车削成形,如半个腔112,114那样。可以如轴向连通孔102,110那样钻出冷却剂通路132,134,136和138。然后,可以把端件铜焊在中心单元的每一侧上,从而密封加速腔并形成一个单元。
然后把多个相同的单元端对端地铜焊在一起,从而形成一加速腔链。相邻的一对加速腔可以通过固定的耦合腔相连,所述的每对的每个部件可以通过可调整的耦合腔120和相邻的部件相连。
这些单元的铜焊是熟知的,简单地将合适的共熔的铜焊合金箔夹在部件之间,然后把所有部件夹在一起,并加热所述组件到一个合适的高温。在冷却之后,相邻的腔便牢固地连接在一起。
所述叶片用于打破腔120的对称性,从而强迫电场的电力线垂直于叶片的表面。最终结果得到一个只具有一个简单的运动部件的装置,所述运动部件在转动时将直接控制单元之间的耦合,同时在输入和输出之间保持一个恒定的相对相移,例如π弧度。在系统中的唯一的自由度是叶片的转动角度。在一种典型的驻波加速腔应用中,这只需被固定具有几度的精度,所述精度和选择的能量有关。这种控制使得直线加速器的能量能够在一宽的范围内连续地调整。
图6表示这种装置的耦合单元120的采样谐振频率。可以看出,虽然所示的频率是非常稳定的,但是由于所选择的比例,仍然可以明显看到大的波动,当叶片转动时,频率呈正弦变化。这由下面的本发明的实施例处理。
图7表示总体上对应于图5的截面图,因此使用相同的标号表示相同的部件。本发明的这个实施例的不同之处在于提供一个向内延伸的脊部200,所述脊部沿着耦合腔120的长度方向延伸。在本实施例中,所述脊部具有光滑的半椭圆截面,但是这对本发明不是重要的,其它的形状也比较容易加工,并且也可以提供有利的谐振性能。其位置基本上和耦合孔122,124的中点相对,但是稍微偏向与较大的孔124相对的位置。精确位置大约是对着按照其尺寸加权的孔的平均位置。
相信脊部200能够按照上述的方式操作,即通过在可转动的元件130转动时阻尼所述装置的频率相关性,使得在强的E场中时趋于使频率降低,并且在强的B场中时,趋于使频率提高。因而,当场由于可转动元件130而转动时,便对频率施加一个和现有的频率相关性反相的正弦可变校正。因此,净的效果可以被减小或者甚至消除。
图8使用和图6相同的比例表示所述的结果。可以看出,在频率为3000MHz时耦合腔120的频率相关性被明显减小到大约±5MHz的范围,即小于0.2%。结果,输出束的能量可以在一个大的范围内改变,同时有效地抑制所述频率的改变。
该凸起的尺寸通过试验和调整进行确定。期望凸起对频率响应的影响和其尺寸成正比。因而,一个小的凸起不能完全消除频率响应,并且,一个过大的凸起将发生过补偿因而引起反相的频率响应。假定频率响应的大小由装置的其余部分的几何形状确定,所述凸起的尺寸则取决于在提供所述凸起的谐振系统中的精度情况。
图9表示本发明的第二实施例。在本实施例中,由凸起202提供材料的相对过量,所述凸起由在另外的圆柱耦合腔120的曲面上的扁平的区域构成。
图10表示第三实施例。在这种情况下,材料的相对过量通过在两点204,206除去材料来提供,所述两点横断在上面的头两个实施例中增加材料的位置。这基本上具有相同的效果。这对工程师是容易的,因为在对一对补偿槽204,206钻孔前后可以对耦合腔钻孔。
图11表示和图2对应的截面图。再次使用相同的标号表示相同的部件。在图11所示的第四实施例中,材料的相对过量通过在圆柱截面耦合腔120的扁平端面中成角度来提供。因而,腔的轴向长度在对着孔122,124的加权的平均位置的位置较小。
因为在耦合腔内的E场的峰值强度位于中心,预期这种装置比实施例1到3具有较小的效果。不过,这可以通过调整这样形成的材料208,210的附加的体积的尺寸进行补偿。因为这种装置可以更简单地制造,其可以是优选的。
图12表示第5实施例。每个耦合腔120的端盖具有杆状的向内延伸的凸起212,214。它们伸入腔120的中心,并被设置处于和第一实施例的凸起200相应的位置,但是(如图所示)稍微和腔的侧壁分开。所述的杆不需要在两个端面上提供。不过这提供了一种更对称的结构。
当然,本领域技术人员应当理解,上述的实施例仅仅是本发明的简单的说明,并且可以作出许多改变和改型。
权利要求
1.一种驻波直线加速器,包括沿着粒子束轴线设置的多个谐振腔,其中至少一对谐振腔通过一耦合腔电磁相连,所述耦合腔通过孔和谐振腔连通,且在耦合腔内具有一旋转不对称元件,其适于围绕基本上平行于耦合腔轴线的轴线转动,所述耦合腔被这样构成,即在和所述孔相对的部分中具有相对过量的材料,由此确保所述耦合腔围绕其轴线不完全旋转对称。
2.如权利要求
1所述的驻波直线加速器,其中所述相对过量的材料包括在腔的内壁上向内延伸的凸起。
3.如权利要求
2所述的驻波直线加速器,其中所述凸起沿着耦合腔的长度延伸,该长度大于沿着腔的轴线的孔的长度。
4.如权利要求
1所述的驻波直线加速器,其中所述相对过量的材料包括从其端壁延伸进入腔内的凸起。
5.如权利要求
4所述的驻波直线加速器,其中所述凸起由不垂直于耦合腔的纵轴的腔的端壁限定。
6.如前述任何一权利要求
所述的驻波直线加速器,其中所述的孔的尺寸是不相同的,并且所述相对过量的材料向着与较大的孔相对的位置偏移。
7.如权利要求
1所述的驻波直线加速器,其中该材料的相对过量由在相对于所述的孔横向设置的腔的至少一个壁中形成的至少一个槽提供。
8.如权利要求
7所述的驻波直线加速器,其中所述的孔的尺寸是不同的,并且所述至少一个槽向着相对于较大的孔的横向位置偏移。
专利摘要
本发明是对我们早期的专利申请PCT/GB99/00187的改进。所公开的装置能够以非常简单的方式改变在RF电路中两个点之间的耦合,同时保持RF场的相位关系,并且改变RF场的相对幅值。其特征在于耦合值的简单的单一的机械控制,使其对跨过该装置的相移的影响可以忽略。这是通过在圆柱腔内TE
文档编号H05H7/14GKCN1169411SQ00811029
公开日2004年9月29日 申请日期2000年8月3日
发明者约翰·艾伦, 伦纳德·K·布伦德尔, 特丽·A·拉奇, 特伦斯·贝茨, K 布伦德尔, 贝茨, A 拉奇, 约翰 艾伦 申请人:埃莱克特公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1